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ABSTRACT

A simple zonally averaged coupled ocean–atmosphere model, with a relatively high resolution in the
meridional direction, is used to examine physical mechanisms leading to transient amplification of ther-
mohaline circulation (THC) anomalies. It is found that in a stable regime, in which small perturbations
eventually decay, there are optimal initial conditions leading to a dramatic amplification of initial tempera-
ture and salinity anomalies in addition to the THC amplification. The maximum amplification occurs after
about 40 years, and the eventual decay is on a centennial time scale. The initial temperature and salinity
anomalies are considerably amplified by factors of a few hundreds and 20, respectively. The initial condi-
tions leading to this amplification are characterized by mutually canceling initial temperature and salinity
anomalies contributions to the THC anomaly, such that the initial THC anomaly vanishes. The mechanism
of amplification is analyzed and found to be the result of an interaction between a few damped (oscillatory
and nonoscillatory) modes with decay time scales lying in a range of 20–800 years. The amplification
mechanism is also found to be distinct from the advective feedback leading to THC instabilities for large
freshwater forcing.

1. Introduction

The thermohaline circulation (THC, meant here to
represent the zonally averaged meridional overturning
circulation; Wunsch 2002; Wunsch and Ferrari 2004) is
found by modern observations to carry heat and vol-
ume transports in the North Atlantic of approxima-
tively 1 PW and 15 Sv (1 PW � 1015 W and 1 Sv � 106

m3 s�1), respectively (Ganachaud and Wunsch 2000).
The THC is therefore expected to play a crucial role in
present-day climate. The stability and variability of the
THC are thus critical issues for our understanding of
the climate state and have been studied intensively in
the past few decades (Marotzke et al. 1988; Stommel
1961; Weaver and Hughes 1992; Weaver et al. 1993).
For example, general circulation models (GCMs) show
that if the THC is weaken by about 25%, it might cross

a stability threshold and enter an unstable regime
(Tziperman 1997; Tziperman et al. 1994).

Proxy observations seem to indicate that climate, and
probably also the THC, have been fairly stable for over
10 000 years, with a small amplitude variability. This
small amplitude variability of the present-day THC sug-
gests that its dynamics are linear, and possibly driven
by stochastic atmospheric forcing (e.g., Griffies and
Tziperman 1995). In such stable linear systems, small
perturbations may undergo a strong transient amplifi-
cation before eventually decaying, because of the inter-
action of multiple eigenmodes of the system (e.g., Far-
rell and Ioannou 1996) if the dynamical system is non-
normal (i.e., if its eigenvectors do not form an ortho-
gonal basis). While there is no obvious way to predict if
a dynamical system is nonnormal and how strongly
nonnormal it is without examining the detailed proper-
ties of its operator, it may be stated that problems de-
rived from fluid dynamics are generally nonnormal
(e.g., Farrell 1988, 1989). The initial conditions leading
to such transient growth are termed optimal initial con-
ditions and are obtained by solving an eigenvalue prob-
lem based on the linear (or linearized) model equa-
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tions. In addition, in a stochastically forced linear sys-
tem, the spatial structure of the stochastic forcing
leading to maximum variance of the model solution is
referred to as stochastic optimals (Farrell and Ioannou
1996; Kleeman and Moore 1997). These concepts were
applied to several climate variability phenomena such
as atmospheric flows and cyclogenesis (Farrell 1988,
1989; Farrell and Ioannou 1996), the wind-driven ocean
circulation (Moore 1999), and the El Niño–Southern
Oscillation variability (Moore and Kleeman 1997a,b,
1999a; Penland and Sardeshmukh 1995).

Recently, transient amplification and stochastic opti-
mals were investigated for the THC by Tziperman and
Ioannou [2002; see also Lohmann and Schneider (1999)
for a discussion on nonnormal dynamics and predict-
ability of the Stommel’s box model]. Two physical
mechanisms for the transient amplification of the THC
were found by examining the stable nonnormal THC
dynamics using a simple meridional ocean box model.
The first mechanism, with a transient amplification
time scale of a couple of years, involves an interaction
between the THC anomaly induced by rapidly decaying
sea surface temperature anomalies and the THC
anomaly induced by the slower-decaying salinity
modes. The second mechanism of transient amplifica-
tion involves an interaction between different slowly
decaying salinity modes, and has a typical growth time
scale of few decades. However while the THC was am-
plified by these mechanisms, the initial temperature
and salinity anomalies did not undergo a transient am-
plification, limiting the potential role of the resulting
transient amplification dynamics in THC variability.

The objective of the present study is to investigate
possible physical mechanisms for the transient growth
of THC anomalies, taking into account both the oce-
anic and the atmospheric dynamics using a coupled
model with a higher meridional resolution than the box
model used by Tziperman and Ioannou (2002). Our
main result is a new mechanism of transient amplifica-
tion of THC anomalies. The mechanism results in a
dramatic amplification of initial temperature and salin-
ity anomalies, as well as of the THC itself, which is far
more significant than the one obtained in the simple
box model of Tziperman and Ioannou (2002). The am-
plification is characterized by a time scale of about 40
years and exists because of the interaction of several
damped oscillatory and nonoscillatory eigenmodes of
the ocean model. The dramatic amplification of THC,
temperature, and salinity anomalies by this mechanism
indicates that transient amplification may play a signifi-
cant role in the dynamics of THC variability.

