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Abstract The resolution of climate models is limited by computational cost. Therefore, we must rely
on parameterizations to represent processes occurring below the scale resolved by the models. Here, we
focus on parameterizations of ocean mesoscale eddies and employ machine learning (ML), namely,
relevance vector machines (RVMs) and convolutional neural networks (CNNs), to derive computationally
efficient parameterizations from data, which are interpretable and/or encapsulate physics. In particular, we
demonstrate the usefulness of the RVM algorithm to reveal closed‐form equations for eddy
parameterizations with embedded conservation laws. When implemented in an idealized ocean model, all
parameterizations improve the statistics of the coarse‐resolution simulation. The CNN is more stable
than the RVM such that its skill in reproducing the high‐resolution simulation is higher than the other
schemes; however, the RVM scheme is interpretable. This work shows the potential for new physics‐aware
interpretable ML turbulence parameterizations for use in ocean climate models.

Plain Language Summary The complexity of numerical models used for future climate
projections is limited by their computational cost. Many key processes, such as ocean eddies, are not
adequately resolved and must be approximated using parameterizations. However, parameterizations are
often imperfect and reduce the accuracy of the simulations. Machine learning is now opening new avenues
to improve climate simulations by extracting such parameterizations directly from data, rather than using
idealized theories as typically done. We show that efficient modern machine learning algorithms can
accurately represent the physics of ocean eddies, can be constrained by physical laws, and can be
interpretable. Our results simultaneously open the door to the discovery of new physics from data and the
improvement of climate simulations.

1. Introduction

Turbulent processes are critical components of the climate system and influence the circulation of both the
ocean and atmosphere. For example, ocean mesoscale eddies, which are turbulent features of scale 10–100
km, dominate the oceanic kinetic energy reservoir (Ferrari & Wunsch, 2009) and are key for the lateral and
vertical transport of tracers, such as heat, carbon, and oxygen. These turbulent processes occur on scales that
are below the resolution of typical global climate models, which is roughly 25–100 km (IPCC, 2013).
Therefore, the effects of these turbulent processes on the large‐scale must be approximated.

These approximations, called parameterizations or closures, are often developed using idealized theories of
the bulk effect of the subgrid process on the large scale (Warner, 2010). This approach has been used for
many decades but is not necessarily optimal as it neglects certain physical effects. Imperfections in current
parameterizations and missing physics in climate models introduce significant biases in simulations and
considerable uncertainty in anthropogenic climate change projections (IPCC, 2013). For example, current
parameterizations of ocean eddies target the effect of (i) buoyancy fluxes by removing large‐scale available
potential energy (Gent & Mcwilliams, 1990) and (ii) momentum fluxes using viscous closures which dissi-
pate momentum (Zanna et al., 2020).

While improving certain properties of the flow (Danabasoglu et al., 1994), eddy parameterizations are miss-
ing key energy pathways such as the conversion of available potential energy into subgrid kinetic energy, or
the backscatter of kinetic energy to the large‐scale flow (Bachman, 2019; Jansen et al., 2015; Zanna et al.,
2017). In addition, these parameterizations spuriously dissipate kinetic energy (Jansen & Held, 2014;
Kjellsson & Zanna, 2017). These imperfect representations of ocean eddy physics in models can affect the
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strength and variability of large‐scale ocean currents and ocean heat uptake (Kuhlbrodt & Gregory, 2012;
Zanna et al., 2017). Increasing resolution can reduce some of these biases; however, due to the computa-
tional expense of running turbulence‐resolving simulations, subgrid parameterizations will be in demand
for several decades.

Recently, the advent of machine learning (ML) has given rise to a new class of data‐driven parameteriza-
tions. Studies rely onML to optimally tune parameters of existing closures (Ling et al., 2016; Schneider et al.,
2017). This approach, while useful, still neglects themissing physics not encapsulated in the current parame-
terizations. Instead, several studies have shown the promise of new ML parameterizations of subgrid pro-
cesses in the atmosphere (Brenowitz & Bretherton, 2018; Gentine et al., 2018; O'Gorman & Dwyer, 2018;
Rasp et al., 2018) and ocean (Bolton & Zanna, 2019). However, this new class of ML parameterizations often
uses black box algorithms (e.g., neural networks) such that the laws of physics are not necessarily respected
unless imposed (Beucler et al., 2019; Ling et al., 2016), and interpreting the data‐driven parameterization
becomes intractable.

