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The global energy budget is fundamental for understanding climate change. It states
that the top-of-atmosphere imbalance between radiative forcing (which drives climate
change) and radiative response (which resists the forcing) equals energy storage in
Earth’s heat reservoirs (i.e. the ocean, atmosphere, land, and cryosphere). About 90% of
Earth’s energy imbalance is stored as heat content in the ocean interior, which is poorly
sampled before 1960. Here, we reconstruct Earth’s energy imbalance since 1880 by
inferring subsurface ocean warming from surface observations via a Green’s function
approach. Our estimate of Earth’s energy imbalance is consistent with the current
best estimates of radiative forcing and radiative response during 1880-2020. The
consistency is improved in this study compared to previous ones. We find two distinct
phases in the global energy budget. In 1880-1980, Earth’s energy imbalance closely
followed the radiative forcing. After 1980, however, Earth’s energy imbalance increased
at a slower rate than the forcing; in 2000-2020, the imbalance amounted to less than
50% of the forcing. In simulations of historical climate change, the model-mean energy
imbalance is consistent with observations within uncertainties, but individual models
with a “weak” response to anthropogenic aerosol agree better with observations than
those with a “strong” response. Because the global energy budget before and after 1980
implies very different global warming in the future, further studies are required to
better understand the cause of this historical variation.

global energy budget | ocean heat uptake | radiative forcing | radiative response | climate model

The global energy budget is a fundamental aspect of Earth’s climate system. Human-
induced changes in the atmospheric composition have resulted in a positive radiative
forcing F at the top of the atmosphere (TOA) since 1750, which warms the Earth’s
surface (1, 2). A warmer Earth tends to radiate more energy to space, counteracting the
effect of F; this is referred to as Earth’s radiative response R (3). The imbalance between
F and R determines the net TOA radiative flux, which must be equal to V, the change in
Earth’s heat storage (4), as required by energy conservation, i.e. N = F+ R. Reproducing
the historical global energy budget is a basic test for climate models. The energy budget
itself provides a useful constraint on the Earth’s equilibrium temperature response to
CO; forcing (3, 5, 6).

The global energy budget has been analyzed using observation-based data (2, 7-9).
Earth’s energy imbalance NV can be derived from observed changes in Earth’s heat
reservoirs. During 1971-2020, observations suggest that about 90% of V is stored in the
ocean, followed by 6% in the ground, 4% in the cryosphere and 1% in the atmosphere
(4, 10). From 2000 onward, satellite radiometers have provided a direct estimate of IV,
which agrees well with the /V inferred from Earth’s heat storage (11). In contrast, the
radiative forcing F and the radiative response R are not observable directly. F can be
derived from radiative transfer models forced with observed changes in the atmospheric
composition. R can be calculated as the product of the observed global surface warming 7°
and the climate feedback parameter a, with the caveat that a exhibits a large uncertainty
in the literature (2). The fifth assessment report of the Intergovernmental Panel on
Climate Change (IPCC) demonstrated that the global energy budget is closed within
uncertainties during 1971-2010 (8). The IPCC sixth assessment report extended this
analysis to 2018 with improved consistency (2).

Global ocean heat content (OHC) change (unit: J) is an important measure of Earth’s
energy imbalance V (unit: W m~2) stored in the ocean, i.e. JOHC/dr &~ 90% x N x A,
where A is the Earth’s surface area. Conventionally, OHC estimates are derived from
mapping in situ temperature data to a global ocean grid (“in situ” means that data are
collected at the point where the instrument is located). The historical temperature data are
sparse in space and time and suffer from systematic instrument biases, especially during

early periods (12, 13). This has prevented an estimate of global OHC change before 1960,
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which leaves a gap in the global energy budget record. Since 2006,
Argo autonomous floats have provided high-quality temperature
measurements with unprecedented spatial coverage of the global
ocean, greatly improving the accuracy of the OHC estimate (14).

Recently, methods have been developed for reconstructing
OHC before 1960 (15, 16). In particular, Zanna et al. (16)
estimated OHC change starting from 1870 by propagating
observed sea surface temperatures (SSTss) into the ocean interior
using a Green’s function (GF) approach (17-19).

In this study, we derive Earth’s energy imbalance NV since
1880 from an OHC reconstruction based on an improved GF
approach. Our estimate of Earth’s energy imbalance N agrees
with the sum of radiative forcing F and radiative response R
derived from independent sources. This allows us to present
a continuous record of the global energy budget starting from
1880 using observation-based data.

Green's Function Method in a Nutshell

In this section, we explain the procedure of computing OHC
change and associated uncertainties using the GF method. The
GF method is detailed in Excess Heat and Green’s Function and
contrasted with the in situ method in Table 1.

Ocean heat uptake (OHU) is caused by surplus heat being
added to the ocean surface via air—sea fluxes and then carried
to depth by ocean transport (advection and mixing). The GF
method exploits this fact and attempts to reconstruct ocean
warming at depth from its surface signature. For a given interior
location, the GF estimate of ocean warming can be written as

Oct) =Y D Glro t — 1)O%(rs £,), [1]

I, t<t

where O, and O are the interior and surface ocean temperature
change relative to a preindustrial state, respectively, # and #, their
corresponding time variables, and r; (longitude and latitude) the
location vector of . Basically, ®.(¢) is reconstructed as the
weighted sum of the ® values everywhere at the ocean surface
and any time prior to #, with the GF kernel G providing the
weightings. Physically, the GF kernel partitions a water parcel at
a given location according to the time and place of its last surface
contact; i.e. the joint water-mass and transit-time distribution
(17, 19). Importantly, the GF method does not rely on subsurface
temperature measurements, in contrast to the in situ method
(Table 1).

The GF method requires two inputs: the GF kernel G and the
boundary condition ®F. These are derived as follows.

The GF kernel G is derived from observations of ocean
transient tracers CFC-11 and CFC-12 via an inverse approach,
using simulations of G as an initial guess (18, 22) (Observational
Green’s Functions). This method exploits the fact that the GF is
an intrinsic property of ocean circulation (advection and mixing)
and thus applies to any conservative tracer in the ocean.