The model used here was presented in Sayag et al.
(2004), and is briefly described in section 2 with the

modifications required for the present study. A sum-
mary of the model equations in their continuous form
and of the relevant model parameters is given in the
appendix. Following this, section 3 presents the linear-
ized model dynamics, and section 4 discusses the opti-
mal initial conditions leading to a transient amplifica-
tion of THC anomalies. We conclude in section 5.

2. Model description

The model used for the present work is a two-
dimensional coupled atmosphere–ocean model aver-
aged in the longitudinal dimension and with a relatively
high resolution in the meridional direction. The model,
schematically shown in Fig. 1, includes one landmass
that occupies 30% of the total surface, and is basically
that developed by Sayag et al. (2004) with some modi-
fications that will be described below. The atmosphere
is a one-layer vertically averaged energy balance model
for the potential temperature � and humidity q. The
ocean model is composed of two vertical layers with
thicknesses Htop and Hbot for the surface and the deep
ocean, respectively. The finite difference meridional
resolution is �y � 3° (n � 61 latitudinal cells) in all runs
presented here. The ocean temperature T and salinity S
are governed by advection–diffusion equations. When
the vertical ocean stratification is unstable, the two lev-
els are instantaneously mixed to vertically uniform tem-
perature and salinity profiles. The dynamics are hydro-
static, mass conserving, and based on the Boussinesq
approximation. The ocean meridional velocity �(y) sat-
isfies a balance of frictional and pressure gradient terms
in the meridional momentum equation. The meridional
velocity at latitude y of the upper-ocean layer is there-
fore calculated from the density gradients at this lati-

FIG. 1. (a) Top view of the model’s surface (lat vs lon) shows the
land and ocean areas. (b) A latitude vs depth cross section
through the ocean and atmosphere models. The vertical lines
schematically mark a few of the grid boxes in the atmosphere and
ocean. The latitudinal resolution throughout the ocean and atmo-
sphere is 3°.
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tude, following the usual expression used in box models
(Huang et al. 1992; Stommel 1961; Tziperman et al.
1994),

��y� � �	Htop
�top�y � 1� � �top�y��

� Hbot
�bot�y � 1� � �bot�y��, �1�

where � � g Hbot /(2ro�0�yD), g is the gravitational
acceleration, r0 is a friction coefficient, �0 is the refer-
ence density, D is the ocean depth, and the density � �
�(S, T) is defined by a linear equation of state. The
meridional transport for the upper ocean, in Sverdrups,
is thus given by

U�y� � ��y��xfS�y�Htop, �2�

where fS(y) is the fraction of ocean in a cell at a given
latitude y and �x � 4R0 is the longitudinal extent of the
model, where R0 is the earth’s radius. The model pa-
rameters different from those in Sayag et al. (2004) are
summarized in Table A1. The physical meaning of the
different parameters is described in the appendix with a
brief overview of the model equations.

Consider now the differences from the original
model used by Sayag et al. (2004). First, the upwind
scheme used originally to represent the vertical advec-
tion in the temperature and salinity equations was re-
placed by a central differences scheme (see the appen-
dix). The upwind scheme is not continuous, and this
discontinuity in the finite difference equations lead to a
major artifact when studying the linearized dynamics of
the system at the transitions points where the vertical
velocity changes sign with latitude (Thuburn and Haine
2001; Zanna 2003). The second change was to include
the precipitation P as a sink in the moisture equation.
In the original model [Eq. (6) in Sayag et al. 2004] the
moisture was calculated after every time step, and if its
value was larger than the critical value qmax, the atmo-
sphere flushed the humidity excess as precipitation. In-
stead, we have changed this to a differentiable param-
eterization in which the precipitation term was incor-
porated into the moisture equation (see the appendix).

It is important to note that the physics and the solu-
tion of the model were hardly altered by the above two
modifications, while the results of the linearized model
and optimal initial conditions analyzed in this work
were significantly improved. Last, we ignore sea ice and
land ice dynamics and assume the ocean temperature to
be always above freezing.

3. Dynamics of the linearized system

Before examining the possibility of transient ampli-
fication of THC anomalies, let us first analyze the lin-

earized dynamics of the system. The nonlinear model
equations (Sayag et al. 2004; see also the appendix) for
the prognostic variables �, q, T, and S can be written in
the following form:

dP�t�

dt
� F
P�t��, �3�

where F denotes the nonlinear model operator and P is
the state vector specifying the time-dependent model
state for the atmospheric temperature � and moisture q,
and for the temperature T and salinity S at the top and
bottom ocean levels at all grid points

