Data-driven multiscale modeling of subgrid parameterizations in climate models

Abstract

We propose a multiscale approach for predicting quantities in dynamical systems which is explicitly structured to extract information in both fine-to-coarse and coarse-to-fine directions. We envision this method being generally applicable to problems with significant self-similarity or in which the prediction task is challenging and where stability of a learned model’s impact on the target dynamical system is important. We evaluate our approach on a climate subgrid parameterization task in which our multiscale networks correct chaotic underlying models to reflect the contributions of unresolved, fine-scale dynamics.

Type
Publication
ICLR, Workshop on Climate Change AI, arXiv:2303.17496
Laure Zanna
Laure Zanna
Joseph B. Keller and Herbert B. Keller Professor in Applied Mathematics; Professor of Mathematics and Data Science

My research interests include Climate Dynamics, Physical Oceanography, Applied Math, and Data Science.