The GF derived here has two caveats. First, CFC observations
only constrain G for lead times less than ~50y because CFC
emissions started in the 1950s. We expect this caveat has little
impact on our result because we focus on historical climate
change, which is dominated by responses on multidecadal
timescales (23). While tracers such as argon-39 can further
constrain G on centennial timescales, very few measurements are
available (24). Second, we assume G is stationary in time because
observations are insufficient to constrain its time evolution. That
is, we ignore potential changes in ocean circulation under global
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warming, which may lead to a roughly 10% overestimate of
global OHC increase between 2008 and 1980 (16, 25).

Technically, the boundary condition ®; should be surface
excess temperature (25). By that we mean the part of SST change
that originates at the surface, excluding SST redistribution due
to changes in ocean circulation. Because © is not observable, we
construct it by combining observations and model simulations
(Ocean Heat Uptake Boundary Conditions). We separate O into
the global mean and regional anomalies. The former is derived
from the global-mean SST change in observations, while the
latter are diagnosed from climate model simulations. Deriving
the global-mean ©; from the global-mean SST change introduces
a cold bias because the latter contains a weak cooling signal from
SST redistribution (Ocean Heat Uptake Boundary Conditions).
This leads to an underestimate of global OHC increase, which
partly compensates the overestimate due to G discussed earlier.

We differ from Zanna et al. (16) in that we impose obser-
vational constraints on the GF kernel and we use a different
construction of boundary conditions (Table 1). These changes
bring the GF OHC estimate closer to the in situ estimate during
the Argo period (shown later).

We quantify the uncertainty of the GF OHC estimate using
sets of alternative estimates of the GF kernel G and the boundary
condition ©%. We derive twelve G estimates from three first-
guess solutions and four realizations of ocean tracer observations
(Observational Green’s Functions). We also derive six O estimates
from three observational SST datasets and two excess temperature
simulations (Ocean Hear Uptake Boundary Conditions). In total,
our sensitivity test produces 12 X 6 = 72 members of the GF
OHC estimate. Results are reported as the ensemble mean £2
X SD (o). Uncertainties from other studies are converted to
the 20-range when discussed here, assuming a Gaussian error
distribution.

SST datasets have two potential biases in eatly periods: a cold
excursion in 1900-1920 and the World War 2 warm anomaly
in 1939-1945 (26-30). To examine how these biases affect the
GF OHC estimate qualitatively, we apply the following simple
corrections. We remove the 1900-1920 cold excursion by setting
SST anomaly in that period to its 1880-1900 time mean, and
remove the 1939-1945 warm anomaly by scaling down SST
anomaly in that period by 50% (i.e. a reduction of 0.15K). In
both case, the anomaly is relative to the 1870-1880 time mean.
The bias corrections and the resulting differences in our OHC
estimate are shown in S7 Appendix, Fig. S5. In what follows, we
focus on the results with the bias corrections and discuss the
differences that arise without them when relevant.

Global Ocean Heat Uptake

In this section, we compare the GF OHC estimate of this study
against i) the in situ OHC estimates of Cheng (31), Levitus (32),
Ishii (33), and Bagnell (34) and ii) the GF OHC estimates of
Zanna (16) and Gebbie (15). The results of Cheng, Levitus, and
Ishii are shown in Fig. 1, while those of Bagnell and Gebbie are
shown separately in SI Appendix, Fig. S6 for clarity. All of them
are integrated over the upper 2,000 m.

Ocean Heat Content Change. The GF OHC estimate of this
study exhibits an upward trajectory during the historical period
(Fig. 14). The global OHC change between 2006-2015 and
1956-1965 is 265 % 142 Z] from our estimate (black dot, Fig.
1B, leftmost column), 230 & 38 Z]J from Levitus (blue dot) and
258 £ 54 Z] from Cheng (green dot), for instance; other OHC

estimates are consistent with those numbers within uncertainties
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Table 1.

A comparison of different methods for estimating ocean heat uptake

Subsurface
temperature
Method Green'’s function G Boundary condition 3 measurements
This study Observation-based, constrained by SST anomaly relative to 1870-1880 with Not used
CFC-11 and CFC-12 in the ocean, initial corrections for a) excess temperature,
guesses are derived from ocean b) the 1900-1920 cold excursion, and
models c) the World War 2 warm anomaly
Zanna (16) Derived from an ocean state estimate SST anomaly relative to 1870-1880 Not used
(20)
Gebbie (15) Observation-based, inferred from SST anomaly relative to 0015 Not used
climatology of ocean tracers (21)
In situ N/A N/A XBT, CTD, Argo, etc.

(Fig. 1B and SI Appendix, Fig. S6B). 1956-1965 is a common
starting period for the in situ datasets.

Different choices of SST dataset and excess temperature
estimate (Ocean Heat Uptake Boundary Conditions) result in a
£110 Z] (£20) spread in the GF OHC change between 2006—
2015 and 1956-1965 (Fig. 1B, rightmost column), while the
corresponding spread due to uncertainties in the GF kernel is -85
Z] (Fig. 1 B, Middle column). The latter arises because existing
observations are insufficient to fully constrain the GF kernel.

Ocean Heat Uptake Rate. We evaluate the rate of OHU (i.e. its
time-derivative) using linear trends derived from a 20-y moving
window, and express the result per unit area of Earth surface. The
choice of 20y for the window is a compromise between filtering
out the unforced variability and resolving the time evolution.
Altering the window span from 20y to 10, 15, or 30y does not
affect the time evolution of the OHU rate in Fig. 1 very much,
although a longer window does give a smoother time series (S/
Appendix, Fig. S7). The uncertainty of the in situ OHU rate
has been assessed in the literature using different methods, as
summarized in Meyssignac et al. (10) table 1. We use the 1993—
2008 error of £0.13 W m~2 in Lyman et al. (35) as the 20-error
of the in situ OHU rate, because it accounts for a comprehensive
list of uncertainties. In addition, we assume that the in situ error
of £0.13 W m™2 is constant in time. We note that this choice
likely underestimates the in situ error before the 1990s (36),
but using a larger in situ error does not affect our discussion
below.