Here, we propose a complementary or alternative route to both the traditional physics‐driven bulk approach
and the ML black box approach of deep learning. We use ML to discover closed‐form equations for mesos-
cale eddy parameterizations for coarse‐resolution ocean models using high‐resolution model data. Given
some spatiotemporal data set of the subgrid eddy forcing, we uncover an equation that could have produced
that data set (Rudy et al., 2017; Zhang & Lin, 2018). This approach has the following advantages over more
complex methods such as convolutional neural networks (CNNs): the end result is significantly easier to
interpret physically, the computational cost of implementation is lower, and training time of the algorithm
is also lower. Data‐driven discovery of equations has been extensively used to reveal known equations, such
as Burger's or Navier‐Stokes' equations (Kutz, 2017). However, unlike in these studies, we use the algorithm
to discover unknown equations for the subgrid eddy forcings.

2. Data and Methods
2.1. Training Data and Coarse Graining

We use a primitive equation model, MITgcm (Marshall et al., 1997), to generate high‐resolution data and
construct new eddy momentum, temperature, and energy parameterizations. We run highly idealized
double‐gyre eddy‐resolving barotropic and baroclinic simulations in a square domain. The simulations
use a beta‐plane approximation and a constant surface zonal wind forcing. These simulations are designed
to create highly turbulent flow regimes, with mesoscale eddies shedding from the jet extension.

The barotropic model has a single layer of depth 500 m and length 3,840 km, similar to Cooper and Zanna
(2015). We spin‐up the model from rest for 10 years, at a spatial resolution of 3.75 km. The baroclinic model
comprises of 15 vertical levels, with a total depth of 3,600 m. Due to the increased computational cost of run-
ning the baroclinic simulation compared to the barotropic model, we decreased the domain size from 3,840
km in length to 1,920 km, with a spatial resolution of 7.5 km. The meridional temperature gradient is
imposed via surface restoring to a linear profile. We spin‐up the baroclinic model for 100 years and then
run for a further 10 years for data collection. Further details about the simulations are given in the
Supplementary Information S1.

After spin‐up, we select 1,000 time slices of model output, with 4 days between each time slice. We remove
information at small scales by applying a horizontal Gaussian filter of width 30 km and then coarse‐grain to
a 30‐km grid, which is denoted by Bolton and Zanna (2019) (Supporting Information S2). The subgrid eddy
momentum and temperature forcing terms, for each vertical level, are then defined by

Su ¼ Sx

Sy

� �
¼ ðu · ∇Þu − ðu · ∇Þu; (1)

ST ¼ ðu · ∇ÞT − ðu · ∇ÞT ; (2)

respectively. Here, ∇ is the horizontal 2D gradient operator, T is the temperature, and the horizontal velo-
city u ¼ u; vð Þ. These terms reflect the turbulent nonlinear terms truncated in coarse‐resolution models
which need to be parameterized (Berloff, 2005; Mana & Zanna, 2014). At every grid point for every
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time slice, we both (i) calculate the target eddy forcing, i.e, Equations 1 and 2, and (ii) construct a library
of diverse functions which are necessary for the relevance vector machine (RVM) method described below
and are relevant to the process being parameterized.

2.2. ML Algorithms

We use two physics‐aware ML algorithms to learn subgrid ocean closures: (1) RVM to learn closed‐form
equations and (2) CNNs, with momentum conservation embedded in the architecture.

2.2.1. Relevance Vector Machine
Here, we employ the sparse Bayesian regression method used in Zhang and Lin (2018) based on RVMs
(Tipping, 2001) to reveal new eddy parameterizations. RVM is a regression technique that assumes
Gaussian prior distributions for each regression weight (Bishop, 2006). The width of the Gaussian prior of
each regression weight provides a measure of uncertainty of that regression weight. The method relies on
a library of functions, which can comprise of any function such as products or derivatives of relevant quan-
tities defined as basis functions (e.g., velocities, velocity shears, and temperature shears). The sparse regres-
sion is applied iteratively to the library of functions, and then a pruning of the library of functions is carried
out by discarding the functions with an uncertainty higher than a prespecified threshold (Zhang & Lin,
2018). This uncertainty threshold, δ, is the only parameter that requires setting in the Zhang and Lin
(2018) method. The algorithm finishes when the uncertainty measures of each regression weight stop chan-
ging from iteration to iteration. We found the Zhang and Lin (2018) method to be more robust than the
sequential threshold ridge regression (STRidge) of Rudy et al. (2017). For example, using data to discover
the known 2D advection‐diffusion equations, we found that STRidge required substantially more data for
training than the RVMmethod. In addition, STRidge has a large number of tunable hyperparameters which
substantially influenced the form of the discovered equation compared to the RVMmethod, which has only
one hyperparameter. Finally, unlike STRidge, the Zhang and Lin (2018) method provides an error associated
with the weights discovered. Given these tests were performed on known equations in which we knew the
answers, we opted for the use of Zhang and Lin (2018) RVM method to discover unknown ocean
parameterizations.

