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ABSTRACT

An empirical statistical model is constructed to assess the forecast skill and the linear predictability of

Atlantic Ocean sea surface temperature (SST) variability. Linear inverse modeling (LIM) is used to build

a dynamically based statistical model using observed Atlantic SST anomalies between latitudes 208S and 668N

from 1870 to 2009. LIM allows one to fit a multivariate red-noise model to the observed annually averaged

SST anomalies and to test it. Forecast skill is assessed and is shown to be O(3–5 yr). After a few years, the

skill is greatly reduced, especially in the subpolar region. In the stable dynamical system determined by

LIM, skill of annual average SST anomalies arises from four damped eigenmodes. The four eigenmodes are

shown to be relevant in particular for the optimal growth events of SST variance, with a pattern reminiscent

of the low-frequency mode of variability, and in general for the predictability and variability of Atlantic

SSTs on interannual time scales. LIM might serve as a useful benchmark for interannual and decadal

forecasts of SST anomalies that are based on numerical models.

1. Introduction

In the Atlantic Ocean, coherent large-scale sea surface

temperature (SST) anomalies are present in the observed

record. SST fluctuations arise from different mechanisms,

such as a local response to stochastic atmospheric heat

flux or advection of heat by the ocean circulation (e.g.,

Battisti et al. 1995; Bjerknes 1964; Halliwell 1998) and can

potentially have a large impact on climate on interannual

to decadal time scales. The possible dynamical mecha-

nisms involve damped oscillatory modes of the ocean

excited by stochastic atmospheric forcing, coupled ocean–

atmosphere oscillatory modes randomized by stochastic

forcing, or self-sustained ocean and coupled modes and

delayed oscillators (e.g., Weaver et al. 1993; Griffies and

Tziperman 1995; Chen and Ghil 1995; Czaja and Marshall

2001; Marshall et al. 2001). Despite the large number of

studies, it is still difficult to exclude any of the proposed

mechanisms, in part because of the relatively short his-

torical record. In numerical model simulations, the time

scales and mechanisms explaining the variability in the

Atlantic sector differ, and therefore our ability to rely on

these models is somewhat limited. One goal of this study

is to understand how the observed record can better

guide our numerical models.

The presence of large fluctuations of Atlantic SSTs

obviously has many economical and societal conse-

quences because it is associated, for example, with

rainfall in the Sahel (Palmer 1986; Biasutti et al. 2008)

and hurricane activity (Zhao et al. 2009); therefore

providing reliable predictions of Atlantic SST anoma-

lies (SSTa) could be extremely beneficial. The potential

predictability of Atlantic SST and ocean circulation var-

iability has been extensively explored in many numerical

models (e.g., Griffies and Bryan 1997) and has been found

to be on the order of up to a couple of decades; however,

potential predictability does not necessarily translate into

forecast skill. So far, only one numerical study using

a perfect model approach shows that potential pre-

dictability of Atlantic SST variations is not a pre-

requisite for actual forecast skill (Hawkins et al. 2011).

While the current general circulation model (GCM)-

based tools being developed for regional climate pre-

dictions are complex, challenging, and imperfect, the

observed record has been mostly ignored when it

comes to determining forecast skill and predictability

on interannual time scales. The main goal of this study

is to extract the statistical properties of the observed

record to investigate the dynamics of Atlantic SSTa

and their forecast skill.
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The paper is organized as follows. In section 2, a sta-

tistical model of annual mean Atlantic SST anomalies is

developed using linear inverse modeling, and its dy-

namical properties are investigated. In section 3, the

forecast skill of the statistical model is evaluated as are

the growth events of SST variance, and their relation-

ship to the Atlantic multidecadal variability is exam-

ined. A short discussion is provided in section 4.

2. Linear inverse modeling

a. Data

Numerical climate models are extremely useful but

often do not reproduce the observed variability prop-

erly and introduce structural errors that are difficult to

quantify. To investigate the variability and forecast

skill of Atlantic SSTa, the Met Office Hadley Centre’s

SST raw dataset (HadSST2) on a 58 by 58 latitude–

longitude grid from 1870 to 2009 (Rayner et al. 2006) is

used.