The OHU rate has exhibited a robust acceleration since the
1960s (36-38). The GF OHU rate (this study) increased from
0.12 £ 0.23W m™2 in 1960-1980 to0 0.63 & 0.23W m~2 in
2000-2020 (Fig. 1C, black line), i.e. a linear trend of 0.12 £
0.07 W m™2 per decade over 1960-2020. The Cheng estimate
shows a similar OHU rate increase over the same period, from
0.10 £ 0.13W m ™2 t0 0.60 & 0.13 W m~2. The in situ OHU
rates may be underestimated before 1990 because of linear vertical
interpolation and the XBT data biases (39). The in situ OHU
rates differ from one another regarding detailed time evolution,
but the difference is not significant considering their uncertainties
(££0.13 W m™2). The Zanna OHU rate exhibits a weaker upward
trend than the in situ estimates in 1980-2020, while the Gebbie
OHU rate exhibits a downward trend after 1990 (Fig. 1C and
SI Appendix, Fig. S6C). Note that the Gebbie estimate was built
to study OHU on a much longer timescale than the one focused
here (past 2,000 y vs. past 140y).

Prior to 1960, the GF estimate (this study) suggests that
the OHU rate was accelerating in 1920-1940 (central years),
and decelerating in 1950-1970 (Fig. 1C, black line). The
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transition between the two episodes coincides with the ramp-
up of anthropogenic acrosol emission (40, 41).

The potential biases in SST datasets have a marked impact on
the GF OHU rate prior to 1960 (Fig. 1 C compare the black solid
and dashed lines). Removing the cold excursion in 1900-1920
changes the OHU rate in 1900 from —0.21 % 0.19 to 0.06 +
0.12W m~2. Halving the World War 2 warm anomaly reduces
the OHU rate in 1940 from 0.47 £ 0.19 t0 0.31 £ 0.17 W m 2.
Whether the above bias corrections can be justified is examined
later through the lens of the global energy budget. The Zanna
and Gebbie estimates both show a reversal in the trend of OHU
rate between 1920-1940 and 1950-1970, similar to our estimate
(SI Appendix, Fig. S6C). However, the peak OHU rate at 1940 is
higher in their estimates compared to ours; this difference is po-
tentially related to the World War 2 SST biases discussed above.

The Argo Era. We compare the OHU rate from different
estimates for 2006-2020, when the Argo floats have achieved
a near-global coverage in 0 to 2,000 m. During 20062020,
the GF estimate (this study) suggests an OHU rate of 0.69 +
0.23W m~2, consistent with the in situ estimates of 0.57 =
0.13, 0.60 £ 0.13, 0.66 & 0.13, and 0.59 & 0.13 W m ™~ from
Cheng, Levitus, Ishii and Bagnell, respectively (Fig. 1D and S/
Appendix, Fig. S6D). Different choices of SST dataset and excess
temperature estimate (Ocean Heat Uptake Boundary Conditions)
result in 40.20 W m~2 spread in the GF OHU rate, while
uncertainties in the GF kernel lead to £0.11 W m~2 spread (Fig,
1D). Note that the GF OHC uncertainty is no smaller during
the Argo era than in earlier periods (Fig. 1C gray shading). This
is because the GF method uses the full SST history to infer OHC
change (Eq. 1), i.e. the OHU rate at any time is affected by
SSTs at all previous times, including their uncertainties. During
the Argo era, the Zanna OHU rate sits near the lower limit of
our estimate (Fig. 1D); this difference is mostly due to our use
of excess temperature for the boundary condition (S7 Appendix,
Fig. §8). The Gebbie estimate is excluded for this comparison
because it is not available after 2015.

Global Energy Budget

In this section, we analyze the global energy budget since 1880
using our GF OHU reconstruction. Methods for deriving the
energy budget terms and associated uncertainties are summarized
in Table 2. All the energy budget terms are shown as anomalies
with respect to the 1870-1880 time mean.

Observation-Based Data. We derive Earth’s energy imbalance N
from our GF OHU reconstruction, because heating rates in other
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Fig. 1.

Global ocean heat uptake during the historical period (0 to 2,000 m). Different estimates are color coded. “This study” and “Zanna" are based on the

Green's function (GF) method; the other three are in situ estimates. (A) time evolution of ocean heat content change relative to the 2006-2015 baseline (1 ZJ
= 1021J). (B) ocean heat content change between 2006-2015 and 1956-1965. (C) time evolution of ocean heat uptake rate per unit area of Earth’s surface. (D)
ocean heat uptake rate during the Argo period (2006-2020). In (C), the rate of change is computed as linear trends of a 20-y running window. In (B and D), the
spread of our GF estimate is decomposed into that due to the GF kernel G and that due to the boundary condition ©g; individual members are shown as circles.
Shading and error bars indicate the 2s-error. In (A and C), the dashed black line is the same as the solid black line, except that it is computed from SST datasets

without bias corrections.

Earth system components are poorly known prior to 1960. We
do not use the GF estimate for OHU below 2,000 m because the
GF kernel is poorly constrained by observations at those depths
(SI Appendix, section 1C). We obtain the full-depth OHU rate
by combining: i) the GF OHU rate for 0 to 2,000 m depth
with ii) 0.07 & 0.04 W m ™2 from Johnson et al. (42) for below
2,000 m; the latter only applies to the 1980-2020 period. Earth’s
heat inventory in recent decades (e.g. 1971-2020) suggests that
OHU accounts for 90 = 6% of N (2, 4, 8). We therefore divide
the full-depth OHU rate by 90 £ 6% to derive N. Note that,
due to insufficient observations, we assume that: 1) OHU below

https://doi.org/10.1073/pnas.2408839122

2,000 m is negligible before 1980 and 2) the fraction of N stored
in the ocean is constant in time. These assumptions should be
revisited in the future when extended records of Earth’s heat
inventory become available.

We derive the radiative forcing F and the radiative response R
using methods that are independent of the global energy budget,
that is N = F 4 R is not guaranteed by construction. F is
obtained from the assessed range in the IPCC sixth assessment
report (ARG) (2), which combines lines of evidence from models
and observations. R is computed by two methods. The first
method (Rimple) considers R due to the global-mean surface

pnas.org


https://www.pnas.org/lookup/doi/10.1073/pnas.2408839122#supplementary-materials

Table 2. Radiative forcing F, radiative response R, and Earth’'s energy imbalance N from observation-based
estimates and climate model simulations

Downloaded from https://www.pnas.org by 97.113.221.117 on September 19, 2025 from IP address 97.113.221.117.

