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Abstract

Probabilistic prediction of sequences from im-
ages and other high-dimensional data remains
a key challenge, particularly in safety-critical
domains. In these settings, it is often desir-
able to quantify the uncertainty associated
with the prediction (instead of just determin-
ing the most likely sequence, as in language
modeling). In this paper, we propose a Monte
Carlo framework to estimate probabilities and
confidence intervals associated with sequences.
Our framework uses a Monte Carlo simulator,
implemented as an autoregressively trained
neural network, to sample sequences condi-
tioned on an image input. We then use these
samples to estimate probabilities and confi-
dence intervals. Experiments on synthetic and
real data show that the framework produces
accurate discriminative predictions, but can
suffer from miscalibration. To address this
shortcoming, we propose a time-dependent
regularization method, which produces cali-
brated predictions.

1 INTRODUCTION

We consider the problem of predicting a sequence of
multi-class labels from high-dimensional input data,
such as images. Potential applications include patient
prognostics from medical imaging data [Pham et al.,
2017], weather forecasting [Andrychowicz et al., 2023],
and modeling of human behavior [Thakkar et al., 2024].
Our focus is on probabilistic prediction, which requires
uncertainty quantification in the form of probabilities
or confidence intervals.

∗Equal contribution.

  Q: What is the probability that the player shoots after
  13 seconds?    Ans:  0.82.

  Q: What is the probability that the player shoots after 
  13 seconds if he presses left after 1 second?   Ans: 0.72.

Marginal Probability

Conditional Probability

  Q:  Provide a 90% confidence interval for the duration   
  of the game.    Ans: [10, 17] secs.

Time-to-event Prediction

Videogame

  Q: What is the probability that the subject dies after 10
  years?    Ans:  0.63.

  Q: What is the probability that the subject dies after 10
  years, if they are sick after year 2?    Ans: 0.89.

Marginal Probability

Conditional Probability

  Q:  Provide a 90% confidence interval for the patient's 
  survival time.    Ans: [42, 53] years.

Time-to-event Prediction

Health 
monitoring

 1 - Healthy
 2 - Ill
 3 - Dead

Figure 1: Sequence prediction with uncertainty
estimation. The proposed framework enables estima-
tion of marginal probabilities, conditional probabilities,
and time-to-event confidence intervals associated with
a sequence given an input image. We consider sequen-
tial decision-making tasks where the input image is
a screenshot from an Atari video game and the se-
quence to predict is the sequence of actions taken by a
user (top), and we consider a synthetic-data forecasting
problem where the input image is the face of a person
and the sequence to predict is the evolution of their
health status (bottom).

Figure 1 shows two examples of sequence prediction
problems: modeling player behavior in a video game
and health monitoring. The data consist of “start-
ing state” images and subsequent sequences of player
actions (e.g., move left, move right, shoot, etc.) and pa-
tients’ health statuses (healthy, ill or dead), respectively.
The goal is to predict the sequence of actions/health
statuses from the starting state image.

There has been a large volume of work on estimating
the most likely sequence from high-dimensional data,
for example, in language modeling [You et al., 2016,
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Herdade et al., 2019, Li et al., 2022, Brown et al.,
2020]. However, predicting a most likely sequence is
not sufficient when the evolution of the sequence is
uncertain. In this case, multiple states are possible at
a future time given a fixed input, and therefore a single
deterministic estimate is not acceptable. Instead, we
need to predict the probability that each state occurs
at a given point in the future. Similarly, in prediction
of time-to-event values (e.g., the time until the game
ends, or the survival time of a subject), predicting the
most likely value is also insufficient, as there is a range
of possible times given a specific input. Instead, we
wish to produce confidence intervals that are likely to
contain the time of interest with high probability.

Predicting the probability of the different possible
states of a sequence at a fixed future time and survival
modeling are standard classification and probability-
estimation problems [Liu et al., 2022]. However, exist-
ing approaches require separate models for each time
and type of event. In this paper, we propose a frame-
work that uses a single model to generate probabilities
and confidence intervals associated with any possible
future time and any type of event.

The proposed framework for Monte Carlo uncertainty
quantification of sequences (foCus) combines autore-
gressive models—which are the state of the art for
many sequence-based tasks [Bahdanau et al., 2014,
Gehring et al., 2017, Vaswani et al., 2017, Brown et al.,
2020], with Monte Carlo estimation to produce use-
ful uncertainty estimates for sequence prediction tasks.
However, when studying this framework, we find that
autoregressive simulators trained via maximum likeli-
hood estimation are severely miscalibrated, meaning
that the associated probabilities or confidence intervals
do not provide accurate uncertainty quantification for
the tasks at hand. To address this shortcoming, we
develop a time-dependent regularizer for autoregressive
simulators training and show that it enables foCus to
generate better calibrated probability estimates.

To summarize, our main contributions are as follows:

1. We propose a Monte Carlo framework for probabilis-
tic prediction of sequences from high-dimensional
input data using autoregressive models.

2. We perform an empirical evaluation of the proposed
framework on a hand-tailored synthetic bench-
marking task for sequence prediction and on non-
synthetic sequential decision-making tasks and find
that neural network-based autoregressive simulators
are prone to time-dependent miscalibration.

3. We develop a time-dependent regularization method
and show that it allows learning simulators that
produce calibrated uncertainty estimates under the
proposed framework.

2 RELATED WORK

Sequence generation. Discrete sequence genera-
tion plays a fundamental role in many natural lan-
guage processing applications, such as language mod-
eling [Brown et al., 2020, Touvron et al., 2023], im-
age captioning [Ghandi et al., 2023], language trans-
lation [Bahdanau et al., 2014, Gehring et al., 2017,
Vaswani et al., 2017], and text summarization [Dong,
2018]. In these examples, sequence generation is typ-
ically performed in an autoregressive manner, where
each token is generated based on the tokens previously
generated. Alternatively, sequences can also be gen-
erated non-autoregressively [Sun and Yang, 2020, Gu
et al., 2017, Shu et al., 2020], where tokens are pro-
duced simultaneously or with fewer dependencies on
earlier tokens. In both paradigms, the primary objec-
tive is to generate the most likely sequence. However,
these approaches typically do not focus on quantifying
the uncertainty associated with generated sequences,
which is the goal of this paper.