The SST anomalies are constructed by removing the

climatology over the entire period considered and also

the trend. Separating the natural and anthropogenically

forced variability is the subject of active research. Methods

attempting to separate the oscillatory-like component

and the upward trend are still largely debated (e.g.,

Ting et al. 2009; DelSole et al. 2011); we therefore opt

for a simple solution. The data at each grid cell were

detrended using two methods: 1) removing the linear

trend as is commonly done in various studies (Enfield

et al. 2001; Sutton and Hodson 2005) or 2) using a cubic

spline with two breakpoints similar to that of Hawkins

et al. (2011). The results presented in this study use the

latter (cubic spline); however, the main conclusions

remain unchanged if the linear trend is removed. Yet,

perhaps a part of the externally forced component of

SST variability is still present and could potentially

affect the predictions.

The domain is confined to the Atlantic basin between

latitudes 208S and 668N for several reasons: the frequency

of SST measurements during 1870–2009 is relatively high

when compared with all other regions, the impact of sea

ice variability on SSTa is minimized, and the possible

modulations of midlatitude SSTa from the tropics due to

the large-scale ocean circulation are taken into account.

The time series at each grid point are averaged from

January to December of each year to obtain annual av-

erages; only years having 10 or more months are retained.

Grid cells with less than 75% of the years are omitted.

The high latitudes, despite being important in Atlantic

variability, are left out because of their poor sampling

over the period considered and, as mentioned, the

spurious effects of sea ice. It would have been possible

to use interpolated datasets such as the Hadley Centre

Sea Ice and SST dataset (HadISST; Rayner et al. 2003)

or reduced-space optimal analysis Met Office Histor-

ical SST dataset (RSA MOHSST5; Kaplan et al. 1998)

instead of the raw data to include the high latitudes (e.g.,

the Labrador and Greenland Seas); however, these

datasets are constructed using empirical orthogonal

function (EOF) optimal interpolation methods that could

potentially compromise the analysis.

b. Estimation of the linear inverse model

In this study, linear inverse modeling (LIM) is used as

a tool to construct a model of the Atlantic Ocean that is

based on the statistical properties of observed annual

mean SST anomalies. LIM has been a useful tool in

seasonal predictions (e.g., Penland and Sardeshmukh

1995; Newman 2007), especially in the tropics, pre-

dictions of which are found to be skillful at lead times

of several months. While statistical models have their

limitations, they can often provide a useful assessment

of the variability and forecast skill of the observed

record, allowing for a comparison with numerical

models, and serve as a benchmark for numerical cli-

mate studies.

The main assumption underlying LIM is that the time-

dependent annual average SSTa can be separated into

a linear deterministic part and a nonlinear part repre-

sented by a linearized term that is dependent on the base

state and white noise. To reduce the number of degrees

of freedom, we construct a reduced space for SSTa using

EOFs as the spatial fields and their respective principal

components (PCs) as the time evolution of the EOFs.

The data are weighted by the surface area of the grid box

and their standard deviation (Moore and Kleeman

2001). Figure 1 shows the spatial patterns of the first three

EOFs that explain 32%, 10%, and 7.7% of the variability

and are reminiscent of many studies (e.g., Deser and

Blackmon 1993).

The evolution of the PCs can therefore be written as

a linear dynamical system forced with white stochastic

forcing h such that

dP/dt 5 AP 1 h. (1)

Here P(t) is the PC state vector and the deterministic

matrix A defines the evolution of P. The matrix A is

estimated from multiple linear regressions over the lead

time t0 5 1 yr. The matrix A is given by

A 5
ln[C(t0)C(0)21]

t0

, (2)
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using the covariance matrices C(t
0
) 5 hP(t 1 t

0
) PT(t)i

and C(0) 5 hP(t)PT(t)i, where the angle brackets de-

note an ensemble average or an average over all t if the

statistics of h are stationary. Only 13 EOFs/PCs, ex-

plaining about 79% of the variability, are retained to

evaluate A, ensuring that A remains well defined with

negative eigenvalues and a relatively low condition

number.

c. Eigenanalysis of A

To verify that the LIM adequately describes the At-

lantic SSTa variability, several tests can be performed.