Variable 1920-1940 2000-2020 Data source Uncertainty
Observation-based estimates
dOHU/dt 0 to 2,000 m 0.25+0.13 0.63 +£0.23 GF method Perturbation of inputs
dOHU/dt >2,000 m Negligible 0.07 +£0.04 Johnson et al. (42) Johnson et al. (42)
dOHU/dt full depth 0.25+0.14 0.70 £0.23 Sum of previous two Propagation of error
Imbalance N 0.28 +0.16 0.78 + 0.27 dOHU/dt + (0.90 £ 0.06) Propagation of error
Forcing F 0.23£0.28 2.02 £0.82 Forster et al. (2) Forster et al. (2)
Response Rsimple -0.11 £ 0.1 —-1.07 £ 0.74 Simple model R = aT Propagation of error
Response Rpatial 0.00£0.17 —1.15+0.51 Atmosphere models Intermodel spread
N=F 1.22+£1.28 0.38 +0.15 Nand F Propagation of error
Inferred N 0.23+0.20 0.87 £ 0.58 F + Rspatial Propagation of error
Inferred F 0.28 £+ 0.21 1.93+0.54 N — Rspatial Propagation of error
Inferred R 0.05+0.24 —-1.25+0.71 N-—F Propagation of error
Variable 1920-1940 2000-2020 Data source CMIP6 variable
Climate model simulations
dOHU/dt full depth 0.15+0.14 0.71 £0.29 Historical (17) hfds
Imbalance N 0.16 £0.15 0.72 £0.28 Historical (17) rsdt, rsut, rlut
Forcing F 0.26 +£0.19 1.71 +£0.54 piClim-histall (7) rsdt, rsut, rlut
Response R —-0.10£0.15 —0.98 + 0.45 NandF (7) N/A
N=F 0.61 +0.58 0.43+0.17 N and F (7) N/A

The rate of ocean heat uptake is denoted as “dOHU/dt.” All quantities are in units of W m~2 of Earth's surface area. The 1920-1940 and 2000-2020 averages are selected to demonstrate
two distinct phases in the global energy budget. The two R estimates, Rgjmple and Rgpatial, are both computed from observed surface warming; the difference is that Rgjmple Only considers
the global-mean warming, whereas Rqpaia) considers the spatially varying warming using 3D atmosphere models. For climate model simulations, the data source shows the experiment
name, with the ensemble size denoted in parentheses. The 2s-error is derived from various sources/approaches for observation-based estimates, but it is always computed from the
intermodel spread for climate model simulations. Different climate model experiments are contrasted in Table 3.

warming 7" and a constant climate feedback parameter a (i.e.
Rimple = @T). The mean and 26 of 7T are derived from the
HadCRUTS5 dataset (43) using its 200 ensemble members. The
feedback parameter @ = —1.16 4 0.79 W m~2 K~! is obtained
from the assessed range in the IPCC ARG (2). The uncertainty
of Rimple comes from propagation of error. The second method
(Rspatial) considers R due to spatially varying SST and sea ice
changes in observations using 3D atmosphere general circulation
models. The Cloud Feedback Model Intercomparison project
(44) specifically designed an experiment (amip-piForcing) to
diagnose Rypaial; we use the results of eight atmosphere models to
compute the mean and 26 of Ropqiial (Climate Model Simulations).

The energy imbalance NV is derived from the 20-y running
window used to compute the OHU rate. For consistency, the
radiative forcing F and radiative response R are smoothed by a
20-y running mean. Note that this makes dips in F after volcanic
eruptions less obvious.

Budget Closure. Our estimate of Earth’s energy imbalance N
(Fig. 24 blue line) agrees with the sum of the TOA radiative
forcing F and radiative response R within uncertainties all the
time since 1880, indicating a closure of the global energy budget.
This conclusion is robust regardless of i) the choice of the R
estimate (Fig. 24 black and gray line) and ii) whether OHU is
derived from SST with bias corrections (compare Fig. 24 with S/
Appendix, Fig. S9A). We also use the Zanna and Gebbie OHC
estimate to derive /V estimates following the method described
above. The resulting V estimates agree with F + R during 1880—
2020 when considering uncertainties estimated in this study (57

Appendix, Fig. $10).

Central Estimate. We compare N against F + R for the central
estimate. Our estimate of IV closely follows F + Ryyqiial (Fig. 24
blue and black line); both feature a weak positive trend before
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1950 and a stronger one after 1980. The root-mean-squared error
between them is 0.14 W m~2 over 1880-2014. In comparison,
the Zanna and Gebbie NV estimates do not track F + Rpacial
as closely as our estimate does; both of them suggest a strong
decadal variability in NV during 1900-1960, which is not seen
in F + Ropacial (ST Appendix, Fig. 510). The root-mean-squared

error between N and F + Rypagal is 0.17 and 0.28 W m~2 for the
Zanna and Gebbie estimates, respectively.

Our estimate of NV (Fig. 24 blue line) agrees better with
F + Ropatal (black line) than with F + Rgmple (gray line),
wherein Rymple and Ripqgial are derived from R = a 7" and atmos-
phere models, respectively. This suggests that atmosphere models
provide a more realistic estimate of R than the simple model with
a constant @. Recent studies have shown that surface warming at
different locations affects R differently (45, 46); this mechanism
is resolved in Rypagal, but not in Rgmple-

Distinct Phases. We find two distinct phases in the global energy
budget. Before 1980, the evolution of Earth’s energy imbalance N
(Fig. 2B blue line) closely followed that of the radiative forcing F
(orange line); the two are not significantly different, considering
their uncertainties. Deriving N from SST datasets without bias
corrections does not alter this finding (compare Fig. 2B with S/
Appendix, Fig. S9B). After 1980, however, the energy imbalance
N started to increase at a slower rate than the radiative forcing 7,
and the two became significantly different in 2010 (Fig. 2B). N/F
measures the fraction of the forcing that went into heating the
Earth. The N/F ratio is close to unity before 1980, but gradually
decreases after that, reaching 38% =+ 15% in 2010 (Table 2).
Note that N/F is highly uncertain before 1980 because F is not
significantly different from zero during that time.