Imitation and reinforcement learning. Our fo-
cus is on predicting sequences from high-dimensional
data, which is fundamentally different from imitation
learning [Hussein et al., 2017], which seeks to replicate
human behavior, and reinforcement learning [Sutton,
2018], which seeks to determine an optimal policy by
allowing the agent to interact with the environment,
guided by a reward function [Schulman et al., 2017,
Lillicrap et al., 2019].

Calibration. Miscalibration is a well-known chal-
lenge in classification models based on deep learn-
ing [Guo et al., 2017, Wang, 2024, Wang et al., 2021],
particularly when the goal is to provide accurate uncer-
tainty quantification [Liu et al., 2022]. While significant
progress has been made in calibrating unitask classifi-
cation models, calibration in sequence prediction tasks
remains underexplored and even lacks a clear defini-
tion. While Marx et al. [2024] explores calibration
in sequences, their focus is on step-wise calibration,
where each sequence step has an input-output pair,
which makes the problem step-wise calibration within
sequences, whereas our work focuses on calibration for
the entire sequence. Kuleshov and Liang [2015] offers
a framework for measuring calibration in structured
high-dimensional random vectors via event pooling,
which inspires our approach to uncertainty estimation
in sequence prediction.

Various methods have been developed to enhance cali-
bration in classification, including post-processing the
logits [Gupta et al., 2021, Kull et al., 2017, 2019], ensem-
bling methods [Zhang et al., 2020a, Lakshminarayanan
et al., 2017, Maddox et al., 2019], soft labeling [Mukhoti



et al., 2020, Szegedy et al., 2016, Zhang et al., 2017a,
Thulasidasan et al., 2019, Liu et al., 2022] and training
with regularization [Pereyra et al., 2017, Kumar et al.,
2018, Rudner et al., 2023]. In this work, we propose
a time-dependent regularization method to improve
calibration specifically in sequence prediction tasks.

The Monte Carlo method in deep learning. The
Monte Carlo method is used for generating ensembles
in Bayesian deep learning from samples of the model
parameters [Blundell et al., 2015, Gal and Ghahramani,
2016]. In contrast, in our proposed framework we
sample sequences using a neural-network simulator with
fixed parameters, and apply the Monte Carlo method to
the sampled sequences. Monte Carlo methods are also
used for uncertainty estimation on large language model
outputs [Malinin and Gales, 2021, Jiang et al., 2021,
Kuhn et al., 2023, Xiong et al., 2024], where multiple
sequences are generated to assess the confidence of
factual outputs and mitigate hallucinations. Unlike
these works, our goal here is not to determine the most
likely sequence, but rather to provide a probabilistically-
accurate characterization of possible future sequences.

3 A MONTE CARLO FRAMEWORK

We consider the problem of predicting a sequence of
multi-class labels from high-dimensional data. More
formally, our goal is to estimate the conditional distri-
bution of a sequence Y consisting of ℓ discrete random
variables each with c possible states given an observed
input x, interpreted as a sample of a random vector X.
In our health-monitoring example, the c := 3 states are
healthy, ill and dead, and X represents an input image.

Even for short sequence lengths, directly estimating
the joint conditional probability mass function of Y
given X = x is intractable due to the combinatorial
explosion of possible sequences (e.g., for c := 3 and
ℓ := 100 there are 3100 > 1047 possible sequences!),
which is an instance of the notorious curse of dimen-
sionality. Instead, we propose to estimate the following
probabilities and confidence intervals characterizing the
sequence, which are illustrated in Figure 1:

1. The marginal probability P(Yi = a |X = x) that the
ith entry Yi of the sequence is equal to a ∈ {1, ..., c}.
We refer to this as a marginal probability, but—
strictly speaking—it is a conditional probability, as
it is conditioned on X = x. In health monitoring,
this is the probability that a subject is healthy, ill,
or dead at time i.

2. The conditional probability P(Yi = a |Yj = b,X =
x) that the ith entry Yi of the sequence is equal to
a ∈ {1, ..., c} given that the jth entry is equal to
b ∈ {1, ..., c}. In health monitoring, this could be

the conditional probability that a subject is dead
at time i given that they are ill at time j.

3. The α confidence interval Iα for the time T̃ until a
certain event associated with the sequence occurs
(e.g. T̃ := min{i : Yi = a} for some a ∈ {1, ..., c}),
which should satisfy P(T̃ ∈ Iα) = α, where α is
typically set to 0.9 or 0.95. For example, in health
monitoring, T̃ can represent the time of death or
recovery.

3.1 Monte Carlo Estimation

As noted in the previous section, a key challenge in esti-
mating arbitrary probabilities and confidence intervals
associated with a sequence of random variables Y is
that it is intractable to explicitly estimate the sequence
joint distribution given the input X (unless we make
highly simplifying modeling assumptions, such that
the sequence forms a Markov chain). Our proposed
framework for Monte Carlo uncertainty quantifica-
tion of sequences (foCus) addresses this challenge by
instead implicitly sampling from the conditional distri-
bution using a neural network simulator, described in
Section 3.2.

Given an input x, we apply the simulator to generate
M sequences {(ŷ(m)

1 , ..., ŷ(m)
l )}Mm=1. As shown in panel

(c) of Figure 2, the sequences are then used to estimate
any desired probability or confidence interval. The
marginal probability of state a at time i is estimated
by the fraction of sequences in state a at time i:

P(Yi = a |X = x) =
1

M

M∑
m=1

1{ŷ(m)
i =a}. (1)

The conditional probability of state a at time i given
state b at time j is estimated by the fraction of se-
quences in state a at time i out of sequences in state b
at time j:

P(Yi = a |Yj = b,X = x) =

∑M
m=1 1{ŷ(m)

i =a,ŷ
(m)
j =b}∑M

m=1 1{ŷ(m)
j =b}

.