At every grid point for every time slice from the MITgcm coarse‐grained output (described above), we con-
struct a library of diverse functions, ϕi, which are derived from a set of basis functions relevant to the process

being parameterized. We build the library from the filtered velocities u, v, and T using up to second order
for both spatial derivatives and polynomial products, mainly due to memory limitations. The basis of func-
tions used for the momentum and temperature eddy parameterizations differ and will be discussed in the
next section. We normalized each function individually such that they have zero mean and unit variance.
We use 50% of the 1,000 time slices for training and the other 50% for validation. For both the eddy momen-
tum and temperature forcing, we impose a physical constraint for global conservation. To do so, we only spe-
cify library functions that can be written as the divergence of a flux (or as the divergence of a tensor T for the

eddy momentum forcing, i.e., ∇ · T), such that with the appropriate boundary conditions, there is no net
input of momentum or temperature.

We then apply the iterative RVM algorithm to prune the library of functions and construct the final equation
for the subgrid forcing (independently forSx,Sy, andST) as a linear sum of the functions, ϕi, each weighted by
the regression coefficient, wi. We estimate the performance of the final equation by calculating the R2 coeffi-
cient of determination using the withheld validation data. The full process of discovery with RVM is illu-
strated in Figure 1a. Further details can be found in the Supporting Information S1.

2.2.2. Convolutional Neural Network
We are using a fully CNN (FCNN) on the high‐resolution validation data (the truth). The authors have
already shown that CNNs are powerful at parameterizing mesoscale eddy momentum forcing and can gen-
eralize very well to different regimes, in particular to different dynamical regions and different turbulent
regimes (Bolton & Zanna, 2019). Other studies have shown the success of neural network in representing
turbulent closures from large‐eddy simulations (Ling et al., 2016; Maulik & San, 2017; Wang et al., 2020),
though none have been implemented in a forced‐dissipative model as of yet. The FCNN used here
(Figure 1b and Supporting Information S1) is trained using the same barotropic model data as for the
RVM expression, with the velocity components, u and v as inputs. There are four convolution layers
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Figure 1. (a) Illustration of the RVM procedure; (b) schematic of the architecture of the physics‐constrained fully
convolutional neural network (FCNN); (c) offline validation of the subgrid momentum forcing from the barotropic
simulations for three parameterizations, denoted as Ŝ —the physics‐driven ŜAZ , ŜBT revealed by the RVM algorithm
(Equation 5), and the FCNN—against the diagnosed forcing from high‐resolution data, S. Top row shows the mean
(ms−2), middle row the standard deviation (ms−2), and the bottom row the Pearson correlation of the zonal component
of the eddy momentum forcing,Sx and Ŝx (the meridional component is shown in Supporting Information S1). The x‐ and
y‐axes are longitude and latitude, respectively; the extent is 3,840 km in each direction.

10.1029/2020GL088376Geophysical Research Letters

ZANNA AND BOLTON 4 of 13



simultaneously predicting both components of the eddy momentum forcing. The architecture of the FCNN
is physically constrained (Beucler et al., 2019) such that the activationmaps (i.e., the results) of the third con-
volution layer represent the elements of a symmetric eddy stress tensor T. The final convolution layer then
takes the spatial derivatives of the eddy stress tensor elements, using fixed filters representing
central‐difference stencils, forming predictionsSx andSy. By physically constraining the architecture to form
the elements of a symmetric eddy stress tensor, global momentum and vorticity conservation can be
achieved. The hyperparameters of the architecture, such as the number of convolution layers and the num-
ber of filters, were chosen by experimenting with numerous configurations and examining the impact of the
R2 coefficient on the validation data, as commonly done. We do not use bias parameters in any of the con-
volution layers. The details of the FCNN architecture are in the Supporting Information S1 for full reprodu-
cibility of the results.