P � 
��y1�, . . . , ��yn�,

q�y1�, . . , q�yn�,

T�y1, ztop�, . . , T�yn, ztop�,

T�y1, zbot�, . . , T�yn, zbot�,

S�y1, ztop�, . . , S�yn, ztop�, and

S�y1, zbot�, . . , S�yn, zbot��1�366
T . �4�

To analyze the possible transient amplification of the
THC, and to look for optimal initial conditions, we lin-
earize (3) about the steady state reached by the full
nonlinear model (Fig. 2). As explained in the appendix,
certain parameters have been chosen in order to ob-
tained a relatively realistic steady state reflecting the
present-day climate. A north–south asymmetry is ob-
tained in the current setting using different atmospheric
emissivity coefficients for the Northern and Southern
Hemispheres (Table A1). The minimum in the deep-
ocean temperature at the equator is unfortunately an
artifact due to the use of central differences scheme for
the vertical advection term in the heat equation (see the
appendix). The central differences scheme is required
since a more standard upwind scheme normally used
for such coarse-resolution models results in difficulties
when evaluating the optimal initial conditions (see sec-
tion 2 and also Thuburn and Haine 2000; Zanna 2003).

Consider a small perturbation to this steady state by
writing the state vector as P � P � P�(t), where P is the
steady state and P� is the small perturbation vector. By
linearizing (3), we obtain the following linear system:

dP�

dt
� AP�, �5�

where the perturbation vector, similarly to (4), is de-
fined by P�T � (��, q�, T�, S�)1�366 and the matrix
A366�366 represents the linearized model equations.
Since the linearized matrix A is time independent, the
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dynamical system is autonomous and its explicit solu-
tion is given by

P��t� � eAtP��t � 0� � B�t, 0�P��0�, �6�

where the matrix B(t, 0) � eAt � B(t) is the propagator
of the system, and P�(0) � P�0 is the perturbation state
vector at t � 0. If all the eigenvalues of A are negative,
then the system is stable, meaning that any small per-
turbation vector P� added to the steady state will tend
to zero as t → �. For nonnormal system, where A does
not commute with its Hermitian transpose (AA† �
A†A), the perturbation vector P� given by (6) may un-
dergo a transient growth at any given finite time � (Far-
rell and Ioannou 1996) before its eventual decay, as we
will show below (for convenience, we will now drop the
primes).

To evaluate the linearized matrix A of the system, the
convective adjustment has been turned off. The con-
vective adjustment parameterization is based on a
switch depending on the vertical density stratification
and is therefore not differentiable and may cause arti-
facts when linearized (see section 2). We used the op-
timal initial conditions calculated below using the lin-
earized model in the fully nonlinear model, which in-

cludes the convective adjustments, and found that the
amplification behavior is qualitatively not modified by
nonlinearities and convection. We conclude, therefore,
that the treatment of convection did not affect the rel-
evance of our linearized analysis.

The linearized model is stable as expected, and all
the eigenvalues � of A are negative, meaning that any
initial perturbation eventually decays. Some eigen-
modes undergo a pure decay, and others are complex,
and therefore oscillate and decay. The time scales for
decay and oscillation are determined by the real and
imaginary part of the eigenvalues respectively, such
that �decay � |1/Re(�)| and �oscill � |2�/Im(�)|. The de-
cay time scales form a broad spectrum of values, from
fast-decaying modes with time scale starting from O(1
h) and up to a decay time scale of O(780 yr). We find
oscillatory modes with time scale varying from 20 to a
few hundreds of years (Fig. 3). We note from Fig. 3 that
the faster-decaying eigenmodes (where �decay � 2.5
months) are not oscillating (the imaginary part of the
eigenvalues is 0); the oscillatory modes are associated
only with the slowest decaying modes. It was shown in
previous works (Weaver and Sarachik 1991; Weaver et
al. 1991) that a self-sustained interdecadal variability

FIG. 2. The steady-state solution for the ocean and the atmosphere, reached by the full
nonlinear model (a) atmospheric temperature � (solid line) and surface ocean temperature
Ttop (dashed line) (°C), (b) surface ocean salinity Stop (ppt), (c) atmospheric moisture q (kg
kg�1), (d) deep ocean temperature Tbot (°C), (e) deep ocean salinity Sbot (ppt), (f) horizontal
ocean volume transport U (Sv), (g) surface ocean density �top (kg m�3), (h) deep ocean density
�bot (kg m�3), and (i) vertical ocean velocity w (m s�1).

1596 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 35



may be obtained with a strong freshwater forcing while
this variability does not exist for weaker freshwater
flux. More relevant perhaps to the context of the
present work, it was also shown in a linearized THC
model (Griffies and Tziperman 1995; Tziperman et al.
1994) that the existence of oscillatory modes depends
on the freshwater flux amplitude.