(2)

To estimate the α confidence interval Iα of the time-
to-event T̃ , we first compute the value of T̃ associated
with each simulated sequence. These yields M times
{T (1), ..., T (M)}, which can be sorted to calculate the
(1−α)/2 and (1+α)/2 percentiles q(1−α)/2 and q(1+α)/2.
The confidence interval Iα is set to [q(1−α)/2, q(1+α)/2].

3.2 Autoregressive Simulation

In order to produce the simulated sequences required
by our Monte Carlo framework, we employ a neural-



(a) Training of the autoregressive simulator (b) Sampling from the simulator given an input image
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Figure 2: Monte Carlo framework for uncertainty estimation in sequence prediction. (a) A neural
network simulator is trained to autoregressively predict the conditional distribution of each entry in a sequence
given an input image and the preceding states. (b) The simulator is used to generate multiple sample sequences,
by iteratively sampling from the estimated conditional distribution. (c) The Monte Carlo method is applied to
estimate marginal probabilities, conditional probabilities, and time-to-event confidence intervals from the samples.

network simulator. The simulator consists of a
convolutional neural network (CNN) that encodes
the input image x, and a recurrent neural network
(RNN) that iteratively estimates the conditional dis-
tribution of the ith entry Yi of the sequence given
X = x and the values of all previous entries, i.e.
P (Yi = yi | X = x, Y1 = y1, ..., Yi−1 = yi−1).

Figure 2(b) illustrates how the simulator is used to ob-
tain a sample sequence (ŷ1, . . . , ŷℓ). The input image x
is fed into the CNN, producing a hidden vector h0 that
is fed into the RNN to then generate the simulated
sequence iteratively. At each iteration i ∈ {1, ..., ℓ},
the input of the RNN is the value ŷi−1 of the previous
entry (except for i = 1) and the hidden vector hi−1.
The outputs are an estimate of the conditional distri-
bution of Yi given the previous entries and X = x,
and an updated hidden vector hi. The ith entry ŷi of
the sample sequence is sampled from this conditional
distribution.

The simulator is trained using a dataset of image-
sequence pairs, as illustrated in Figure 2(a). During
training, the model uses the ground truth value yi−1 of

the previous entry along with the hidden vector hi−1

to predict the subsequent ith entry Yi. As explained in
Sections 5 and 6 the design of the training loss plays
a crucial role in avoiding miscalibration in the down-
stream probabilities and confidence intervals computed
using the simulator.

4 EVALUATING UNCERTAINTY

4.1 Evaluation metrics

We assess marginal and conditional probability esti-
mates with a set of complementary metrics. Macro
Area Under the ROC Curve (AUC) quantifies discrimi-
native ability. Expected Calibration Error (ECE) quan-
tifies calibration. Brier Score (BS) and Cross Entropy
(CE) provide a more holistic evaluation. These metrics
are computed for each entry and then aggregated via
averaging to obtain sequence-level metrics.

To assess confidence intervals, we evaluate discriminabil-
ity via the Mean Absolute Error (MAE) (normalized by
the average sequence length). Calibration is evaluated
by computing the coverage probability of the intervals,



Table 1: Marginal probability estimation. The table reports sequence-level metrics evaluating the performance
of the proposed foCus framework for estimation of marginal probabilities (see Section 3). We compare versions of
foCus without regularization (see Section 5) and with constant and time-dependent regularization (see Section 6).
Results are presented as mean ± standard error from three independent model realizations. Time-dependent
regularization improves calibration substantially (lower ECE), while maintaining a comparable AUC, which
results in superior probability estimates (lower cross entropy and Brier score). Similar results are obtained for
conditional probability estimation, as reported in Table 4.

Scenario Regularization ECE (↓) AUC (↑) CE (↓) BS (↓)

Seaquest
✗ 0.0435 ± 0.0004 0.8671 ± 0.0035 1.0577 ± 0.0241 0.1247 ± 0.0012

time-dependent 0.0277 ± 0.0023 0.8678 ± 0.0028 0.6705 ± 0.0285 0.1144 ± 0.0007
constant 0.0365 ± 0.0002 0.8625 ± 0.0020 0.8173 ± 0.0068 0.1177 ± 0.0008

River Raid
✗ 0.0583 ± 0.0016 0.6453 ± 0.0009 1.2034 ± 0.0281 0.1750 ± 0.0016

time-dependent 0.0388 ± 0.0013 0.6346 ± 0.0035 0.8585 ± 0.0132 0.1671 ± 0.0012
constant 0.0474 ± 0.0004 0.6280 ± 0.0020 1.0274 ± 0.0158 0.1686 ± 0.0005

Bank Heist
✗ 0.0559 ± 0.0032 0.6938 ± 0.0028 1.1874 ± 0.0540 0.2340 ± 0.0020

time-dependent 0.0148 ± 0.0014 0.6782 ± 0.0016 0.7647 ± 0.0130 0.2166 ± 0.0005
constant 0.0399 ± 0.0016 0.6928 ± 0.0046 0.8894 ± 0.0112 0.2211 ± 0.0007

H.E.R.O.
✗ 0.0947 ± 0.0014 0.6785 ± 0.0061 1.1310 ± 0.0225 0.1261 ± 0.0009

time-dependent 0.0481 ± 0.0034 0.7159 ± 0.0105 0.6940 ± 0.0246 0.1170 ± 0.0008
constant 0.0352 ± 0.0001 0.7041 ± 0.0102 0.7218 ± 0.0391 0.1212 ± 0.0011

Road Runner
✗ 0.0779 ± 0.0035 0.6913 ± 0.0100 1.1586 ± 0.0291 0.1575 ± 0.0034

time-dependent 0.0204 ± 0.0012 0.6823 ± 0.0084 0.5255 ± 0.0077 0.1382 ± 0.0003
constant 0.0303 ± 0.0027 0.6898 ± 0.0140 0.6275 ± 0.0250 0.1394 ± 0.0010

FaceMed
✗ 0.1503 ± 0.0048 0.7534 ± 0.0079 1.6932 ± 0.0188 0.3464 ± 0.0012

time-dependent 0.0757 ± 0.0068 0.7614 ± 0.0024 0.9085 ± 0.0303 0.3328 ± 0.0008
constant 0.0974 ± 0.0045 0.7613 ± 0.0028 1.0071 ± 0.0499 0.3356 ± 0.0030

which should be close to the target confidence level α.
We also measure the average confidence interval width
relative to the average sequence length. Additional
details are provided in Appendix A.

