Computational Oceanography + Climate @ NYU
Computational Oceanography + Climate @ NYU
People
Publications
Code & Data
Contact
Light
Dark
Automatic
Source Themes
Deep Learning of Systematic Ocean Model Errors in a Coupled GCM from Data Assimilation Increments
We present a novel, data-driven approach to predict systematic model errors in the ocean component of a coupled general circulation …
Tarun Verma
,
Feiyu Lu
,
Alistair Adcroft
,
Laure Zanna
,
Anand Gnandesikan
PDF
Cite
DOI
Fourier analysis of the physics of transfer learning for data-driven subgrid-scale models of ocean turbulence
Transfer learning (TL) is a powerful tool for enhancing the performance of neural networks (NNs) in applications such as weather and …
Moein Darman
,
Pedram Hassanzadeh
,
Laure Zanna
,
Ashesh Chattopadhyay
PDF
Cite
DOI
CAMulator: Fast Emulation of the Community Atmosphere Model
We introduce CAMulator version 1, an auto-regressive machine-learned (ML) emulator of the Community Atmosphere Model version 6 (CAM6) …
William E Chapman
,
John S Schreck
,
Yingkai Sha
,
David John Gagne II
,
Dhamma Kimpara
,
Laure Zanna
,
Kirsten J Mayer
,
Judith Berner
PDF
Cite
DOI
Data-Driven Probabilistic Air-Sea Flux Parameterization
Accurately quantifying air-sea fluxes is important for understanding air-sea interactions and improving coupled weather and climate …
Jiarong Wu
,
Pavel Perezhogin
,
David John Gagne
,
Brandon Reichl
,
Aneesh C Subramanian
,
Elizabeth Thompson
,
Laure Zanna
PDF
Cite
DOI
Uncertainty-permitting machine learning reveals sources of dynamic sea level predictability across daily-to-seasonal timescales
Reliable dynamic sea level forecasts are hindered by numerous sources of uncertainty on daily-to-seasonal timescales (1-180 days) due …
Andrew Brettin
,
Laure Zanna
,
Elizabeth A. Barnes
PDF
Cite
DOI
Learning Propagators for Sea Surface Height Forecasts Using Koopman Autoencoders
Due to the wide range of processes impacting the sea surface height (SSH) on daily-to-interannual timescales, SSH forecasts are …
Andrew Brettin
,
Laure Zanna
,
Elizabeth A. Barnes
PDF
Cite
DOI
Learning Machine Learning with Lorenz-96
D Balwada
,
R Abernathey
,
S Acharya
,
A Adcroft
,
J Brener
,
V Balaji
,
MA Bhouri
,
J Bruna
,
M Bushuk
,
W Chapman
,
A Connolly
,
J Deshayes
,
C Fernandez-Granda2
,
P Gentine
,
A Gorbunova
,
W Gregory
,
Arthur Guillaumin
,
Shubham Gupta
,
M Holland
,
JE Johnsson
,
J Le Sommer
,
Ziwei Li
,
Nora Loose
,
F Lu
,
P O’gorman
,
Pavel Perezhogin
,
B Reich
,
Andrew Ross
,
A Sane
,
S Shamekh
,
T Verma
,
J Yuval
,
L Zampieri
,
C Zhang
,
Laure Zanna
PDF
Cite
DOI
The GFDL-CM4X climate model hierarchy, Part II: case studies
This paper is Part II of a two-part paper that documents the CM4X (Climate Model version 4X) hierarchy of coupled climate models …
S M Griffies
,
A Adcroft
,
RL Beadling,
,
M Bushuk
,
C-Y Chang
,
HF Drake
,
R Dussin
,
R W. Hallberg
,
W Hurlin
,
H Khatri
,
J P Krasting
,
M Lobo
,
G MacGilchrist
,
B G Reichl
,
A Sane
,
O V. Sergienko
,
M Sonnewald
,
J M. Steinberg
,
J-E Tesdal
,
M D Thomas,
,
KE Turner
,
M L Ward
,
M Winton
,
N Zadeh
,
Laure Zanna
,
R Zhang
,
W Zhang
,
M Zhao
PDF
Cite
DOI
An Analysis of Deep Learning Parameterizations for Ocean Subgrid Eddy Forcing
Due to computational constraints, climate simulations cannot resolve a range of small-scale physical processes, which have a …
C Gultekin
,
Adam Subel
,
C Zhang
,
M Leibovich
,
Pavel Perezhogin
,
A Adcroft
,
C Fernandez-Granda
,
Laure Zanna
PDF
Cite
DOI
A Monte Carlo Framework for Calibrated Uncertainty Estimation in Sequence Prediction
Probabilistic prediction of sequences from images and other high-dimensional data is a key challenge, particularly in risk-sensitive …
Q Yang
,
W Zhu
,
J Keslin
,
Laure Zanna
,
T GJ Rudner
,
C Fernandez-Granda
PDF
Cite
DOI
«
»
Cite
×