4. Optimal initial conditions and transient
amplification

We wish to find mechanisms leading to transient am-
plification of THC anomalies in a climate regime in
which the THC is stable in the sense that small pertur-
bation decay after a sufficiently long time. To measure
the growth of the state vector anomaly at time �, P(�),
defined above by (5) and (6), we need to define a norm
||P||X involving a norm kernel X such that ||P(�)||2X �
PT(�)XP(�). The maximization of PT(�)XP(�) is done
while constraining the initial conditions to be of ampli-
tude one using a possibly different norm kernel Y, such
that PT

0 YP0 � 1. Several norm kernels have been inves-
tigated, and some experimentation was required to find
the one that results in interesting optimal initial condi-
tions leading to an amplification of the THC anomaly.
In the next sections we first (section 4a) describe some
preliminary experiments with different norm kernels
and explain the precise procedure for evaluating the
optimal initial conditions, and then (section 4b) describe
our main results, obtained using a norm kernel that pro-
duces physically interesting results. The reader is ad-
vised to proceed directly to section 4b on first reading.

a. Preliminary experiments

We start with an energy kernel under which the norm
is the normalized sum of squares of all model variables.
The norm kernel X in this case is a diagonal matrix that
normalizes the variables based on their units and typi-
cal relative variability amplitudes, such that

diag�X� � �� 1
���1�61

2

, � 1
�q�1�61

2

, � 1
�Ttop

�
1�61

2

,

� 1
�Tbot

�
1�61

2

, � 1
�Stop

�
1�61

2

, � 1
�Sbot

�
1�61

2 �,

where �� � 5 � 10�4°C, �q � 5 � 10�7 kg kg�1, �Ttop

� 5 � 10�4°C, �Tbot � 5 � 10�5°C, �Stop � 8 � 10�4

ppt, and �Sbot � 8 � 10�5 ppt. In this experiment, when
looking for a growth of the dimensionless quantity
||P(�)||2X � PT(�)XP(�) at different times �, we find op-
timal initial conditions P(t � 0) and a corresponding
physical mechanism that allows a growth of ||P(�)||2X
with a typical time scale O(1 yr) (the procedure for
calculating the optimal initial conditions is given in de-
tail below). The initial conditions correspond mostly to
upper-ocean salinity anomalies, with weaker anomalies
for the other model variables and maximize the growth
of temperature, salinity, and all other variables but not
of the overturning circulation itself. The physical
mechanism behind this growth is the following: the ini-
tial salinity anomalies in the upper-ocean layer create a
perturbation velocity ��, driven mostly by salinity
anomalies. The velocity perturbation then advects the
background temperature and salinity, enhancing the
anomaly vector with a dominant growth in the upper-
ocean temperature.

Given that our interest here is in THC growth, we
proceed to use a kernel that maximizes the growth of
the THC, rather than the normalized sum of squares of
the prognostic model variables. The model THC at a
given latitude y and time � depends linearly on the
density gradients at that latitude, and Eq. (2) for the
THC anomaly may therefore be written as U(y, t � �)
� RT

j P(t � �), where

Rj � 
Rj
atm, Rj

T, Rj
S�T, �7�

where

Rj
atm � �01�122�T,

Rj
T � 
01��j�1�, �̃�Htop, ��̃�Htop, 01��60�j�, 01��j�1�,

��̃�Hbot, �̃�Hbot, 01��60�j��
T, and

Rj
S � 
01��j�1�, ��̃�Htop, �̃�Htop, 01��60�j�, 01��j�1�,

�̃�Hbot, ��̃�Hbot, 01��60�j��
T. �8�

FIG. 3. (a) Decay time scale �decay and (b) oscillation time scale
�oscill of the 366 eigenmodes of the linearized matrix A as function
of the eigenmode number. (Note that the oscillatory time scale is
not shown for nonoscillatory modes.)
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The latitude index j satisfies y � �90 � �y( j � 1)
with j � 1, 2, . . . , n; the parameter �̃ is given by �̃ �
��xfs(y)Htop, where �, �x, fs(y), and Htop were defined
in section 2, 0T

1�q is a zero vector of dimension q, and �
� 0.1713 kg m�3 K�1 and � � 0.781 kg m�3 are the
thermal and salinity expansion coefficients, respec-
tively. Since the model is of a relatively high resolution
in the y direction (as compared with simple box model),
the calculation of optimal initial conditions using a
norm kernel that maximizes the transient growth of the
THC at a given latitude turns out to be dynamically
uninteresting. The optimal initial conditions found by
maximizing the THC anomaly at a given latitude y have
a vanishing THC anomaly at this latitude, and very high
THC anomalies at adjacent grid points. At following
times, the THC at latitude y increases as the neighbor-
ing THC anomalies move toward y and decrease at
other latitudes. Hence, more interesting results may be
obtained by maximizing the sum of squares of the THC
anomaly over the entire ocean domain, between the
latitudes 90°S and 90°N.