4.2 Datasets

FaceMed is a synthetic dataset designed to predict
individual health status trajectories based UTKFace
[Zhang et al., 2017b], which contains of real face images
of subjects with different ages. For each image, we
simulate a sequence of health states using a Markov
chain model that depends on the age of the subject (see
Appendix B). The health states are healthy, ill, and
dead. The goal is to predict the future marginal and
conditional probability distribution of health status in
the future, as well as confidence intervals for subject
survival.

Atari games is a non-synthetic benchmark consist-
ing of five real human gameplay datasets from Atari-
HEAD [Zhang et al., 2020b], consisting of screenshots
associated with subsequent sequences of player actions.
There are 19 actions, including move left, fire, and an
end action, which indicates the end of a game sequence.
The games are:

• Seaquest: Control a submarine to rescue divers

while shooting sharks and enemy submarines;
• River Raid: Navigate a fighter jet to destroy enemy

targets while managing fuel;
• Bank Heist: Drive through a maze-like city to rob

banks while avoiding police;
• H.E.R.O.: Traverse a mineshaft to rescue trapped

miners while avoiding enemies and hazards;
• Road Runner: Guide a bird to collect seeds while

evading a chasing coyote and obstacles.

The goal is to estimate the marginal and conditional
probabilities of player actions, and confidence intervals
of the time until the player scores.

All datasets are split into training, validation and test
sets following a 7:2:1 ratio. Additional details about
datasets are provided in Appendix B.

5 MISCALIBRATION

In this section, we report the results of applying foCus
when we train the simulator described in Section 3.2
using a standard unregularized cross-entropy loss

CE(θ) = E
(x,y)∼D

[
−

ℓ∑
i=1

log pθ (yi | x, y1, ..., yi−1)

]
, (3)
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Figure 3: Entry-wise calibration error and reliability diagrams for marginal probability estimation.
The large graphs plot the entry-level ECE of the proposed foCus framework for estimation of marginal probabilities
(see Section 3) without regularization (black line, see Section 5) and time-dependent regularization (red line,
see Section 6). Unregularized foCus produces miscalibrated estimates, particularly in the earlier entries, which
are dramatically improved by time-dependent regularization for all datasets. The small graph show reliability
diagrams for some of the steps, which confirm the improvement in calibration. Additional reliability diagrams
and results for constant regularization are shown in Appendix D.1.

where x is an input image, y is the corresponding se-
quence and D is the training set of image-sequence
pairs. Here θ represents the parameters in the neural-
network simulator and pθ (yi | x, y1, ..., yi−1) denotes
the corresponding estimate of the conditional probabil-
ity P (Yi = yi | X = x, Y1 = y1, ..., Yi−1 = yi−1). Fur-
ther details about the training procedure are provided
in Appendix C.2.

Tables 1 and 4 show that this version of foCus
has strong discriminative performance across all our
datasets when estimating marginal and conditional
probabilities, respectively, indicated by the high
sequence-level AUC values. However, the sequence-
level ECE values are also high, suggesting that the
probability estimates are not well calibrated. This
is corroborated by Figure 3, which shows entry-level
ECE values for all datasets. Miscalibration is time-

dependent and particularly severe at the beginning
of the sequence. The reliability diagrams in Figure 3
show that the model suffer from overconfidence (the
estimated probabilities are more extreme than the em-
pirical probabilities), which is typical of deep learning
models, as they tend to overfit the training labels [Liu
et al., 2022].

We also observe miscalibration in the confidence in-
tervals estimated by this version of foCus. Table 5 in
Appendix D.3 reports the coverage probabilities com-
puted on test data for α = 0.9, which are below 0.5 in
all cases except one! Furthermore, Figure 4 reveals that
the widths of the confidence intervals remain invariant
over time, which is problematic. Given that uncertainty
should naturally increase with longer time horizons,
this lack of variation further indicates miscalibration.
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Figure 4: Confidence intervals for time-to-event prediction and coverage probability. The upper panel
shows heatmaps of the length of 0.9 confidence intervals for time-to-event prediction using the proposed foCus
framework without and with time-dependent regularization. The histograms below show the frequency of intervals
containing the true times, as a function of the true time. Unregularized foCus produces short intervals with
poor coverage, whereas regularization yields intervals that tend to be larger when the ground-truth times are
larger, and are much better calibrated. The plots correspond to the FaceMed (left) and Seaquest (right) datasets.
Appendix D.3 shows analogous plots for the remaining datasets.