To explore the properties of the LIM and its spectrum,

the eigenvalues gj 5 aj 1 ibj and corresponding eigen-

vectors vj (or empirical normal modes) of A are com-

puted (Penland and Sardeshmukh 1995, hereinafter

PS95). The eigenmodes are often referred to as principal

oscillation patterns (Hasselmann 1988). The A must be

dissipative with negative eigenvalues for the LIM to

have stationary statistics and to be a valid model for the

SSTa dynamics, which is confirmed by the tests per-

formed on the eigenanalysis of A. Table 1 shows the

decay and oscillatory time scales of the different eigen-

modes. Some of the decaying eigenmodes oscillate with

periods ranging from 8.5 to 137 yr. Note that perhaps

some of the dynamical properties of the system are

poorly represented because of the short time series or

because of sampling issues. For example, similar results

for the eigenanalysis of the matrix A were obtained

when evaluated for lead times up to t0 5 4 yr; however,

this is not the case for larger lead times. In this event, we

run into the Nyquist problem for which the lead time

t0 is close to one-half the period of one the eigenmodes

(eigenmode 2/3 in Table 1), and the eigenmodes cannot

be reliably estimated. Different EOF truncations lead to

qualitatively similar results, with some quantitative changes

in the eigenvalues.

d. Multivariate model of SSTa

To further validate that Eq. (1) is an adequate

model of the observed Atlantic SSTa, the LIM should

in part reproduce the SSTa power spectrum. The noise

forcing h and its statistics can be evaluated from the

fluctuation–dissipation relationship (PS95), that is,

AC(0) 1 C(0)AT1hhhTidt 5 0. The covariance matrix

of the forcing, hhhTidt 5 Q, has to be positive definite.

All of the eigenvalues of Q are found to be positive

except for one negative with a small amplitude. The

higher-order EOFs are possibly not reliably estimated

from the (noisy) data, leading to the small negative ei-

genvalue of Q since using fewer EOFs leads to a purely

positive definite matrix Q. Equation (1) is integrated

forward for 49 000 yr (Penland and Matrosova 1994)

with a time step of 1 h, with h generated using the

feigenvectors, eigenvaluesg of Q, fqj, r2
j g, such that

h 5 �jwj(t)rjqj, where wj(t) are independent Gaussian

white noises with unit variance.

TABLE 1. Eigenvalues of the linearized matrix A constructed using

13 EOFs.

Mode tr 5 a21 (yr) ti 5 2p/b (yr)

Mode 1 1.2 —

Modes 2/3 1.4 68.5

Mode 4 3.1 —

Modes 5/6 4.0 613.4

Modes 7/8 4.9 621.1

Modes 9/10 6.7 636.8

Modes 11/12 8.0 6137.1

Mode 13 15.3 —

FIG. 1. First three EOFs of annually averaged SST anomalies in the Atlantic basin using the raw dataset HadSST2. The contour intervals

are the same for each plot and are arbitrary. The fraction of variance explained by each EOF is indicated in parentheses.
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The LIM reproduces the main features of the observed

power spectrum of the domain-averaged Atlantic SSTa

as shown in Fig. 2a. The LIM spectrum is as expected

much smoother than the observed spectrum, because of

the relatively few degrees of freedom in the truncated

EOF space. Some of the irregularities could also be due

to the poor sampling and errors from the observations.

3. Forecasts and predictability

a. Linear forecasts

Given that the LIM passes several of the necessary

tests, it can be now used to provide forecasts using the

estimated propagator

B(t) 5 exp(At) 5 exp

�
t

t0

ln
C(t0)

C(0)

�
.

Forecasts of P (denoted by P̂) are therefore given by

P̂(t 1 t) 5 B(t)P(t). The spatial pattern of the forecast

can be recovered by multiplying P̂ by the respective

EOF patterns. Obviously, the LIM forecasts have to be

tested on data that are independent of those used to

determine A, which is done as follows: the data are

subsampled by removing one decade, the reduced

space and A are recomputed for the remaining years,

the forecasts are evaluated for the independent years,

and this procedure was repeated every year.