Reduced Historical Forcing Uncertainty. We infer the radiative
forcing F as the difference between /V and R following previous

https://doi.org/10.1073/pnas.2408839122
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Fig. 2. Evaluating the global energy budget since 1880 using observation-based data. The three components examined here are Earth’s energy imbalance N,
the radiative forcing F, and Earth'’s radiative response R. Methods for deriving N, F, and R are summarized in Table 2. In all panels, shading indicates the 2s-error.
F and R are both smoothed by a 20-y running mean. The N estimate of this study is shown as the blue line in (A-C), the same in each panel. The N estimate in
the dashed blue line is the same as that in the solid blue line, except that it is computed from SST datasets without bias corrections. In (B-D), simulations from
climate models are shown as pale dots, plotted every 20y for clarity; different panels contain different numbers of model results due to data availability. In (C),
the models are split into those with a “weak” and “strong” response to anthropogenic aerosol forcing, respectively.

studies (7, 47), and compare the result against the F estimate in
the IPCC AR6. The uncertainty of the inferred F is derived via
propagation of error.

We focus on the 1960-1980 period, for which the F in the
IPCC ARG has a large uncertainty (0.08 £ 0.71 W m™2). The
inferred F range is 0.38 £ 0.29 W m™2 from N = Rmple and 0.17

+0.29W m™? from N — Ripatial- In both cases, the lower bound
of the inferred F is substantially less negative than the IPCC AR6
estimate, and the range is about 60% narrower. This uncertainty
reduction is comparable to that found by Andrews and Forster
(47), who consider the 2005-2015 period. The inferred F also
has a smaller uncertainty than the F of IPCC ARG in 1920-
1940 and 2000-2020 (Table 2), but the improvement is less
pronounced than in 1960-1980.

Pre-1880 Period. Our global energy budget analysis assumes that
Earth’s climate is near equilibrium in 1870-1880, consistent with
the IPCC ARG (48). However, some studies argue that an earlier
baseline should be used because CO, concentration increases
started before 1870 (49). As a sensitivity test, we evaluate the

https://doi.org/10.1073/pnas.2408839122

global energy budget for 1700-1880 using surface temperature
change reconstructed from paleoclimate records (Global Energy
Budger in 1700-1880). The result shows that Earth’s energy
imbalance /V is dominated by responses to volcanic eruptions
in 1700-1800, without a clear sign of long-term increase (S/
Appendix, Fig. S11). In 18601880, the energy imbalance NV is
close to zero, consistent with our choice of the reference period,
i.e. 1870-1880.

Evaluating Climate Model Simulations

In this section, we evaluate the radiative forcing F, the radiative
response R and the energy imbalance NV simulated in 17 climate
models (i.e. atmosphere—ocean general circulation models) par-
ticipating in the Coupled Model Intercomparison Project Phase 6
(CMIPOG) (50) against the observation-based estimates described
in the previous section. The energy imbalance /V is available for all
17 models up to 2020, while the radiative forcing F and radiative
response R are available for 7 models only (up to 2014 in 3 models
and 2020 in 4) because they are low priority outputs. We focus on
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Table 3.

Name Configuration

Atmospheric composition

A comparison of climate model experiments used in this study

SST TOA net radiative fluxis  Climate change is anomaly wrt

Preindustrial
Time-varying historical
Time-varying historical

piControl
Historical (1850-2014)
piClim-histall (1850-2014)

Coupled atmosphere-ocean
Coupled atmosphere-ocean
Atmosphere-only
amip-piForcing Preindustrial
(1870-2014)

Atmosphere-only

Model drift N/A
Model historical N Parallel piControl
Model historical F Its own 1870-1880 time mean

Predicted by model
Predicted by model
Climatology of

piControl
Observations, Observation-based Its own 1870-1880 time mean
time-varying R estimate

the 1920-1940 and 2000-2020 periods, which sample distinct
phases in the observed energy budget. Model results are shown
as pale dots in Fig. 2 B—D and individually in S/ Appendix, Figs.
S12-S15. Methods for deriving the global energy budget from
climate models are described in Climate Model Simulations and
summarized in Tables 2 and 3. All model results are smoothed by
a 20-y running mean to be consistent with the observation-based
estimates.

The CMIP6 simulations of F, R, and N agree with the
observation-based estimates within the 20 intermodel spread
(Fig. 2 B-D and Table 2). Notably, CMIP6 models tend to
simulate a more negative R than Ryl in 1920-1940 (—0.10
vs. 0.00 W m~2) and a less positive F than the F of IPCC ARG
in 2000-2020 (1.71 vs. 2.02W mfz) (Table 2).

We next compare the CMIP6 simulations of F, R, and V in
individual models against the observation-based estimates. For a
given model, uncertainties of F, R, and NV are obtained as the SD
of the TOA radiative flux in its preindustrial simulation, after
applying the 20-y running mean. This accounts for the fact that
model simulations may differ from observations because their
unforced variability is in different phases.

For the energy imbalance NV, we spilt the 17 models into
those with a “weak” response to anthropogenic acrosol forcing
(9 models), and those with a “strong” one (8 models) (Climate
Model Simulations); their respective multimodel means are shown
as the green and red lines in Fig. 2C. Eight of the nine “weak”
models simulate /V that agrees with the observed NV (within the
20-range) over 90% of the time in 1880-2010 (S7 Appendix,
Fig. S12), but only two of the eight “strong” models do so (S7
Appendix, Fig. S13). The agreement between the observation-
based and simulated NV is worse when the former is computed
from SST datasets without bias corrections (Fig. 2C compare the
blue solid and dashed lines).

The radiative forcing F and radiative response R are available
for 7 of the 17 climate models. Here, we use the inferred F
(N — Ropaial) and Rpyial as the observation-based F and R,
respectively. Six of the seven models simulate F that agrees
with the observation about 90% of the time in 1880-2004 (S/
Appendix, Fig. S14), while only two do so for R (8] Appendix,
Fig. S15). Four of the seven models are the “weak” models, while
the rest are the “strong” models. The “weak” models have a more
positive F and a more negative R than the “strong” models in the

model mean (87 Appendix, Fig. S16).

Regional Ocean Heat Uptake

The GF OHC estimate, by construction, only accounts for the
OHC change originating from the surface (16, 25); we refer to
this as the “excess” OHC change. The difference between the
observed total OHC change and the excess OHC change gives
the “redistributed” OHC change, which integrates to zero over
the global ocean volume (51, 52). In this section, we examine
the excess and redistributed contributions to the observed total
OHC change at different latitudes. We focus on the zonal-
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and-depth integrated change over 0 to 2,000 m; a change is
computed as the linear trend over 1980-2020, when greenhouse
gas forcing dominates. The observed total OHC change is derived

from the average of three in situ datasets: Cheng, Levitus, and
Ishii.