2.3. Numerical Model for Implementation

The RVM and FCNN parameterizations are implemented in an idealized ocean model. Implementation of
the FCNN into a Fortran code (e.g., MITgcm) is nontrivial; therefore, we opt to implement the parameteri-
zations using Python since it was used to train and save the FCNN. The Python‐based idealized ocean model
is a shallow water model, which bears many resemblances to the MITgcm primitive equation barotropic
model, including the horizontal velocities and sea surface height as prognostic variables, a double‐gyre con-
figuration with a constant wind forcing, and an idealized bathymetry. The parameterizations are implemen-
ted into a 30‐km resolution version of the idealized shallow‐water Python model, which was span‐up from
rest for 10 years, and then run for an additional 10 years for analysis. Further details are available in the
Supporting Information S1.

3. Data‐Driven Equation Discovery for Mesoscale Eddies

Improved parameterizations of mesoscale eddy momentum, temperature, and energy are crucial to improv-
ing the transport of tracers, as well as countering the energy deficit caused by scale truncation, and viscous
and diffusion parameterizations within coarser resolution models. To derive new data‐driven closures, we
use the data generated from idealized eddy‐resolving barotropic and baroclinic simulations, with horizontal
resolutions of 3.5 and 7.5 km, respectively, which emulate western boundary currents and their jet exten-
sions at midlatitudes (section 2). Our target is to parameterize eddy momentum (section 3.1) and tempera-
ture fluxes and an eddy prognostic equation (section 3.2) for coarser‐resolution models, here chosen to be
of 30‐km horizontal resolution (eddy‐permitting), similar to CMIP class eddy‐permitting models. We will
extract the subgrid forcing using the RVM algorithm.

3.1. Discovering Eddy Momentum Parameterizations

For constructing the library of functions to reveal expressions for the eddy momentum forcing, we write the
spatial derivatives of the velocity field using the following basis functions

ζ ¼ vx − uy; σ ¼ ux þ vy; (3a)

D ¼ uy þ vx ; D̃ ¼ ux − vy; (3b)

where the short hands ðÞx; y ≡
∂

∂x; y
are used for spatial derivatives, ζ is the relative vorticity, σ is the diver-

gence, andD and D̃ are the shearing and stretching deformation of the flow field, respectively. We chose to
write the library of functions using this basis because (i) initially our data‐driven discovery method was
automatically forming Equations 3a and 3b, when given only velocity components and their derivatives,
without a priori knowledge, and (ii) the dynamical quantities defined by Equation 3 are relevant to turbu-
lent eddy parameterizations (Pope, 1975; Smagorinsky, 1963). The RVM algorithm, therefore, revealed an
improved basis in which to write the library of functions. Finding the optimal physical basis is important
to identify the key dynamical components from which to construct parameterizations in general, as well as
helping with physics discovery from data.

We separately apply the RVM algorithm to data from the barotropic and baroclinic model. The predicted

subgrid momentum forcing is denoted by Ŝu ¼ Ŝx ; Ŝy
� �

. We performed an extensive sensitivity analysis to
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the sole hyperparameter, the threshold δ, of the method (Supporting Information S5). At low threshold

values, the RVM algorithm selects a single function, namely, the gradients of enstrophy ðζ 2Þx and ðζ 2Þy
for predictions of Sx and Sy , respectively, which captures ∼20% of the variance. As the pruning threshold
increases, there is a large increase from ∼20% to ∼50% variance captured, with the number of functions only
increasing from 1 to 3 for both Sx and Sy. The expression revealed by the RVM is then given by

ŜBTu ¼
 
w0ðζ 2Þx − w1ðζDÞx þ w2ðζD̃Þy
w3ðζ 2Þy þ w4ðζDÞy þ w5ðζD̃Þx

!
; (4)

where w0¼−4.096 × 108, w1¼−5.483 × 108, w2¼−4.384 × 108, w3¼−4.100 × 108, w4¼−6.332 × 108, and
w5¼−4.815 × 108, with units of m2. Each coefficient has an uncertainty estimate which is on the order of
a few percent and never exceeds 10%. The uncertainty associated with each weight is not listed as it is
always smaller than the coefficient of variation used (see below) for each parameterization discovered.
The zonal and meridional components of the predicted RVM expression capture 55.6% and 50.6% of the
variance, respectively. Adding six more functions would increase the R2 value to up to 80% but increasing
the complexity of the expression (Equations S12 and S13).