6 TIME-DEPENDENT LOGIT
REGULARIZATION

To address simulator-induced miscalibration in foCus,
we incorporate a regularization term that penalizes the
ℓ2-norm of the logits within the simulator. This regu-
larizer is motivated by recent work on function-space
regularization [Rudner et al., 2023, 2024a,b, Klarner
et al., 2024], which interprets regularized objectives as
performing maximum a posteriori (MAP) estimation
under data-driven-priors over neural network parame-
ters. Intuitively, the ℓ2-norm penalty prevents the logits
from becoming very large during training. This miti-
gates overconfidence, since large logits result in more
extreme probability estimates. We can think of the ℓ2-
norm penalty as promoting neural network parameters
that induce predictive functions with higher predic-
tive entropy. As in Section 5, let pθ(yi|x, y1, ..., yi−1)
denote the estimate of the conditional probability
P (Yi = yi | X = x, Y1 = y1, ..., Yi−1 = yi−1) produced
by the simulator for i ∈ {1, ..., ℓ}, which is obtained
by feeding a logit vector z(x, y1, ..., yi−1) ∈ Rc into a

softmax function. The training loss is

L(θ) =̇ E
(x,y)∼D

[∑ℓ

i=1
− log pθ(yi|x, y1, ..., yi−1)

+ λi∥z(x, y1, ..., yi−1)∥2
]
,

(4)

where λi is a regularization coefficient that governs the
regularization strength when predicting the ith entry
of the sequence. The regularization λi is designed to be
time dependent, motivated by our observation that the
baseline version of foCus suffers from different degrees
of miscalibration at different entries.

A crucial challenge is how to select the value of this
hyperparameter, given the large dimensionality of the
hyperparameter space. We propose a selection proce-
dure, based on the observation that miscalibration in
the initial entries is propagated by the autoregressive
structure of the simulator (see Section 3.2). Conse-
quently, optimizing the regularization parameter at the
beginning of the sequence has more impact on the over-
all calibration performance of foCus (see Appendix E
for additional analysis). The procedure is as follows:



1. For 1 ≤ i ≤ k1 (where k1 is a hyperparameter) we
use the sequence-level ECE of marginal probabilities
(see Section 4.1) computed over validation set to
iteratively select λi, setting λj = 0 for all j > i.

2. For k1 < i ≤ k2 (where k2 is a hyperparameter)
we constrain all the parameters to equal the same
constant, λi = λall, selected also based on the vali-
dation ECE.

3. For i > k2 we set λi = 0.

We set k1 = 3 and performed hyperparameter opti-
mization to select k2, which typically resulted in small
values (see Table 3). Details about the optimal regu-
larization parameters and a comprehensive overview
of the hyperparameter search process are provided in
Appendix C.4.

6.1 Results

Marginal and conditional probabilities. Table 1
compares the sequence-level evaluation metrics for
marginal probability estimation of foCus with (1) no
regularization as described in Section 5, (2) our pro-
posed time-dependent regularization described in Sec-
tion 6, and (3) constant regularization where the reg-
ularization parameter in Equation (4) is set to a sin-
gle constant λi = λconst (determined based on vali-
dation ECE). All methods achieve similar AUCs in
each dataset, indicating a similar discriminative ability.
In contrast, the ECE is significantly lower for time-
dependent regularization for all datasets, indicating
better calibration performance. This results in better
probability estimates, as evinced by the lower cross
entropy (CE) and Brier scores (BS). For FaceMed this
is confirmed by comparing the estimated probabilities
to the ground-truth marginal probabilities. The unreg-
ularized baseline method and constant regularization
yield RMSEs of 0.1847±0.0014 and 0.1754±0.0028, re-
spectively, while time-dependent regularization reduces
the RMSE to 0.1720± 0.0009 (see Appendix D.1). The
same holds for conditional probability predictions, as
reported in Table 4: Time-dependent regularization
again significantly improves calibration, and as a result
the overall probability estimates. Appendix F provides
a detailed description of the conditional probability
estimates for one of the video games.

Figure 3 further demonstrates the improvement in cal-
ibration provided by time-dependent regularization.
Interestingly, we observe a calibration propagation phe-
nomenon, where regularizing a small number of early
entries produces improved calibration across the whole
sequence. For example, for H.E.R.O. regularization is
applied to the first 6 entries (0.2 seconds), yet the ECE
improvement is evident up until entry 150 (5 seconds).

Time-to-event confidence intervals. Table 5 com-
pares the evaluation metrics for the confidence intervals

produced by foCus, again with (1) no regularization,
(2) time-dependent regularization, and (3) constant reg-
ularization. In this case, we observe a certain trade-off
between discriminative performance, quantified by the
relative MAE, and calibration, quantified by coverage
probabilities. The MAE for models trained without or
with constant regularization are consistently lower than
those of time-dependent regularization, but the cover-
age probabilities of time-dependent regularization are
a lot closer to 90% (between 69% and 92%, compared
to at most 70% for the other two methods).

Figure 4 shows heatmaps of the confidence-interval
widths for different ground-truth times (upper panel)
for FaceMed and Seaquest (see Appendix G for addi-
tional plots), as well as a histogram with the fraction
of intervals containing the ground-truth times. We
observe that unregularized simulator training, foCus
produces narrow confidence intervals with poor cover-
age across the board, whereas time-dependent regular-
ization yields intervals that tend to be larger when the
true times are larger, achieving much better coverage.

7 DISCUSSION AND LIMITATIONS

In this paper, we studied an important, yet under-
explored topic: how to achieve reliable uncertainty
quantification when predicting sequences from high-
dimensional data. We proposed a Monte Carlo frame-
work based on learned autoregressive simulators that
enables flexible estimation of probabilities and confi-
dence intervals. Our experiments on sequential decision-
making tasks revealed that simulator models learned
via maximum likelihood estimation can lead to severely
miscalibrated uncertainty estimates. We showed that
this shortcoming can be addressed by training the au-
toregressive simulator model using a time-dependent
regularizer, which we find consistently leads to well-
calibrated uncertainty estimates.

Our proposed regularization is conceptually and math-
ematically simple but requires choosing a set of regular-
ization coefficients {λi}li=1 from a combinatorially large
space, making an exhaustive search infeasible in prac-
tice. This is not unique to our approach: Real-world
sequences often display non-stationary statistical prop-
erties that are difficult to model in a data-driven fashion.
Nevertheless, we find that our simple coefficient selec-
tion protocol leads to significant improvement in cali-
bration, although more sophisticated strategies could
well result in further gains. Other potentially fruitful
directions for future research are to perform uncertainty
quantification of continuous-valued and spatiotemporal
sequences in weather and climate applications—areas
in which neural-network simulators are rapidly gaining
popularity [Pathak et al., 2022, Kochkov et al., 2024,
Subel and Zanna, 2024].
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Appendix
The appendix is organized as follows:

• In Appendix A, we define the metrics we used to evaluate marginal and conditional probability estimation
(Appendix A.1) and confidence interval estimation (Appendix A.2).