Latitudinal Distribution. The excess OHC change of this study
(i.e. the GF OHC change) has two peaks in both the Indo-Pacific
and the Atlantic, located at around 40°S and 30°N (Fig. 3 A and
B, black line). For the central estimate, the excess OHC change
at high latitudes is about twice as large as that at low latitudes.
We compare our estimate with the Bronselaer et al. estimate
(52) for excess OHC change (Fig. 3 A and B, purple line); the
latter is inferred from observed anthropogenic carbon change.
The two estimates agree with each other broadly; both of them
suggest a greater excess OHC change in the Southern Ocean
than the Zanna estimate (16) (Fig. 3 A and B, red line). We
infer the OHC redistribution as the observed total OHC change
minus the excess OHC change. The result suggests that OHC
redistribution exhibits alternating positive and negative changes
across latitudes (Fig. 3 C and D), consistent with previous studies

(16, 52, 53).

Regional Integral. We examine the role of OHC redistribution
in shaping the observed total OHC change for the North Atlantic
integral (30°N to 90°N) and the Southern Ocean integral (90°S
to 30°S). In 1980-2020, the observed global OHC change is
about 7.1 ZJ per year, equivalent to 0.45 W m™2 over the Earth’s
surface. The North Atlantic accounts for about 8% of the global
change, while the Southern Ocean accounts for 40%.

In the North Adantic (Fig. 3B), the excess change of this study
(1.5 7] yil), Bronselaer et al. (52) (0.9 ZJ y~!) and Zanna et
al. (16) (1.1 ZJ y™1) all exceed the observed total change (0.6
ZJ y=1) for the central estimate; the ratio of excess to total is
2.5, 1.5, and 1.8, respectively. This implies a net southward heat
redistribution, or a weakening of the northward heat transport,
across 30°N. Note that our estimate of excess change is highly
uncertain in the North Atlantic (Fig. 3B), which prevents an
accurate estimate of the redistributed change there.

In the Southern Ocean (Fig. 3 A and B), the excess change of
this study and Bronselaer et al. (52) are about the same as the
observed total change, especially in the Indo-Pacific sector (Fig.
34, numbers). This indicates that the redistributed change is
close to zero when aggregated over the Southern Ocean, despite
its marked patterns there, in contrast with the North Atlantic
case.

Summary and Discussion

Earth’s energy imbalance N, the radiative forcing F and the
radiative response R are essential quantities for monitoring the
trajectory of anthropogenic climate change; they are linked
through the global energy budget N = F+R. The ocean volume-

integrated warming dominates Earth’s energy imbalance N on

https://doi.org/10.1073/pnas.2408839122
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multiannual timescales. Poor observational sampling prevents an
estimate of global ocean warming before 1960, which leaves a
gap in the global energy budget record.

In this study, we produce a reconstruction of global ocean heat
uptake beginning in 1880 via a Green’s function approach that
relies on surface observations, hence alleviating the sampling issue
in early periods. Our estimate of ocean warming is consistent with
those derived from in situ temperature profiles since 1960. From
our estimate we obtain a time series of Earth’s energy imbalance
N, i.e. the net global-mean TOA radiative flux, since 1880.

We highlight two findings in this study. First, our estimate
of Earth’s energy imbalance /V is consistent with the current
best estimates of radiative forcing F (2) and radiative response
R (Rpaial) during 1880-2020. In particular, our N estimate
reduces the discrepancy between F + R and N during 1900-
1960 in previous studies (57 Appendix, Fig. $10), improving the
understanding of historical climate change in early periods.

Second, our analysis reveals two distinct phases in the global
energy budget. In 1880-1980, Earth’s energy imbalance N
closely followed the radiative forcing F. After 1980, however,
the imbalance /V increased at a slower rate than the forcing F;
N only amounts to 38% £ 15% of F in 2000-2020. While
the causes of those distinct phases are unclear, this finding is
consistent with recent studies showing that the climate feedback
parameter a has been more negative (stable) since 1980 than it
was in the preceding decades (45, 46). That is, Earth’s radiative

https://doi.org/10.1073/pnas.2408839122

response R per unit global warming is increasing, which promotes
a more negative R, hence a lower V/F ratio. The change in a
is linked to the change in SST warming pattern; the recent La-
Nina-like pattern makes @ more negative because it increases low
cloud cover (54).

A major consequence of OHU is sea-level rise through ocean
thermal expansion. The ocean thermal expansion derived from
the GF OHC estimate (this study) agrees with that derived from
the total sea-level rise minus ocean-mass change, considering
uncertaintes (S/ Appendix, Fig. S17A, Sea Level Budget). This
indicates that the GF OHC estimate is consistent with the sea-
level budget. Nonetheless, we note there are marked differences
in the central estimates of thermal expansion derived from the
above two approaches (87 Appendix, Fig. S17A). This hinders a
tight constraint on OHC change from the sea-level budget in the
early 20th century.

Any systematic error in SST datasets will result in systematic
errors in our estimate of Earth’s energy imbalance IV, because SST
errors are propagated to NV via the Green’s function. Past studies
suggest that the cold excursion in 1900-1920 and the World
War 2 warm anomaly in 1939-1945 may be artifacts of the
SST datasets, due to poor sampling coverage and inhomogeneity
of instrumentation (26-30). We find that removing those two
features produces a IV estimate that agrees better with: 1) the
observation-based TOA radiation budget (¥ + R) and 2) the

historical simulation of V in climate models.
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Materials and Methods

Excess Heat and Green’s Function. Excess heatisthe additional heatentering
the ocean from the surface. The governing equation of excess heat, written in
terms of excess temperature e, is given by

d
(& +1)®e(r t) = Qa(r 1), (2]
Initial condition: @e(r, 0) = 0,

where t is time and r a 3D position vector in the ocean. Q is the surface heat
flux anomaly relative to the climatology. L is the 3D ocean transport operator,
which evolves an ocean tracer field forward in time; it encodes the net effect of
ocean transport, from large-scale advection to small-scale mixing. Multiplying
O with the specific heat and density of seawater gives excess heat. Integrating
excess heat over the global ocean volume gives global OHC change. Diagnostics
similar to ®¢ have been used in the literature, for instance, the fixed-circulation
temperature change in Winton et al. (55), the added temperature in Gregory et
al. (51) and the material warming in Zika et al. (53).