To quantify the differences between the regression coefficients, we use the coefficient of variation (i.e., rela-
tive standard deviation), which provides a standardized measure of the dispersion of a probability distribu-
tion. For the regression coefficients wi above, the coefficient of variation is 14.2%. We therefore decide to
write the regression coefficients as approximately equal, i.e., wi≈ κBT ¼−4.87 × 108 m2, with an average
error of 14.2%. Using this approximation, we can then rewrite Equation 4 as

ŜBTu ≈ κBT‾∇ ·
ζ 2 − ζD ζD̃

ζD̃ ζ 2 þ ζD

 !
: (5)

The expression now has a single scalar as a tunable parameter, κBT , which determines the “strength” of the
parameterization. The expression depends only on the spatial derivatives of the vorticity and deformation
terms and is similar to the parameterization developed by Anstey and Zanna (2017) (see below). In addition,
the tensor found is symmetric, despite separately applying the RVM algorithm to the zonal and meridional
components of the eddy momentum forcing and without imposing symmetry as a constraint (unlike for the
FCNN).

We perform the same procedure using data from the baroclinic model. We provide the RVM algorithm with
data frommultiple vertical layers at once. As for the barotropic model, a significant increase in the R2 occurs
when three functions are retained, capturing over 40% of the variance. Here, the RVM algorithm constructs
the same eddymomentum forcing from the barotropicmodel (Equation 4), albeit with different values for the
regression coefficients. A second increase in the R2 occurs for larger values of the threshold parameter where
five functions are retained, capturing approximately 70% of the variance (Equation S5). We proceed to calcu-
late the average of the regression coefficients and found a mean value κBC¼−8.723 × 108 m2, with a coeffi-
cient of variation of 9.8%. Due to the relatively low coefficient of variation, we again assume that all
regression coefficients are approximately equal to κBC, such that the RVM expression can be approximated as

ŜBCu ≈ κBC‾∇ ·
−ζD ζD̃

ζD̃ ζD

 !
þ I

1
2
κBC‾∇ðζ 2 þ D2 þ D̃

2Þ; (6)

for each vertical layer. The baroclinic expression depends only on the spatial derivatives of the shearing
deformation, the stretching deformation, and the vorticity. Like the barotropic expression, the tensor is
symmetric. The baroclinic expression can be written as the barotropic expression plus the gradient of

the squared deformation terms: ŜBCu ≈ 2ŜBTu þ I
1
2
κBC‾∇ðD2 þ D̃

2Þ.

For the physical interpretation of the discovered parameterizations, we rely on previous studies (Anstey &
Zanna, 2017; Mana & Zanna, 2014; Meneveau & Katz, 2000; Nadiga, 2008; Pope, 1975). The RVM expres-
sions discovered encapsulate the tensor form that a Reynolds stress could take assuming frame invariance
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and symmetry in a 2D flow based on Pope (1975). However, not surprisingly, the RVM did not discover the
standard viscous stress tensor (also proposed in the framework of Pope, 1975), given that we are mainly

learning quasi‐geostrophic effects rather than 3D turbulence. Both the expressions forŜBTu and forŜBCu contain
within them the recently proposed deformation‐based momentum parameterization of Anstey and Zanna
(2017), referred to as AZ17, and defined by

ŜAZ17u ¼ κAZ17‾∇ ·
−ζD ζD̃

ζD̃ ζD

 !
; (7)

therefore, ŜBTu ¼ SAZ17u þ κBT‾∇ζ 2. AZ17 is also related to the Pope (1975) tensors; see further discussion in
AZ17. Using data from a MITgcm baroclinic simulation, AZ17 diagnosed a value of κAZ17 and found it to
be on the order of −5 × 108 m2, similar to the value of κBC. AZ17 is known to capture up‐gradient momen-

tum fluxes and to conserve kinetic energy. The parameterizations, SAZ17, ŜBTu , and ŜBCu can be related the
nonlinear gradient model (Meneveau & Katz, 2000; Nadiga, 2008), though comprising of additional terms
(AZ17). The nonlinear gradient model, which is derived as a Taylor expansion of the filtered nonlinear
stresses, has shown promise in a range turbulent flows applications. This class of parameterizations, based
on the deformation tensor of Pope (1975), has also been shown to generalize to different dynamical
regimes and scales within a range of eddying resolution (AZ17; Mana & Zanna, 2014; Zanna et al.,

2017). The vorticity contribution of each ŜBTu and ŜBCu is identical to that of ŜAZ17u (Supporting

Information S4). However, ŜBTu and ŜBCu lead to a net source or sink of kinetic energy, which depends
on the divergence of the flow (or the potential energy of the system; Equation S11). Therefore, the RVM
expressions capture processes not included in currently implemented eddy parameterizations and have
revealed new parameterizations for energy pathways between reservoirs.