• In Appendix B, we provide additional information about the datasets utilized in this study.

• In Appendix C, we include additional details regarding the model and hyperparameter search.

• In Appendix D, we include additional results. Appendix D.1 reports results for marginal probability estimation
with comprehensive metrics and more reliability diagrams. We also include comparisons with the ground
truth probabilities for the synthetic FaceMed dataset. In Appendix D.2, we report results for conditional
probability estimation. In Appendix D.3, we report results for confidence interval estimation.

• In Appendix E, we provide a sensitivity analysis of the effect of regularization applied at different entries in
a sequence.

• In Appendix F, we present an example illustrating how the probabilities estimated by foCus change when we
condition on a certain event.

• In Appendix G, we show the evolution of the performance of foCus as we train the simulator with different
types of regularization.

A Evaluation metrics

A.1 Marginal and conditional probability

For each class a ∈ {1, · · · , c} and each entry i of the sequence, we evaluate the estimated probabilities P(Yi =
a |X = x) or P(Yi = a |Yj = b,X = x) using the relevant data (for marginal probabilities, these are all sequences;
for conditional probabilities, all sequences such that the jth entry equals b). The entry-level metrics we propose
are defined below. The sequence-level metrics are computed by averaging the entry-level metrics across all entries.

Macro AUC. The Area Under the Curve (AUC) per class is computed separately for each class a at each entry
i using a one-vs-all approach. We aggregate all the class AUCs via averaging to obtain the overall macro AUC.

Brier Score The Brier Score (BS) evaluates both calibration and discriminative ability. The Brier Score per
class is the mean-squared error between the predicted probabilities and binarized label per class. The entry-level
BS is the mean of BS per class, averaged over all the classes.

Cross Entropy The cross-entropy (CE) loss is computed following (3).

Expected Calibration Error. We use confidence expected calibration error (ECE) [Guo et al., 2017] to assess
calibration. The confidence is defined as the predicted probability of the class a with the highest estimated
probability. These confidences are grouped into B bins, based on B-quantiles. ECE is the mean absolute difference
between the accuracy (empirical probability of correct predictions) and the average confidence within each bin. A
lower ECE indicates better calibration.

To provide further insight, we also plot reliability diagrams. These diagrams compare the empirical probability
(accuracy) with the estimated probability (confidence) in each bin. A well-calibrated model will produce a
reliability diagram that is close to the diagonal.

A.2 Confidence intervals

Let the ground truth time-to-event for the kth data point be denoted as T [k], and the estimated confidence
interval as Iα[k] =

[
q(1−α)/2[k], q(1+α)/2[k]

]
.



Coverage Probability The coverage probability measures the proportion of samples where the true time-
to-event T [k] lies within the estimated confidence interval Iα[k]. This metric reflects how well calibrated the
estimated confidence intervals are. Ideally, for a confidence level α, the coverage probability should equal α.

Relative Confidence Interval Width The width of the confidence interval quantifies the uncertainty in the
model estimates. A wider confidence interval indicates higher uncertainty. To account for different sequence
lengths across datasets, we normalize the confidence interval width by the mean of the true time-to-event averaged
over each dataset. The relative confidence interval width is defined as:

1
N

∑N
k=1

(
q(1+α)/2[k]− q(1−α)/2[k]

)
1
N

∑N
k=1 T [k]

, (5)

where N is the number of data.

Relative Mean Absolute Error (MAE) The relative MAE is the mean of the absolute difference between
the estimated and ground truth time-to-event, normalized by the mean of the ground truth times-to-event. We
estimate the time-to-event by averaging over the time-to-event values T̂ (1), ..., T̂ (m) corresponding to the m
Monte Carlo simulations:

Relative MAE =

∑N
k=1

∣∣∣T [k]− 1
M

∑M
m=1 T̂

(m)[k]
∣∣∣∑N

k=1 T [k]
. (6)

B Datasets

FaceMed FaceMed is a synthetic dataset based on the UTKFace dataset [Zhang et al., 2017b], which contains
face images along with corresponding ages. We simulate health status transitions between three distinct states: 1
for healthy, 2 for ill, and 3 for dead. The simulated health states per each year form a sequence for each patient.
The underlying transition probabilities among these health states are determined by the individual’s age. The
goal of the sequence prediction task is to forecast a patient’s health status trajectory using their facial images.

To simulate the dynamics of health status, we use an age-dependent Markov process, where the health status at
the ith entry, Yi, only depends on the previous state Yi−1, for any i > 1. The conditional probability between
states is given by:

P(Yi = a |Yi−1 = b) = pb,a. (7)

The transitions among health statuses are illustrated in Figure 5. Every individual is healthy as the initial state.
The transition probabilities for the simulation are defined as follows: For individuals younger than 40, the health
status never changes (Figure 5 (a)). For those aged 40 to 80, the health status can transition between healthy
and ill, with transition probabilities p1,1 = p2,2 = 0.9, p1,2 = p2,1 = 0.1 (Figure 5 (b)). For individuals older than
80, the likelihood of becoming ill increases, with transition probabilities p0,· = (0.6, 0.4, 0); for ill individuals in
this age group, there is a chance of death, reflected in the transition probabilities p1,· = (0.1, 0.7, 0.2) (Figure 5
(c)). These probabilities vary as the individual becomes “older” in the simulation, reflecting the increasing risks
associated with aging. The average survival time of the simulated sequences is 45.45 years. In the experiments,
For individuals who die before 100 years from the beginning, their sequences are padded to cover 100 years. The
dataset is split into training, validation, and test sets with 16641, 4738, and 2329 samples, respectively.