To find the optimal initial conditions that maximize
the sum of squares of the THC anomaly amplitude over
the entire domain, at a time �, we define the quantity to
be maximized as

J�t � 	� � �
y�90S

y�90N

|U�y, t � 	�|2

��
j�1

n


P�t � 	�TRjRj
TP�t � 	��. �9�

Since P(t � �) � B(�)P0 is independent of y, the sum of
squares of the THC amplitude is

J�t � 	� � P0
TB�	�T��

j�1

n

�RjRj
T��B�	�P0

or

J�t � 	� � P0
TB�	�TXB�	�P0, �10�

where the norm matrix X is

X � �
j�1

n

�RjRj
T�. �11�

The norm kernel X given by (11) is singular (i.e., its
determinant is zero) and may result in an infinite am-
plification and nonuniqueness of the optimal modes. It
is therefore necessary to regularize the norm kernel X
as described in more details in Tziperman and Ioannou
(2002). We maximize J (t � �) subject to the constraint
that P0 has a unit norm under some possibly different
norm kernel Y, such that ||P0||2Y � PT

0 YP0 � 1.

This constrained optimization problem is solved us-
ing the Lagrange multipliers denoted here by � (Farrell
1988):

max
P0

	P0
TB�	�TXB�	, 0�P0 � �
P0

TYP0 � 1�, �12�

and the maximum occurs where




�P0
	P0

TB�	�TXB�	�P0 � �
P0
TYP0 � 1� � 0. �13�

The initial conditions P0 leading to an optimal growth
of J at a time t � � are therefore the generalized eigen-
vectors of the generalized eigenproblem,

B�	�TXB�	�P0 � ��YP0, �14�

where the generalized eigenvalue � reflects the ampli-
fication of J(t � �) if the two kernels X and Y are equal.

We first calculated the optimal initial conditions that
maximize the sum of squares of the THC (10) subject to
||P0||2Y � PT

0 YP0 � 1, where Y � X is the norm kernel
defined by (11), reflecting the sum of squares of the
THC amplitude over the entire ocean domain. Using
this kernel, we found a physical mechanism, which ap-
pears to again be physically irrelevant, that allows for
transient amplification of the THC anomaly with a fast
time scale of O(1 day), regardless of the optimization
time �. The optimal initial conditions involve mostly a
positive moisture anomaly in the atmosphere, between
the latitudes 78° and 90°S, which increases the initial
precipitation over those latitudes, while a negative
moisture anomaly between 78° and 60°S decreases it in
that region. The model time evolution starting from
these initial conditions creates large salinity anomalies
and therefore large gradients of density anomalies, and
amplifies the THC in the Southern Ocean. Although
the temperature of the ocean is affected by the initial
conditions, the THC anomaly is mainly driven by salin-
ity gradients.

This mechanism is clearly not of interest as it is based
on physically unrealizable large moisture anomalies,
and produces a too rapid response, regardless of the
optimization times �. To eliminate the possibility of
such dominant moisture anomalies in the optimal initial
conditions, we proceed to define a new norm kernel Y,
which is used to constrain the initial conditions in (12).
This allows us to obtain more relevant time scales and
mechanism for a THC amplification involving initial
ocean temperature and salinity anomalies rather than
nonphysically realizable moisture anomalies.

We therefore require that the initial conditions sat-
isfy ||P0||2Y � PT

0 YP0 � 1, where Y � X � F. The matrix
F366�366 is a diagonal matrix such that its entire diago-
nal is zero except the elements F62→122,62→122 corre-
sponding to the atmospheric moisture, which are set to
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104. This somewhat arbitrary value corresponds to the
smallest value of F62→122,62→122 resulting in a fairly com-
plete elimination of the initial atmospheric moisture
anomalies in the optimal initial conditions. The norm of
the initial conditions P0, under the defined kernel Y,
should be equal to 1 and is defined by

||P0||Y
2 � P0

TXP0 � �
i�1

366

FiiP0,i
2 � 1.

Thus, because of the large kernel values Fii correspond-
ing to the moisture anomaly and in order to satisfy the
constraint on the norm vector, the optimal initial values
for the atmospheric moisture must take very small val-
ues. In summary, the matrix F was added to the kernel
in order to force a very small initial moisture anomaly.

We proceed to use this kernel to search for initial
conditions resulting in an optimal transient amplifica-
tion of the THC for different optimization times �.

b. Optimal amplification of THC anomalies

The above preliminary experiments led us to the use
of the above norm kernels X and Y, which maximize the
sum of squares, over the entire domain, of the THC

anomaly amplitude. These kernels also suppress physi-
cally nonrealizable large atmospheric moisture anoma-
lies in the optimal initial conditions as explained above.
An interesting physical mechanism was found using
these kernels, with a typical time scale of 42 yr, and
involving mostly oceanic temperature and salinity
anomalies (Fig. 4). The initial THC vanishes because of
a cancellation between the initial temperature and sa-
linity anomalies, so that the actual amplification of the
initial THC anomaly is formally infinite (Tziperman
and Ioannou 2002).

More significantly, the optimal initial conditions
found using the linearized model for � � 42 yr induce a
rapid growth of basically most of the model variables,
as seen in Fig. 5. The figure shows the time-versus-
latitude plots of the oceanic and atmospheric variables.
Only a few contour lines, if any, cross the t � 0 axis in
the different panels of this figure, indicating that the
amplitude of the variables at t � 0 is very small relative
to their maximal amplitude obtained after about 40
years. The THC, in particular, starts exactly at zero, and
is significantly amplified. More interesting is that the
temperature and salinity are also amplified quite dra-
matically, as will be discussed shortly.