Figure 2b shows the reconstructed domain-averaged

Atlantic SSTa time series in the EOF space (black curve)

and associated forecasts (gray curves) using the LIM for

lead times of up to 10 yr, plotted at 1-yr intervals. The

LIM seems to show some skill for a few years, yet it seems

to be state dependent as some decades are better pre-

dicted than others. We perform a quantitative assessment

of the skill of these predictions by comparing the linear

model forecast errors with an autoregressive (AR1)

process (equivalent to damped persistence), shown in

Fig. 2c. Moreover, we compare the forecast error of the

LIM with the theoretical error covariance due to the

presence of the unpredictable white-noise forcing (re-

ferred to as a ‘‘perfect’’ linear model), given by (PS95) as

he(t)e(t)Ti 5 C(0) 2 B(t)C(0)BT(t). (3)

The estimates of the forecast error covariance provide

an estimate of the statistics of the noise forcing h re-

sponsible for the forecast error e. The LIM outperforms

the AR1 model for all lead times; however, the actual

errors using the LIM are larger than those predicted by

the theoretical perfect model. The actual errors of the

LIM are up to 30% larger than their theoretical estimates

at a lead time of 5 yr. This does not necessarily invalidate

the linearity assumption. While the differences between

the actual and theoretical errors can be seen as a measure

of the nonlinearities of the system, they could also be due

to the severe EOF truncation or the nonstationarity of

the data.

Maps of mean-square errors relative to climatology

[using the climatology from HadSST2 and simply as-

suming that P̂(t 1 t) 5 0], shown in Fig. 3, indicate the

regions for which the forecast skill is greatly reduced.

For years 1–2, the forecast skill in the Atlantic basin is

largely superior to climatology. For years 3–5, the fore-

cast skill decreases south of Greenland, in the subpolar

region. For longer lead times, the model fails in the same

subpolar region and skill is lost in the tropics, especially

near the African coast. In the subpolar region, the vari-

ance of SSTa is large and ocean–atmosphere coupling in

addition to ocean mixed-layer processes is strong, leading

FIG. 2. (a) Power spectrum of Atlantic annual mean SSTa av-

eraged over the domain 208S–668N: observations (solid line) and

LIM (dashed line). Gray shading denotes the 95% confidence in-

terval evaluated from a 49 000-yr run of the LIM (the model output

is separated into 350 segments of 140-yr time series, and the en-

semble mean is used to estimate the power spectrum of the model

and confidence interval). (b) Time series of Atlantic annual mean

SSTa averaged over the domain 208S–668N for the original dataset

(black line) and for 10-yr segment predictions using the LIM (gray

lines). (c) Normalized domain-integrated SST error forecast for the

LIM (gray line), a perfect linear model (solid back line), and an

AR1 model (dashed black line). The errors are normalized by the

trace of the covariance matrix C(0).
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to the possible reduction of the forecast skill of the LIM.

If the anomalies were constructed using averages running

from July to June (instead of from January to December),

the main conclusions would still hold but the forecast skill

would be reduced by roughly 10%. Including the full

winter seems to have a negative effect on the forecast

skill, again potentially being due to the large air–sea

interaction or sporadic ocean variability during this

season.

b. Transient growth, optimal initial conditions, and
predictability

Similar to most geophysical systems, A is nonnormal

(AAT 6¼ ATAÞwith nonorthogonal eigenvectors (Farrell

1982). Through interference of the decaying non-

orthogonal eigenmodes vj of A, large transient ampli-

fication of variance is possible. Such transient

amplification can be examined for two purposes: 1) to

understand error variance growth and to correctly

sample and interpret errors in initial conditions [such an

interpretation of transient growth is common in the at-

mospheric, numerical weather prediction, and seasonal

forecast communities (e.g., Buizza and Palmer 1995;

Moore and Kleeman 1996)] and 2) to explain the actual

growth of the variance in the observed record or in nu-

merical models (e.g., Farrell 1989; PS95).