The Green's function (GF) approach solves ©¢ in Eq. 2 by propagating its
boundary condition ©3. The propagation is done via the boundary GF G, which
encodes the ocean’s surface-to-interior transport (advection+mixing). The above
process can be written as the following sum over space and time:

t
@e(r,t):/gdzrsf Grs, t —ts | )OS (rs, ts) dts,  [3]
—00

where Q denotes the global ocean surface and (rs, t5) are coordinate variables
for surface quantities. Note that Eq. 3 is a generalization of Eq. 1.

The GF approach is useful because it can provide an OHC estimate without
subsurface temperature measurements; it only requires surface temperature
as input, given that the GF G is known. For this reason, the GF approach has
been used to reconstruct OHC in the past 2000 years (56). The GF approach,
however, hasa number of limitations. First, the GF is assumed to be stationary in
time, ignoring potential changes in ocean transports due to changes in climate
states. Second, estimating the GF from observationsisa highly underdetermined
problem as there are many more unknowns than tracer constraints, a challenge
compounded by poor sampling of ocean transient tracers in space and time.
Last, the boundary condition ®3 is not observable and must be partly inferred
from model simulations.

Observational Green's Functions. To infer the GF G from observations, we
first rewrite Eq. 3 into a general form

t
X(r, t) = / d2l‘5 / G(rs, t— tg | r)XS(rs, ts) dts, [4]
Q —00

where X is the concentration of a given tracer; e.g. ®¢ or CFC-11. X is X at
the surface. Eq. 4 holds because all tracers in the ocean experience the same
ocean transports (i.e. velocities and diffusivities) (17). Each tracer observation,
i.e.X(r, t), formsa constrainton G atrvia Eq. 4. Here, rand t are the location and
time of observations, respectively. A collection of n observations at r thus forms
n equations for G there. In practice, observations are insufficient constraints of
G, because the number of observations is much smaller than the number of
unknowns in G. Note that G is a function of ocean surface locations and transit
times. We solve this underdetermined problem using the Maximum Entropy
method (18, 22). Among infinitely many G solutions that satisfy observations,
the Maximum Entropy method chooses the one that is the most “similar” to a
prior estimate of G (measured by their “relative entropy”). This procedure can
be cast into a constrained optimization problem and solved using standard
numerical routines.

Details on formulating and solving the Maximum Entropy problem are
documented in Wu and Gregory (25) and summarized in SI Appendix, Fig.
S1. We use four observations of tracers to infer G at every r; they are
CFC-11 and CFC-12 in the GLODAP data (57) (observed at 1994) and the
climatological temperature and salinity. We combine these tracers together
because their distributions are primarily controlled by the climatological ocean
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transport. Treatment of the observations is described in S/ Appendix, section 1.
We generate four realizations of the GLODAP data by randomly perturbing
the central estimate with the SE of the data. We use G computed from
two climate models and an ocean state estimate as first-guess solutions for
inferring G from observations. The climate models are HadCM3 (1.25° x
1.25°) (58) and FAMOUS (3.75° x 2.50°) (59). The state estimate is ECCO-
GODAE (1° x 1°)(20). The 4 sets of observational constraints and 3 first-guess
solutions result in 12 sets of observational GFs.

Alack of diversity in the first-guess solution of G is a limitation of this study.
We only use three first-guess solutions here because computing G requires
carrying out customized ocean tracer simulations, which have not been done in
other models.

None of our first-guess solutions is derived from eddy-resolving models. In
all of them, horizontal eddy mixing of tracers is parameterized using the Redi
(60) and Gent and McWilliams (61) schemes. Errors in eddy parameterization
affect our results by affecting the first-guess solutions. Although observational
constraints would correct some of the errors, it is unclear how much still remains.
In future studies, deriving G with different eddy parameterization schemes and
model resolutions would help to address this question.

The GF OHC estimate and the Cheng OHC estimate (31) are not fully
independent, because HadCM3 is used in both, although in different
ways. To test the impact of this dependency, we have recomputed the
GF OHC estimate using the first guess from FAMOUS and ECCO-GODAE,
i.e. removing the HadCM3 information. This results in little change in our
OHC estimate.

Ocean Heat Uptake Boundary Conditions. We refer to ®3 as “sea surface
excess temperature” (SSTe) to correspond with "sea surface temperature
anomaly” (SSTa) used by Zanna et al. (16). The main difference between SSTa
and SSTe is that the latter does not contain ocean temperature redistribution
(51). Keeping redistributed temperature in the boundary condition may bias
the GF OHC estimate. This is because the GF method only accounts for tracers
originating from the surface, but redistributed temperature has sources/sinks
throughout water columns (25).

We estimate SSTe by combining three SSTa datasets from observations with
two SSTe simulations from climate models (S/ Appendix, section 2, summarized
in S/ Appendix, Fig. S3). Specifically, we replace the global mean of SSTe from
climate models with the global mean of SSTa from observations. That is, we only
use the spatial anomalies (relative to global mean) from model simulations, not
their global means. Note that we omit the difference between SSTe and SSTa in
the global mean. A model simulation suggests that SSTe is about 0.1 K warmer
than SSTa in the global mean after 1960 (25), probably due to reduced ocean
convection. This suggests that our SSTe boundary condition may contain a cold
bias in recent decades. Both SSTa and SSTe are expressed as anomalies relative
to the 1870-1880 time mean, assuming that the ocean is near equilibrium
during that period. Our result is not sensitive to small changes in the baseline.
For instance, adding a constant offset of 0.1K to SSTe, as suggested by Jarvis
and Forster (62), only increases our estimate of Earth's energy imbalance N by
~0.01 W m~2 after 1930 (S Appendix, Fig. $18).

We process the global mean of SSTa in two steps. The first step applies a
low-pass filter to reduce the impact from interannual heat redistribution. The
second step removes two potential biases in SST datasets before 1960 (shown
in SI Appendix, Fig. S5), which are discussed in the main text. See S/ Appendix,
section 2 for further information of the two-step processing.

The SSTe used here is physically connected to the SSTa used in Climate Model
Simulations to derive Earth’s radiative response Rgpyiq)- Specifically, SSTe is the
partof SSTa that originates from surface heat flux change Q4 (25). We enforce this
relationship by firstidentifying climate models that well reproduce the observed
SSTatrends, and then using their Qa fields to carry out SSTe simulations following
Eq. 2 (S Appendix, section 2).