FIG. 4. Optimal initial conditions as function of latitude, found using the linearized model,
leading to the amplification of the THC after 42 yr. (a) Atmospheric temperature anomalies
�, (b) moisture anomalies q, (c) surface temperature anomalies Ttop, (d) deep temperature
anomalies Tbot, (e) surface salinity anomalies Stop, and (f) deep salinity anomalies Sbot.
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Initially, a rapid amplification of the bottom tem-
perature anomalies (Fig. 5g) of the ocean causes the
amplification of the THC seen in Fig. 5c, for � � 42 yr.
During the first few months, the THC anomaly is
mostly driven by surface salinity anomalies (Fig. 6c).
After a few months, a bottom temperature anomaly
develops because of advection of the mean temperature
field by the THC anomaly. This rapidly increasing bot-
tom temperature anomaly also contributes to the
THC anomaly, and eventually overcomes the con-
tribution from the surface salinity. The THC ampli-
fication is slower now (Fig. 6b). Once the peak of
the amplification occurs, the anomalies decay with a
slow time scale of hundreds of years. The slow decay of
the ocean anomalies is due to horizontal and vertical
diffusion of salinity and temperature after they have
been redistributed over the ocean via advection by the
mean flow. A significant part of the temperature
anomalies is also transferred to the atmosphere by air–
sea interaction and is dissipated there by long wave
radiation.

The mechanism of transient amplification may be
briefly described as follows Farrell and Ioannou (1996).
The initial conditions are a combination of several

eigenmodes of the linearized operator A. These eigen-
modes are characterized by different decaying time
scales where some of these modes decay rapidly, while
others decay more slowly. The contributions from these
eigenmodes to the initial conditions are large and
nearly cancel each other at t � 0, resulting in an initial
condition of relatively small amplitude. This mutual
cancellation is possible due the nonorthogonality of the
eigenmodes since the operator A is nonnormal. At later
time, the rapid decay of the fast eigenmodes, which
eliminates the initial cancellation, leaves the solution
nearly equal to the large amplitude of the slow-
decaying modes, causing the initial amplification. The
solution then eventually decays along with the slow-
decaying eigenmodes.

Given this mechanism of transient amplification, it is
thus insightful to investigate the eigenmodes of the lin-
earized matrix A, which participate in the transient
growth. These modes were found by projecting the ini-
tial conditions P0 on the eigenmodes of the linearized
system (Farrell and Ioannou 1996). Let us denote by
{�i, si} and {�i, ri} the set of {eigenvalues, eigenvectors}
of the linearized matrix A and of its Hermitian trans-
pose A†, respectively. The initial state vector P0 can be

FIG. 5. The linearized model evolution starting from the optimal initial conditions resulting in a
maximum amplification of the THC after 42 yr. Different model variables are shown as function of
latitude and time: (a) atmospheric temperature anomalies, (b) moisture anomalies, (c) THC anomaly,
(d) surface temperature anomalies, (e) surface salinity anomalies, (f) surface density anomalies, (g) deep
temperature anomalies, (h) deep salinity anomalies, and (i) deep density anomalies.
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written as a linear superposition of the eigenmodes of
A, such that

P0 � �
k�1

k�366

aksk . �15�

To find the coefficients ak, which are the projections
of P0 on the eigenmodes si, we multiply (15) by rT

k .
The biorthogonality property of the eigenmodes of

the linearized matrix A and of its Hermitian transpose
A†, states that

si
Trj��i � *j � � 0. �16�

The eigenvalues of A and its Hermitian transpose A†

are ordered such that for i � j we have �i � �*j . There-
fore for i � j, and assuming that �i � �j, we obtain that
sT

i rj � 0 as a result of (16). Using this result we find that
the projection of the initial conditions on the eigen-
modes is given by ak � (rT

kP0)/(rT
ksk).

The largest of the coefficients ak corresponds to the
main eigenmodes contributing to the optimal initial
conditions and participating in the transient amplifica-
tion. We find that the transient amplification of the
THC is mainly due to the interaction of five slow-
decaying modes: four oscillatory eigenmodes and their
complex conjugates and one nonoscillatory eigen-
modes. The decay times of these modes are 23, 25, 87,
281, and 784 yr, and their oscillation periods are 61, 162,
65, 0, and 1000 yr, respectively.

The optimal initial conditions are mostly composed
of a surface salinity anomaly, and surface and deep
temperature anomalies. Figure 7a shows the initial

structure of the ocean temperature and salinity corre-
sponding to each of these five dominant modes, calcu-
lated from the elements of the vector

P0l
� alsl � c.c., �17�

where c.c. denotes complex conjugate. In addition, Fig.
7b also shows the contribution of each of these modes
to the THC anomaly, Ul(y, t), calculated from the pro-
jection of the optimal initial temperature and salinity
on the THC (Fig. 7b),

Ul�y, t� � Rj
TB�t�alsl � c.c., �18�

where l � 1, 2, 3, 4, 5 (for each of the dominant eigen-
modes participating in the transient growth) and Rj is
given by (7) and (8). The relatively rapid decay of the
first two oscillatory eigenmodes, with decay time scales
of 23 and 25 yr, leaves only the least damped modes
(�decay � 87, 281, and 784 yr) of the system after few
decades, explaining the 40-yr time scale of the transient
growth in Fig. 5. The sum of these five eigenmodes
reproduces the amplification of the THC anomaly fairly
well, although when reconstructed from only these five
modes, the initial THC is not exactly zero. In fact, while
these five modes are sufficient to explain the amplifi-
cation of the THC, in order to produce the dramatic
growth observed above (Fig. 5) in the temperature and
salinity, a combination of many more of the 366 eigen-
modes of our linearized model equations is necessary
[equivalently, additional terms are needed in (15) to
explain the results in Fig. 5].