Atari games Our real-data experiments are based on the Atari-HEAD dataset [Zhang et al., 2020b], a large-
scale, high-quality imitation learning dataset that captures human actions alongside eye movements and game
frames while playing Atari video games. The dataset employs a unique semi-frame-by-frame gameplay format,
where the game pauses at each frame until the player performs a keyboard action. This ensures that each frame
in the video of game and the corresponding human action are aligned.

In this work, the sequence prediction task aims to predict a player’s action trajectory based on a given game
frame. Each frame serves as a high-dimensional input X. The subsequent actions until the next scoring event
are treated as a sequence Y . Since actions are recorded at a high frame-by-frame frequency, they often repeat
several times before transitioning to a new action, yielding sequences with redundant information. To reduce this
redundancy, we sample actions at a constant frequency determined by the number of frames per sequence entry
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Figure 5: Markov process used to simulate health-status transitions in FaceMed.

Table 2: Additional information about video game data. The table summarizes each video game dataset’s
training set size, validation set size, test set size, average sequence length until the next scoring point, sequence
length after padding, and action sampling frequency.

Game Name Training Validation Testing Ave. Length (seconds) Padded Length Sampling freq.

Seaquest 104,806 17,556 17,650 1.0071 200 3
River Raid 104,252 17,584 17,592 1.4082 300 2
Bank Heist 105,765 17,553 17,548 1.7645 300 2
H.E.R.O. 98,553 16,769 16,885 1.4586 300 2
Road Runner 239,428 68,332 34,177 2.5796 300 4

for each game. The corresponding time t in the game at the ith entry of the sequence can be recovered from
the entry as follows: t(second) = sampling freq./60(Hz)× i. We pad the sequences with an end-of-game value to
ensure that all sequences have the same length.

Experiments are conducted on five games from Atari-HEAD: Seaquest, River Raid, Bank Heist, H.E.R.O.,
and Road Runner. They represent a broad category of video games available in Atari-HEAD. We use 70 percent
of gameplay as training set, 20 percent as the validation set, and 10 percent as the test set. See Table 2 for more
detailed information about the data corresponding to each game.

C Technical Details

C.1 Model Architecture

As illustrated in Figure 2 (a), we employ a neural-network simulator. The simulator consists of a convolutional
neural network (CNN) that encodes the input image x, and a recurrent neural network (RNN). The CNN encoder
is a Resnet-18 [He et al., 2015], which produces an image embedding of dimension 256. The RNN decoder is
implemented as a single-layer LSTM with a hidden vector size 256. The image embedding from the CNN encoder
is fed to the RNN decoder as the initial hidden vector h0. The RNN iteratively updates its hidden state hi based
on the previous hidden state hi−1 and the preceding input yi−1 from the (i− 1)th entry of the sequence. For
each step i > 1, the RNN outputs a logit vector z(x, y1, . . . , yi−1) ∈ Rc through a linear layer with input hi. The
logit vector is normalized with a softmax function and used to estimate the class probabilities of a multinoulli
distribution:

pθ (a |x, y1, ..., yi−1) =
exp (z(x, y1, ..., yi−1)[a])∑c
k=1 exp(z (x, y1, ..., yi−1)[k])

, (8)

where a ∈ {1, . . . , c} and z(x, y1, ..., yi−1)[k] is the kth entry of the logit vector.

For the health-status prediction task, the RNN decoder outputs a 3-dimensional logit vector corresponding to
the three possible health states (c = 3). In the case of Atari games, where each action can belong to one of 19
possible classes, the RNN generates a 19-dimensional logit vector (c = 19).



Table 3: Chosen regularization hyperparameters. This table shows the chosen regularization parameters in
all scenarios for both time-dependent and constant regularization.

Scenarios Time-dependent λ’s Constant λ’s

Seaquest λ1:3 = 0.05, 0.01, 0.05 λ4:200 = 0 λ1:200 = 0.001
River Raid λ1:6 = 0.01 λ7:300 = 0 λ1:300 = 0.001
Bank Heist λ1 = 0.05 λ2:11 = 0.01 λ12:300 = 0 λ1:300 = 0.001
H.E.R.O. λ1 = 0.01 λ2:6 = 0.005 λ7:300 = 0 λ1:300 = 0.001
Road Runner λ1 = 0.01 λ2:21 = 0.005 λ22:300 = 0 λ1:300 = 0.001
FaceMed λ1:3 = 0.01 λ4:5 = 0.005 λ5:50 = 0.001 λ1:300 = 0.001

C.2 Training

As explained in Section 6, the neural network simulator is trained by minimizing the cross-entropy loss between the
predicted distribution and the one-hot encoded ground truth for each variable, with an additional regularization
term that penalizes the ℓ2-norm of each entry in the logit vector.

We train each model for 200 epochs for each scenario, with a batch size of 256, using the Adam optimizer without
weight decay. The learning rates are kept constant for each scenario: 1× 10−5 for Seaquest, River Raid, Bank
Heist, and Road Runner, and 5× 10−5 for H.E.R.O.

Model selection during training is challenging due to the numerous metrics involved in probability estimation
tasks. Figures 11, 12, and 13 show the evolution of different metrics during training. We observe that the models
are most discriminative (lower relative MAE and higher AUC) toward the end of training in most scenarios.

C.3 Inference

Figure 2(b) illustrates how the neural-network simulator is used to obtain a sample sequence (ŷ1, . . . , ŷℓ). The
input image x is fed into the CNN encoder, producing a hidden vector h0 that is fed into the RNN decoder to
then generate the simulated sequence iteratively. At each iteration i ∈ {1, ..., ℓ}, the input of the RNN decoder is
the value ŷi−1 of the previous entry (except for i = 1) and the hidden vector hi−1. The outputs are an estimate
of the conditional distribution of Yi given the previous entries and X = x, and an updated hidden vector hi.
The ith entry ŷi of the sample sequence is sampled from this conditional distribution. Since each entry is drawn
randomly from the predicted distribution, the simulator is capable of generating multiple different sequences from
the same input image, acting as a simulator. When performing Monte Carlo estimation, we generate m = 100
sampled sequences for each input image.