In several GCM experiments, significant transient

amplification of annual mean Atlantic SSTa is found on

time scales of 4–20 yr (Zanna et al. 2012; Tziperman

et al. 2008; Hawkins and Sutton 2009). For the current

LIM that is based on observations, the largest possible

transient growth of the domain-integrated Atlantic SST

variance without forcing is given by l(t) 5 P(t)TP(t)/

P(0)TP(0) and is shown in Fig. 4a as a function of the

lead time t. The l(t) is the leading singular value of B(t)

such that the maximum amplification of SST variance is

found at about t 5 3 (to 4) yr with an amplitude of

roughly 8. Further exploration of the singular values of

B(t 5 3 yr) reveals that three additional singular values

are larger than unity, therefore exhibiting possible linear

growth; those three additional singular values are ranging

between 1.5 and 4, therefore leading to significantly less

amplification than the leading singular value. The maxi-

mum amplification curve in Fig. 4a implies that the actual

growth of variance from the interference of nonorthogonal

eigenmodes can be sustained for more than 10 yr, or

actually up to 18 yr (the time at which l decreases to

unity). This time scale can be viewed as an optimistic

estimate or an upper bound on the predictability time

of the linear events without forcing. However, given

that the system is not a perfect linear system and that

forcing (noise) is present, predictability is lost as a re-

sult of the white-noise forcing. In fact, for the domain-

averaged SSTa to be predictable, l(t) has be to larger

than the error covariance 1 1 he(t)e(t)Ti, and the limit

for predictability using this criterion is slightly under

10 yr. The other way to think about the growth, as men-

tioned earlier, is in terms of error variance growth such

that the rapid increase in SST variance over 3–4 yr could

lead to a limited predictability as a result of errors in initial

conditions and could potentially explain the forecast skill

of 3–5 yr, especially in the subpolar regions.

While the system seems to be able to sustain SST var-

iance growth, it is interesting to explore whether these

potentially predictable linear growth events exist in the

record and to determine their spatial structure. The initial

conditions leading to the maximum growth at a given

time t are given by the leading singular vector of B(t),

FIG. 3. Mean-square error relative to climatology [the climatology is simply determined from the HadSST2 dataset with P̂(t) 5 0 ] for

(a) t 5 1–2 yr, (b) t 5 3–5 yr, and (c) t 5 6–8 yr.
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often termed optimal initial conditions (Farrell and

Ioannou 1996). Optimal perturbations can be relevant

to the variability of the observed system; for example,

PS95 showed that the leading singular vector ampli-

fying the tropical Pacific SST corresponds to the most

efficient initial condition for the development of ENSO.

The spatial pattern of the optimal initial perturbations

corresponding to the largest growth [obtained for

B(t 5 3 yr)] is shown in Fig. 5a. The initial state of the

optimal perturbations (Fig. 5a) exhibits several sig-

nals in the Northern Hemisphere (in the vicinity of

the Gulf Stream and its extension, the southern tip of

Greenland, the Gulf of Mexico, and the Canary Is-

lands) and an additional anomaly in the Southern

Hemisphere around 208S. The shape of the leading

singular vector at different t does not change very

much, with always a relatively pronounced anomaly in the

middle of the basin, in the vicinity of the Gulf Stream’s

extension. Therefore the LIM has only one main leading

optimal initial structure. The evolution of the perturba-

tions (Fig. 5) over the optimal growth time scale hints at

a nonlocal growth of the perturbations (at least over the

first year) with possible mechanisms involving ocean–

atmosphere interaction, mixed-layer processes, re-

emergence of SST, and advection by the large-scale

ocean circulation. The optimally evolved pattern (Fig.

5d), reminiscent of the first EOF and the low-frequency

mode of variability in the Atlantic (Schlesinger and

Ramankutty 1994), has a single sign over the Northern

Hemisphere with the strongest anomalies in the subpolar

gyre region and just north of the tropics. In the Southern

Hemisphere, a small anomaly of opposite sign has de-

veloped and is centered around 208S, 278W. The opti-

mal perturbation found can be seen as a precursor

event to the large warming (or cooling) over the basin

as shown in Fig. 5d. The initial anomalies along 308N

(Fig. 5a) and the evolved pattern after one year (Fig.

5b) resemble the optimal initial and final patterns after

9 months found in Vimont (2012) in which LIM was

constructed with monthly SST data.