To further understand the physical mechanism of
transient THC growth, we have performed many ex-
periments, using both the linearized and fully nonlinear
models, selectively eliminating different terms from the
temperature and salinity equations. We find that elimi-
nating the advection of the mean gradient of both the
temperature and salinity by the anomalous THC (i.e.,
eliminating both ���T and ���S) results in the elimina-
tion of the initial THC amplification (Fig. 8b). Elimi-
nating the advection of the anomaly gradients by the
mean flow (��T� and ��S�) mostly makes the eventual
decay of the anomalies much slower (Fig. 8a). We con-
clude that the advection by the anomalous velocity is
responsible for the transient amplification, while the
advection by the mean velocity is responsible for the
eventual decay. Unlike the case for the advective insta-
bility mechanism of the THC (Marotzke et al. 1988;
Tziperman et al. 1994), where the advection of the
mean salinity is responsible for the instability, here
both temperature and salinity seem to play an equally
dominant role in the transient growth of the THC
anomalies.

FIG. 6. The different THC components due to the contribution
of the (a) surface temperature anomalies, (b) deep temperature
anomalies, (c) surface salinity anomalies, and (d) deep salinity
anomalies, as function of time and latitude.
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It is important to note that the transient amplification
found here is significantly more interesting than the one
found in a simple box model by Tziperman and Ioan-
nou (2002). In their study, the THC also vanishes ini-
tially because of a cancellation of the temperature and
salinity effects. Then, the temperature anomalies rap-
idly decay because of atmospheric dissipation, and the
THC grows to the amplitude dictated by the initial sa-
linity anomalies. Finally, the salinity anomalies slowly
decay, and the THC with them. No significant amplifi-
cation of the initial temperature and salinity anomalies
was found in the mechanism found by Tziperman and
Ioannou (2002), so that the maximal THC amplitude is
completely controlled by the amplitude of the initial
salinity anomalies.

Things are far more dramatic here. The root-mean-
square of the initial temperature and salinity anomalies
grow by a factor of 650 and 20, respectively, and the

temperature and salinity maxima by a factor 400 and 18,
respectively, within the 42 years of the transient ampli-
fication (Fig. 5). The THC grows not only because of
the damping of temperature anomalies by the atmo-
sphere, but simply because of the initial growth of the
temperature and salinity. This means that, unlike in the
box model study of Tziperman and Ioannou (2002),
small initial temperature and salinity anomalies may
result in a large eventual THC anomaly. If such optimal
initial conditions can be excited by atmospheric forcing,
then the resulting growth may clearly play an important
role in THC and climate variability.

5. Conclusions

We used a zonally averaged coupled ocean–at-
mosphere model with a 3° resolution in the meridi-
onal direction in order to examine optimal initial con-

FIG. 7. Main eigenmodes participating in the transient amplification: (a) the initial conditions P0k
for the five

dominant eigenmodes contributing to the transient growth of the THC anomalies. The solid line represents the
surface salinity anomaly, the dotted line represents the deep temperature anomaly and the dashed line represents
the surface temperature anomaly. 1) Initial conditions associated with the first eigenmode (�decay � 23 yr), 2) initial
conditions associated with the second eigenmode (�decay � 25 yr), 3) initial conditions associated with the third
eigenmode (�decay � 87 yr), 4) initial conditions associated with the fourth eigenmode (�decay � 281 yr), 5) initial
conditions associated with the least damped eigenmode (�decay � 784 yr); (b) 6–10 time evolution of the THC
anomalies resulting from the initial anomalies 1–5.
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ditions leading to a transient growth of THC anomalies.
We identified a new and interesting physical mecha-
nism that leads to a significant transient amplification
of temperature and salinity anomalies, in addition to
the THC itself.

The characteristic time scale for the transient growth
is about 40 years, followed by a decay of the anomalies
on a centennial time scale. This mechanism is activated
by the interaction of mainly five slow-decaying eigen-
modes with decay time scales between 20 and 800 years.
The initial THC anomaly vanished in this mechanism,
as in Tziperman and Ioannou (2002), because of the
exact cancellation of the THC anomalies driven by the
initial temperature anomalies and those driven by the
initial salinity anomalies.

