Transfer Learning for Emulating Ocean Climate Variability across CO2 forcing

Abstract

With the success of machine learning (ML) applied to climate reaching further every day, emulators have begun to show promise not only for weather but for multi-year time scales in the atmosphere. Similar work for the ocean remains nascent, with state-of-the-art limited to models running for shorter time scales or only for regions of the globe. In this work, we demonstrate high-skill global emulation for surface ocean fields over 5-8 years of model rollout, accurately representing modes of variability for two different ML architectures (ConvNext and Transformers). In addition, we address the outstanding question of generalization, an essential consideration if the end-use of emulation is to model warming scenarios outside of the model training data. We show that 1) generalization is not an intrinsic feature of a data-driven emulator, 2) fine-tuning the emulator on only small amounts of additional data from a distribution similar to the test set can enable the emulator to perform well in a warmed climate, and 3) the forced emulators are robust to noise in the forcing.

Type
Surya Dheeshjith
Surya Dheeshjith
AI Scientist, Capital One
Adam Subel
Adam Subel
PhD Student

My research interests include distributed robotics, mobile computing and programmable matter.

Shubham Gupta
Shubham Gupta
ML Engineer at Rivet.us

My research interests include distributed robotics, mobile computing and programmable matter.

Laure Zanna
Laure Zanna
Joseph B. Keller and Herbert B. Keller Professor in Applied Mathematics; Professor of Mathematics and Data Science

My research interests include Climate Dynamics, Physical Oceanography, Applied Math, and Data Science.