When analyzing optimal structures, it is important to

consider whether the growth is actually observed to

occur as predicted by the LIM. Figure 4b shows the

projection of observed anomalies onto the optimal ini-

tial conditions versus their projection onto the predicted

evolved structure 3 years later. The remarkable agree-

ment between the slopes of least squares fit and the

linear amplification of SST [l1/2(t 5 3 yr)] and the

correlation of 0.6 are indications that optimal SST

growth is relatively well captured by the LIM and is

relevant for observed Atlantic variability. As expected,

some scatter is observed about the least squares fit due

to the noise h reducing the correlation.

c. Dynamical eigenmodes of Atlantic variability

A vast number of studies have been looking at the

temporal and spatial variations of the Atlantic multi-

decadal variability or Atlantic multidecadal oscillation

(AMO) and their impact on climatic phenomena such as

rainfall or hurricane activity (Enfield et al. 2001; Sutton

FIG. 4. (a) Maximum amplification curve, showing maximum amplification l as function of lead time t. (b) Pro-

jection of observations upon the optimal initial condition for amplification of SST anomalies in the LIM over a 3-yr

interval vs the optimal evolved SST state 3 yr later. The gray dashed line is the expected growth l0.5(t 5 3 yr) 5 2.45;

the black dashed line is the linear fit with linear correlation r 5 0.6.
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and Hodson 2005). The Atlantic multidecadal variability

is characterized by basinwide fluctuations in North At-

lantic SST anomalies; this SSTa pattern of variability

exhibits some similarities with the optimally excited pat-

tern shown in Fig. 5d and is found in several numerical

models.

In this section, we consider how the unsmoothed

AMO index time series and the optimal patterns project

onto the eigenmodes of the linearized matrix A to gain

some insight about the source of predictability of At-

lantic SSTa. The AMO index time series are calculated

from the monthly Kaplan SST dataset. The index is an

area-weighted average of linearly detrended SST

anomalies over the North Atlantic between 08 and 708N.

The index was obtained online (http://www.cdc.noaa.-

gov/data/timeseries/AMO/). The AMO index is simply

a measure of the domain-averaged annually averaged

SST variability (and is not defined as the leading EOF/

PC explaining most of the variance, unlike the Pacific

decadal oscillation in the North Pacific Ocean). The 5-yr

running mean of the temporal evolution of the AMO

index is often used and seems to suggest shifts from one

sign to the other in Atlantic SSTa on multidecadal time

scales [70–80 yr as in Kushnir (1994)]. Because of the

presence of the external anthropogenic forcing and our

difficulty in adequately removing the forced component

of SST fluctuations to isolate the internal variability,

different studies define different periods as a shift in the

sign of the AMO index. We will not worry about such

issues in this work and only examine year-to-year vari-

ations of the unsmoothed time series.

The regression coefficients RAMO between the PCs and

the AMO index are found in a way that is similar to the

procedure described in Tziperman et al. (2008). There-

fore, the AMO index reconstructed from the PCs is given

byeAMO 5 RT
AMOP. The correlation between the orginal

AMO index time series andeAMO is roughly 0.91. The

time-dependent PCs, P(t), can be written as the sum of

the contributions of the different eigenmodes of A such

that

P(t) 5 �
j513

j51

fj(t)vj. (4)

The projection time series for the jth eigenmode, fj(t),

are given by

FIG. 5. Time evolution of the optimal perturbations: (a) optimal initial conditions, with t 5 0, (b) optimals at t 5

1 yr, (c) optimals at t 5 2 yr, and (d) optimals at the maximum amplification time, t 5 3 yr. Contour intervals are the

same for all panels, and the amplitude is arbitrary (due to the linearity of the optimal growth problem).
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fj(t) 5
g j

*P(t)

g j*vj

, (5)

with gj being the eigenvectors of the adjoint matrix of A

satisfying the biorthogonality relation (Farrell and

Ioannou 1996). Given that the eigenmodes are not

orthogonal, the variance cannot simply be partitioned

into individual eigenmodes. Multiple eigenmodes are

necessary to explain the variance of the AMO time

series as well as the evolution of the optimal growth of

anomalies found in section 3.