Before implementing the parameterizations in an ocean model, we test their performance offline with the

validation data within the barotropic model (Figure 1c). We compare ŜBTu , ŜAZu , and the FCNN trained using
the same barotropic model data as for the RVM expression, with the velocity components, u and v as inputs
(Figure 1b and Supporting Information S1).

In the time mean maps of Ŝx (Figure 1c, top row), the RVM expression most accurately captures the spatial
patterns of the high‐resolutionmodel. The FCNN also captures themajority of the spatial patterns of the true
time mean but exhibits a negative bias in the eastern part of the domain. The AZ17 parameterization loosely
captures the negative values near the western boundary and positive values in the interior but struggles to
capture the finer small‐scale patterns of the true time mean. Similar results hold for the standard deviation
(middle row): the RVM expression and FCNN reproduce the true standard deviation almost exactly, with
differences only visible close to the western boundary, whereas the AZ17 standard deviation underestimates
the true standard deviation by 50% in the ocean interior. The higher order moments, skewness, and kurtosis
(Supporting Information S8) are also best captured by the RVM expression and FCNN, which outperform
the AZ17 expression. In terms of predictive skill, measured by the correlation between the parameterized
term and the true subgrid forcing (bottom row), the FCNN captures almost all of the variance in the vicinity
of the jet, but this high skill is not consistent across the domain, particularly near the eastern boundary. The
predictive skill of the RVM expression is not as high as the FCNN within the jet region but is significantly
more consistent across the domain, with fewer patches of zero or negative correlation. AZ17 performs poorly
in a significant part of the domain. The amount of data for training the RVM could be reduced by half with-
out deteriorating the results; this is not the case for the FCNN. Performance of the baroclinic momentum
expression from RVM can be found in the Supporting Information S1. Overall, the ML parameterizations
perform well in offline validation, compared to a physics‐based scheme.

3.2. Discovering Eddy Temperature and Energy Forcing

We apply the same procedure to find the eddy temperature forcing, defined by Equation 2 as a flux, using
data from the baroclinic model. The basis functions for the eddy temperature forcing are based on deriva-
tives of momentum and temperature. For a given threshold parameter, the R2 reaches 54.3% with only four
functions, resulting in the following expression for the predicted subgrid temperature forcing:
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ŜT ¼ w0ðuxuzÞy þ w1ðvxvzÞy − w2ðuyuzÞx − w3ðvyvzÞx ; (8)

with the following values for the regression coefficients w0¼ 1.573, w1¼ 1.495, w2¼ 1.518, and w3¼ 1.504,
which have units of 108 Cms. The mean coefficient value is κT¼ 1.523 × 108 Cms with a coefficient of var-
iation of 1.7%. Approximating all the regression coefficients as being equal to the mean, with an average
error of 1.7%, yields the following expression:

ŜT ¼ κT∇ ·
−uyuz − vyvz

uxuz þ vxvz

 !
: (9)

The zonally averaged offline diagnostics for the upper ocean, below the mixed‐layer, show that the RVM

expression, ŜT , captures the pattern of the mean and standard deviation of the true ST , however, it under-

estimates the variance by approximately 50% (Figure 2). The correlation between ŜT (the prediction) and
ST (the true forcing) is vertically uniform with a value of 0.6. However, near the northern boundary of the
domain, the RVM does not capture the pattern nor the amplitude of the true ST .

The revealed expression is tied to vertical variations in velocity, which is a reflection of the eddy heat fluxes
impacting the density field. The dependence of Equation 9 on vertical variability can be examined by assum-
ing that thermal wind balance holds for the mesoscale variability. Using a linear equation of state, we can
rewrite Equation 9 as

ŜT ¼ −
κTgα
f

‾∇ ·
vy −u

y
−vx ux

� �
∇ T

� �
; (10)

where α is the thermal expansion coefficient, g is gravity, and f is the Coriolis parameter. The coefficient

Figure 2. Validation, using the baroclinic model data, of the zonally averaged predicted, ŜT (Equation 9; panels c and d);
against the diagnosed eddy temperature forcing, ST (Equation 2; panels a and b), as a function of latitude and depth for
the mean and standard deviation. Correlation between the prediction and the diagnosed forcing (panel e).
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κTgα=f has units of m2, similarly to the coefficient for the momentum parameterization. The eddy tem-
perature flux is now dependent on the lateral temperature gradient, modulated by lateral velocity gradi-
ents. We can further reformulate the predicted eddy temperature forcing, using the residual‐mean
formulation (Ferrari & Plumb, 2003; Greatbatch & Lamb, 1990; Marshall et al., 2012), into a vertical flux
of horizontal momentum with a magnitude that depends on the velocity gradient (Equation S15)—the flux
can be up‐ or down‐gradient.