The transient amplification mechanism found here
for the THC is far more interesting and dramatic than
the corresponding one found in a simple box model of
Tziperman and Ioannou (2002). In that study, the THC
grows because of the damping of initial temperature
anomalies by the atmosphere, and after that initial
damping, the THC is controlled by the amplitude of the
initial salinity anomalies. There is no growth of the ini-
tial temperature and salinity anomalies in that model.
In our study, however, the initial temperature and sa-
linity anomalies grow significantly, by factors of about
400 and 20, respectively, during the first 40 years. Thus,
unlike in the box model study of Tziperman and Ioan-
nou (2002), small initial temperature and salinity
anomalies may result in large temperature, salinity, and
THC anomalies at the time of maximum amplification.
In addition, this amplification mechanism is due to the
advection of both mean temperature and salinity by the
perturbed velocity and not only by advection of mean

salinity as in the classical advective THC instability
mechanism (Marotzke et al. 1988; Tziperman et al. 1994).

While the analysis presented here finds interesting
optimal initial conditions and a corresponding transient
amplification mechanism of the THC, we should point
out that these optimal initial conditions depend on the
dynamics and model configuration. In addition, we did
not address the question of how such optimal initial
perturbations can be realized. This will require the cal-
culation of such optimal initial conditions (and stochas-
tic optimals, Farrell and Ioannou 1996; Moore and
Kleeman 1999b) in a 3D ocean model. The structure of
these optimal modes will then need to be compared
with the analysis of atmospheric variability, in order to
see if the observed atmospheric variability may project
on the optimal initial conditions. The use of a 3D rather
than a zonally averaged model will be essential for a
meaningful comparison between the horizontal struc-
ture of the optimal modes and of the atmospheric vari-
ability. We feel that the results of the present study
justify further pursuing this research direction with such
more realistic ocean models.
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APPENDIX

Model Equations

In this appendix, we present the model equations in
their continuous form and explain the parameters used

FIG. 8. The mechanism of transient growth: evolution of the THC anomaly as function of latitude and time in (a)
a model experiment where ��T� and ��S� are eliminated, and (b) in an experiment where ���T and ���S are
eliminated. These results demonstrate that the advection by the anomaly circulation causes the amplification, and
the advection by the mean flow causes the eventual decay.
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in Table A1. The potential temperature � at latitude y
is calculated from a balance between incoming solar
shortwave radiation (SWR), outgoing longwave radia-
tion (LWR), and heat exchange with the ocean and
meridional heat transport (Marotzke and Stone 1995;
Rivin and Tziperman 1997),


��y�


t
�

2Rd�Cp
air

g

P0Cp
air �Hland

SW �y� � HLW�y�

� Hair�sea�y� �




y
Fmerid�y��, �A1�

where Cair
p is the atmospheric specific heat capacity, and

Rd the gas constant for dry air. The atmospheric emis-
sivity �(y) appears in the expression for the outgoing
longwave radiation and is represented by a parabolic
profile [unnumbered equation under Eq. (4) in Sayag et
al. 2004]. The parameters �0, �N, and �S in Table A1 are
the equatorial, North Pole, and South Pole emissivities,
respectively. The restoring time scale, �, appears in the
equation for the air–sea interaction [Eq. (3) in Sayag et
al. 2004]. The coefficients C1 and C2 appear in the pa-
rametrization of the meridional heat flux [Eq. (5) in
Sayag et al. 2004]. These coefficients were chosen such
that the maximal value of the meridional heat flux in
the Northern Hemisphere is approximatively 5 PW,
close the present-day value (Trenberth and Caron 2001).

The equation governing the atmospheric humidity
balances sources and sinks due to evaporation from the
ocean E(y), precipitation P(y), and meridional mois-
ture transport convergence (�/�y)FMq(y), and is given
by (Peixoto and Oort 1992)


q�y�


t
�

g�w

Po
�E�y� � P�y�

�t

	p
�

1
�x





y
FMq�y��. �A2�

The drag coefficient, Cw, appears in the parameteriza-
tion of the evaporation [Eq. (7) in Sayag et al. 2004] and
is chosen such that the average of evaporation minus
precipitation over the latitudes 45°–90°N is about �0.2
m yr�1 (Peixoto and Oort 1992). The parameters K1

and K2 appear in the parameterization of the meridi-
onal moisture transport and are chosen such that the
maximal meridional moisture in the Northern Hemi-
sphere is about 0.38 Sv (Schmitt 1994).

The ocean temperature is governed by a simple ad-
vection–diffusion equation, which for the upper layer
takes the form


Ttop


t
�


��Ttop�


y
�

w

Htop
T̂ � Ky

T

2Ttop


y2

�
1

Htop
�2Kz

T
Ttop � Tbot

D
�

Hsurf
T �y�

�0CP
water�, �A3�

where Cwater
p is the ocean water specific heat capacity;

KT
y and KT

z are the meridional and vertical diffu-
sion coefficients, respectively; and T̂ � (TtopHtop �
TbotHbot)D�1.

The salinity S varies because of evaporation and pre-
cipitation [together, HS

surf(y)] as well as advection and
diffusion in the ocean. The salinity equation for the
upper layer of the ocean is


Stop


t
�


��Stop�


y
�

w

Htop
Ŝ � Ky

S

2Stop


y2

�
2Kz

S

Htop

Stop � Sbot

D
� Hsurf

S �y�, �A4�

where KS
y and KS

z are the meridional and vertical salinity
diffusion coefficients, respectively; and Ŝ � D�1(StopHtop

� SbotHbot).
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