The leading optimal structure and growth can be well

approximated by four nonnormal eigenmodes of A: the

combination of three complex pairs of oscillatory modes

(modes 5/6, 7/8, and 9/10 in Table 1) and one stationary

eigenmode (mode 4 in Table 1), which are acting on

different temporal and spatial scales. Their real and

imaginary spatial patterns are shown in Fig. 6. Using

these four eigenmodes with decay and oscillatory time

scales ranging between 3.1 and 6.7 yr and 13.4 and

36.8 yr, respectively, we can then reconstruct and ex-

plain the linear growth events. The least-damped ei-

genmode does not participate in the optimal growth.

In looking at Fig. 6, one could assume that the oscilla-

tion of eigenmode 5/6 would lead the optimal growth of

the anomalies and possibly define the evolution of the

AMO index. However, the variance explained by eigen-

mode 5/6 is only one-half of the observed AMO vari-

ance, and the time series of the eigenmode 5/6 correlates

only at 0.43 with the AMO index. Similar results are

obtained for the evolution of the optimal pattern.

The projection of the AMO index time series onto the

eigenmodes reveals that the same four eigenmodes are

necessary to reproduce the evolution of the AMO index.

This is perhaps not surprising since the AMO index is

closely related to the SST variance norm used to maximize

the optimal growth. The reconstructed AMO with the four

eigenmodes and gAMO time series are shown in Fig. 7 and

are found to have a correlation of approximately 0.89. It

therefore appears that the skill and predictability of At-

lantic SSTa arise from the decaying time scales of the

participating eigenmodes and not from their oscillatory

time scales, similar to the PDO variability (Newman 2007).

4. Discussion and conclusions

Using the linear inverse modeling approach, we con-

structed a statistical model of annually averaged Atlantic

SST anomalies. The main results can be summarized as

follows:

d SST variability in the Atlantic domain can be well cap-

tured by linearized dynamics forced with white noise.
d The LIM captures the main features of Atlantic SST

anomalies, including their power spectrum and opti-

mal growth events.
d Linear forecasts of SSTa are successful for up to 5 yr

after which the skill deteriorates; using a 16-yr-long time

series of surface temperature in the vicinity of the Grand

Banks, Wunsch (2012) shows that some linear predictive

skill is possible up to ;5 yr, similar to our results.
d The forecast skill is mainly lost in the subpolar region

south of Greenland, possibly because of the nonlinearities

FIG. 6. Spatial patterns [(top) real and (bottom) imaginary parts] associated with the four eigenmodes (4, 5/6, 7/8, and 9/10) necessary to

explain the optimal growth and the AMO index time series. The contour intervals are the same for all panels.
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arising from air–sea interaction and/or subduction

processes.
d Optimal patterns develop into large anomalies remi-

niscent of the first EOFs of the system and low-

frequency SST patterns found in models (DelSole

et al. 2011).
d Linear growth events and AMO variability can be

explained by four eigenmodes of the linearized opera-

tor; the four nonorthogonal eigenmodes are responsible

for the skill and the predictability in the Atlantic sector.

Yet, 140 yr of data might still be too short to ade-

quately explore the interannual (and multidecadal)

variability and predictability of the Atlantic, especially

given the large uncertainties in observations during the

first half of the record. The model and its skill could

perhaps be improved by adding additional datasets such

as sea level pressure, salinity, subsurface temperature, or

temperatures from other ocean basins. However, careful

analysis will be necessary because these datasets are

short and extremely noisy (even more noisy that the one

used in this study).

While statistical models are useful, they have several

limitations. It is extremely difficult to investigate the

physical mechanisms and to confirm that the results

obtained are real and are not an artifact of the statistics or

of the short time series. For example, it is difficult to

compare the eigenmodes or singular vectors obtained with

numerical studies because most of them concentrate on the

EOFs and not on the dynamical modes. Moreover, the

physical mechanisms (e.g., different oceanic and atmo-

spheric processes) leading to the growth of the optimal

structure and therefore participating in exciting Atlantic

variability remain unexplained. We hope to address these

issues in future work with a designed set of experiments

using idealized and complex numerical models in addition

to observations. We expect to identify the dynamical ei-

genmodes, explore their relationship to the skill and vari-

ability in the Atlantic, and compare them with the

observations.

The results suggest that statistical models such as LIM

could provide valuable information about regional

predictability and variability before using complex

nonlinear tools, including GCM-based tools. LIM as

a global or regional tool could serve as a benchmark for

interannual and decadal climate forecasts.
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