To further improve the energetics of the model, an additional prognostic equation for the eddy energy can be
solved to account for all sources and sinks of energy within the system. However, the prognostic eddy energy
equation is unknown andmust therefore be constructed (Cessi, 2008; Eden &Greatbatch, 2008; Jansen et al.,
2015; Mak et al., 2016; Marshall & Adcroft, 2010). For both the barotropic and baroclinic models, the RVM
algorithm constructs a prognostic equation which is the advection of eddy kinetic energy (EKE) and captures
50–60% of the variance in the validation data (Supporting Information S7). Changing the pruning threshold,
the target equation, or the spatial scale of the Gaussian filter for defining the eddy scale, did not modify the
equation revealed by the algorithm.

4. Implementation Into a Coarse‐Resolution Ocean Model

Online performance, meaning when the parameterizations are coupled to a coarser‐resolution model, is an
important test for future implementation in global climate models. A key issue of any parameterizations is
that diagnostic (offline) performance does not translate into prognostic (online) performance due to both the
underlying model structure to be integrated forward (e.g., subgrid parameters and numerics) and the non-
linear nature of the equation of motions, in which the parameterizations continuously interact with the

resolved scales. Here, the physics‐driven parameterization from AZ17, ŜAZ17, and the data‐driven barotropic
momentum expression (Equation 5) revealed by the RVM, and the data‐driven FCNN are implemented into
a 30‐km resolution version of a very idealized shallow water model (section 2 and Supporting Information
S1).It is the first time that a CNN parameterization for ocean turbulence is implemented into an ocean
model; therefore, for easy implementation and testing, we chose amodel coded in Python. Choosing a model
that is different than the model used for learning provides also a stronger (andmore difficult) test for the suc-
cess of the parameterizations. For all three parameterizations, conservation of global momentum and vorti-
city is satisfied. The goal of the parameterizations is to reduce model biases and in particular energize the
flow, to replace the energy lost due to truncation of small scales and large viscosity coefficients at coarse
resolution.

We compare the 30‐km parameterized simulations, with the 30‐km simulation without parameterization
and a 3.75‐km high resolution (the truth). We initially set the same parameter for both the RVM and
AZ17 expressions to κ¼−4.87 × 108 m2. However, this implementation led to issues of numerical stability
for both the RVM and AZ17 parameterizations, while to the implementation of the FCNN led to overener-
gized flow, with an efficient inverse cascade and velocities reaching large values of O(10m s−1). To alleviate
these issues, we attenuate the strength of each parameterization; i.e., at each time step, we simply multiply

Ŝu by a coefficient τ between 0 and 1. Through trial and error, we use values of τ of 0.5, 0.5, and 0.7 for the
RVM, AZ17, and FCNN parameterizations, respectively (Supporting Information S8).

All three parameterizations increase the amount of kinetic energy in the model (Figure 3a). Both the RVM
and AZ17 expressions increase the kinetic energy to approximately halfway between the 30‐ and 3.75‐km
models, at a value of 0.038 m2 s−2. It is not surprising that the RVM and AZ17 parameterizations lead to simi-
lar results in a shallow‐water barotropic model, as their contributions to the vorticity budget are identical
(Supporting Information S4). The FCNN parameterizations increase the kinetic energy of the model to
within approximately 5% of the high‐resolution model at 0.056 m2 s−2.

The kinetic energy power spectrum (Figure 3b) shows evidence of increased kinetic energy for the parame-
terized simulations at all spatial scales, compared to the low‐resolution unparameterized simulation. At spa-
tial scales larger than 300–400 km, all parameterizations increase the kinetic energy to approximately the
same level as the high‐resolution simulation, therefore implying a more efficient backscatter or inverse
energy cascade. The FCNN parameterization increases the kinetic energy to above that of the
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high‐resolution model. At length scales smaller than 300 km, while all parameterizations increase the
kinetic energy, it remains lower than that of the high‐resolution simulation, likely due to viscosity.