Global Energy Budget in 1700-1880. This supplementary analysis uses the
same method as the main analysis for 1880-2020. Because surface temperature
datasets used in the main analysis are not available before 1850, we replace
them with PAGES2k data (63), which is based on paleoclimate proxies. The
PAGES2k global-mean surface temperature is used for computing Earth's
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radiative response R, as well as providing the global mean for the SSTe
boundary condition, which is assumed to be globally uniform. PAGES2k data
are derived from 7 distinct reconstruction methods, each with 1,000 ensemble
members. The SSTe boundary condition consists of 7 members, each of which
is the ensemble mean of a reconstruction method. This choice is to reduce the
cost of evaluating Eq. 3. All 7,000 members are used to derive the 2¢-range
for computing Rgjpmp,je- Temperature change is computed with respect to the

1,700-1,750 baseline.

Climate Model Simulations. We use four climate model experiments here.
They are the coupled atmosphere-ocean experiment historical (1850-2020)
with its preindustrial control piControl, and the atmosphere-only experiments
piClim-histall (1850-2020) and amip-piForcing (1870-2014). In all of them,
the net TOA radiative flux is computed using TOA incoming shortwave flux
(rsdt), TOA outgoing shortwave flux (rsut) and TOA outgoing longwave flux (rlut)
from CMIP6 standard outputs. The OHU rate in the historical experiment is
derived from the net downward heat flux at the sea surface (hfds). Note that
climate models tend to store a greater fraction of the TOAimbalance in the ocean
compared to observations (96%vs. 90%) because their deficiencies in simulating
melting of terrestrial ice and warming of solid Earth (64). The standard historical
experiment stops in 2014; we extend it to 2020 using its SSP2-4.5 (medium
emission) extension. The distinguishing features of the experiments and our
uses of them are summarized in Table 3.

Global energy budget terms. The global energy budget terms of historical sim-
ulations are derived from the historical and piClim-histall experiments. Earth's
energy imbalance Nis derived from the net TOAflux in the historical experiment.
The contributions of radiative forcing F and radiative response R to the energy
imbalance N cannot be separated in the historical experiment. We diagnose
F using the piClim-histall experiment (65), which is a parallel experiment to
historical. The piClim-histall, by construction, has the same F as in historical, but
zero R, because its SST and sea ice are fixed to the preindustrial condition. We
derive R of the historical experiment as the difference R = N — F. We use the
historical experiment from 17 models, which are listed in S/ Appendix, Table S1;
seven of them have the piClim-histall experiment: CNRM-CMé-1, GISS-E2-1-G,
IPSL-CM6A-LR, MIROC6, CanESM5, HadGEM3-GC31-LL, and NorESM2-LM.

The amip-piForcing experiment provides an estimate of the radiative
response R due to observed SST and sea ice changes, which are prescribed as
time-varying boundary conditions, with constant preindustrial forcing (44, 46).
We use the amip-piForcing experiment from eight models: CanESM5, CESM2,
CNRM-CM6-1, HadGEM3-GC31-LL, IPSL-CM6A-LR, MIROC6, MRI-ESM2-0, and
TaiESM1. Note that the historical and amip-piForcing experiment with a given
model produce different R because their SST and sea ice fields are different.
Model drifts and energy leakage. Climate model simulations often contain
“climate drift" (unforced trends) (66) and nonclosure of the energy budget
(67, 68), which are collectively referred to as climate drift here. In practice,
the climate drift can be estimated from the steady-state simulation, and then
removed from the climate change simulation of interest, assuming the same
drift to be present in both simulations (66-68).

Forthe coupled simulation historical, we remove the climate drift by removing
its parallel steady-state simulation piControl. The dedrifting substantially
improves the energy conservation in climate models. To demonstrate this we
compare the TOA radiative flux and the OHU rate (both are global means).
Before dedrifting, the TOA radiative flux is much larger than the OHU rate
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in several models (SI Appendix, Fig. S19), suggesting a nonconservation
of energy. After dedrifting, the TOA radiative flux closely matches the OHU
rate in all 17 models examined here (S/ Appendix, Fig. S20), implying that
the energy leakage is of similar size between the historical and piControl
simulation. For piClim-histall and amip-piForcing, we remove the climate drift
by removing their 1870-1880 time mean, because they have no parallel steady-
state simulations. The late 19th-century is a common choice for defining the
steady state climate; e.g. itis used to design the piControl experiment. The 1870-
1880 is also used as the steady-state reference for estimating OHU in this study
(Table 1).

“Strong” and “weak” models. We classify each of the 17 climate models as
having a "strong" or a "weak” response to anthropogenic aerosol forcing (S/
Appendix, Table S1). We classify a model as “strong” if its net surface heat loss
relative to the preindustrial control is stronger than 2W m~2, averaged over
the North Atlantic (30°N to 65°N) and 1950-1980, when the aerosol forcing
dominates. This gives a similar classification of models as in Robson et al. (69).

Sea Level Budget. The global-mean sea-level rise can be decomposed into
contributions from a) ocean-mass change and b) ocean thermal expansion.
Those are termed as the barystatic and thermosteric components, respectively
(70). We derive the global-mean sea level and its barystatic component from
observation-based reconstructions in Frederikse et al. (71), which covers 1900-
2018. Specifically, the global-mean sea level is obtained from tide-gauge and
satellite-altimetry observations and the barystatic change is estimated from mass
change of glaciers, ice sheets, and terrestrial water. We convert OHC change
(2J) to thermosteric change (mm) via the expansion efficiency of heat, 0.11 mm
2= This number is derived in Zanna et al. (16) based on climatological ocean
temperature and salinity in observations.

Data, Materials, and Software Availability. Ocean heat uptake data of
this study is available at https://doi.org/10.5281/zen0do.11107298 (72).
CMIP6 data are available at https://esgf-node.linl.gov (73). ECCOV4 data
can be downloaded from https://www.ecco-group.org (74). In situ ocean
heat content data are downloaded from: http://www.ocean.iap.ac.cn (Cheng)
(75), https:/lwww.data.jma.go.jp (Ishii) (76), and https://www.ncei.noaa.gov
(Levitus) (77).
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