The sensitivity of regional sea level changes to the depth of Antarctic meltwater fluxes

Abstract

Regional patterns of sea level rise are affected by a range of factors including glacial melting, which has occurred in recent decades and is projected to increase in the future, perhaps dramatically. Previous modeling studies have typically included fluxes from melting glacial ice only as a surface forcing of the ocean or as an offline addition to the sea surface height fields produced by climate models. However, observational estimates suggest that the majority of the meltwater from the Antarctic Ice Sheet actually enters the ocean at depth through ice shelf basal melt. Here we use simulations with an ocean general circulation model in an idealized configuration. The results show that the simulated global sea level rise pattern is sensitive to the depth at which Antarctic meltwater enters the ocean. Further analysis suggests that the response is dictated primarily by the steric response to the depth of the meltwater flux.

Type
Publication
Submitted to GRL
Aurora Basinski
Aurora Basinski
AI Schmidt Science Postdoctoral Researcher at Scripps, UCSD
Laure Zanna
Laure Zanna
Joseph B. Keller and Herbert B. Keller Professor in Applied Mathematics; Professor of Mathematics and Data Science

My research interests include Climate Dynamics, Physical Oceanography, Applied Math, and Data Science.