In addition to the global mean kinetic energy, we consider the impact of the parameterizations on the statis-
tics and extremes in kinetic energy. In the three representative regions selected (Figure 3c), the
high‐resolution probability density function (PDF) has more probability in the tails compared to the
30‐km model without parameterization (Figures 3d–3f). The effect of all parameterizations is to increase

Figure 3. Kinetic energy diagnostics in the following idealized ocean simulation: high‐resolution, 3.75 km (cyan),
coarse‐resolution 30 km without parameterizations (gray), coarse‐resolution 30 km with FCNN (purple),
coarse‐resolution 30 km with RVM (red), and coarse‐resolution 30 km with AZ17 (yellow). (a) Time series of globally
averaged kinetic energy as a function of time; (b) kinetic energy spectrum as a function of wavenumber; (c) snapshot of
kinetic energy in the high‐resolution simulations, indicated three regions of interest (1–3) for extreme event diagnostics
using probability distribution functions (PDF). (e and d) PDF of kinetic energy for Regions 1–3.
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the probability in the tails, with little shift in the position of the peak. Therefore, the primary effect of the
parameterizations is increasing the frequency of extreme kinetic energy values, as opposed to solely increas-
ing the mean kinetic energy. In Regions 1 and 2 (Figures 3d and 3e), the FCNN is the best performing, with
the kinetic energy PDF of the FCNN parameterization almost indistinguishable from the high‐resolution
model. AZ17 and the RVM expressions are almost indistinguishable from each other. However, in
Region 3 (Figure 3f), all three parameterizations cause too much probability to be redistributed in the tails,
as evident by the peaks of the RVM, AZ17, and FCNN kinetic energy PDFs all being below the high‐
resolution peak.

5. Summary

ML algorithms can facilitate the discovery of physical processes, embedded within data from high‐resolution
simulations or observations. However, physical intuition remains critical to explain the physics discovered
by these algorithms. We have introduced the data‐driven equation discovery method of Zhang and Lin
(2018), namely, the RVM algorithm, for ocean eddy parameterizations, rather than for discovering funda-
mental equations of motions already known (Rudy et al., 2017). The mathematical expressions discovered
by the RVM algorithm show that eddy momentum parameterizations should include up‐gradient momen-
tum fluxes and potentially a transfer between potential energy and kinetic energy. In addition, the RVM
revealed that eddy temperature fluxes can act on vertical gradients of horizontal momentum with a magni-
tude that depends on the velocity gradient and that eddy energy advection accounts for half of the time ten-
dency of EKE. A CNN, constrained with physical conservation laws, appears to be an excellent
representation of the eddy momentum forcing, leading to vastly improved coarser‐resolution simulations
which, under certain metrics, are indistinguishable from the high‐resolution target, confirming results from
Bolton and Zanna (2019). Yet the reasons for the success of the CNN parameterization are difficult to extract.
All parameterizations presented here have been shown to generalize well to other regimes (e.g., dynamical
regions and Reynolds numbers or resolution; Anstey & Zanna, 2017; Bolton & Zanna, 2019; Pope, 1975;
Mana & Zanna, 2014; Holm &Wingate, 2005). Unfortunately, the parameterizations presented here are also
subject to tuning when implemented in an ocean model, as all parameterizations in use in current climate
models are. The parameterizations, when implemented in a very idealized model, did not vastly improve
the mean state (Figures S10 and S11), but tests in more complex models have showed that they have the abil-
ity to do so (Zanna et al., 2017). Here, the RVM (and the physics‐based) expression, which performs well off-
line, does not show as good performance as the FCNN online due to numerical instabilities developing
during the implementation. This result suggests that the complexity of a deep neural network may be more
numerically stable compared to implementing a closed‐form equation (Rasp et al., 2018), yet it is subject to
heavy tuning (Brenowitz & Bretherton, 2019). However, we cannot rule out that the RVM results could be
improved by adding more functions or by adding memory or stochasticity, which have been shown to dras-
tically improve stability (Zanna et al., 2017), or finally by coupling the momentum parameterization to an
eddy energy equation (Jansen & Held, 2014).

While the implementation of eddy forcing remains to be properly tested in more complex models, our results
suggest that progress can be made using ML for physics discovery and interpretable parameterizations,
which are more computationally efficient than running high‐resolution simulations (Figure S12). We hope
that this manuscript provide a new road map for data‐driven parameterizations to be developed, tested,
interpreted, and implemented in ocean climate models in the future. A new strategy, which combines the
interpretability of equation discovery with the predictive skill of complex neural networks, could be an effec-
tive approach to improving ocean models and perhaps climate models in general.

Data Availability Statement

The code for the relevance vector machine algorithm can be found at github.com/TomBolton/rvm-find,
https://doi.org/10.5281/zenodo.3758659.
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