C.4 Hyperparameter search

The hyperparameters for time-dependent regularization were determined via the following procedure:

1. For 1 ≤ i ≤ k1 (where k1 is a hyperparameter) we use the sequence-level ECE of marginal probabilities (see
Section 4.1) computed over validation set to iteratively select λi, setting λj = 0 for all j > i.

2. For k1 < i ≤ k2 (where k2 is a hyperparameter) we constrain all the parameters to equal the same constant,
λi = λall, selected also based on the validation ECE.

3. For i > k2 we set λi = 0.

We set k1 = 3. To determine each λi and λall we performed a search on the fixed grid {0.001, 0.005, 0.01, 0.05} based
on the validation ECE for the marginal probability estimation task. For k2 we used the grid {1, 11, 21, 51, 101}.

For constant regularization, we constrain all the parameters to be the same, λi = λconst. Then λconst we performed
a search on the grid {0.001, 0.005, 0.01, 0.05}, also based on validation ECE. The hyperparameters chosen for
both regularization methods are listed in Table 3.



D Supplementary Experimental Results

D.1 Marginal Probability

Figure 6 shows plots of the entry-level metrics (ECE, AUC, BS, and CE) for marginal probability estimation,
complementing Figure 3. Time-dependent regularization leads to a substantial improvement in calibration, as
demonstrated by the significantly lower ECE of the time-regularized model, which has a comparable AUC to
the model without regularization. As a result, the cross-entropy and Brier Score metrics are also improved.
Constant regularization also improves the probability estimates, but not as much as time-dependent regularization.
Figure 7 shows additional reliability diagrams like the ones in Figure 3 and includes a comparison with constant
regularization, confirming that time-dependent regularization consistently improves calibration for individual
entries.

In Section 6.1, we also compare the estimated marginal probability with underlying data generating distribution
on the synthetic FaceMed data. Since the ground truth sequences in FaceMed are generated using an assumed
transitional probability model, as detailed in Appendix B, we can analytically compute the ground truth marginal
probability of Yi based on the transitional probabilities and the marginal probability of the previous entry, Yi−1:

P(Yi = a | X = x) =

c∑
b=1

P(Yi−1 = b | X = x) P(Yi = a | Yi−1 = b) (9)

Starting from an initial state of “healthy,” we compute the ground truth marginal probabilities for each entry
in the sequence and compare them against the estimates obtained via foCus. We calculate the root mean
square error (RMSE) between the ground truth and the estimated marginal probabilities for each entry, then
aggregate these values to derive a sequence-level RMSE by averaging. The unregularized baseline method and
constant regularization yield RMSE of 0.1847± 0.0014 and 0.1754± 0.0028, respectively, while time-dependent
regularization reduces the RMSE to 0.1720± 0.0009. This result further demonstrates the improved performance
achieved by time-dependent regularization.

D.2 Conditional Proabability

We evaluate the conditional probability estimation, given a fixed event in each scenario. For conditional probability
estimation, FaceMed is conditioned on the status of the first year being Healthy. Video games are conditioned on
the first entry being equal to the most frequent first action in the training set. Specifically, Seaquest is conditioned
on first action as NOOP (no operation), River Raid as NOOP, Bank Heist as Right, H.E.R.O. as NOOP, and
Road Runner as Left. Table 4 reports the sequence-level metrics for conditional probability estimation. Figure 8
shows entry-level metrics (ECE, AUC, BS, and CE) for conditional probability estimation. Similar to the case
of marginal probability estimation Appendix D.1, time-dependent regularization improves calibration and the
overall quality of probability estimation.

D.3 Confidence Interval for Time-to-event

Table 5 reports the results for time-to-event confident interval estimation. In this case, we observe a certain
trade-off between discriminative performance, quantified by the relative MAE, and calibration, quantified by
coverage probabilities. The MAE of no regularization and constant regularization are consistently lower than
those of time-dependent regularization, but the coverage probabilities of time-dependent regularization are a lot
closer to 90% (between 69% and 92%, compared to at most 70% for the other two methods).

Figure 9, complementing Figure 4, presents heatmaps of the confidence interval widths for different ground-truth
time-to-event (upper panel of each subplot) for River Raid, H.E.R.O., Road Runner, and Bank Heist, as well
as a histogram showing the fraction of intervals containing the ground-truth (lower panel of each subplot).
Unregularized foCus produces very narrow confidence intervals with very poor coverage, whereas time-dependent
regularization yields intervals that tend to be larger when the true time-to-event becomes greater (and hence
generally more uncertain), achieving much better coverage. These finding further supports that time-dependent
regularization performs better in confidence interval estimation.
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Figure 6: Entry-wise metrics for marginal probability estimation. The figure plots the entry-level ECE,
AUC, BS, and CE of the proposed foCus framework for estimation of marginal probabilities. It compares versions
of foCus: without regularization (black), time-dependent regularization (red), and constant regularization (blue).
Both constant regularization and time-dependent regularization improve calibration and overall estimation quality
compared to without regularization. Time-dependent regularization’s improvement is more significant than
constant regularization.
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Figure 7: Entry-wise reliability diagrams for marginal probability estimation. The figure, supplementing
Figure 3 presents reliability diagrams at additional entries in the sequence. Each diagram compares three versions
of the proposed foCus framework: without regularization (black), time-dependent regularization (red), and
constant regularization (blue). The plots demonstrate that both regularization methods improve calibration at
each sequence entry, with time-dependent regularization showing the most substantial improvements.



Table 4: Conditional probability estimation. The table, discussed in Section 6.1, reports sequence-level
metrics evaluating the performance of the proposed foCus framework for estimation of conditional probabilities
(see Section 3). We compare versions of foCus without regularization (see Section 5) and with constant and
time-dependent regularization (see Section 6). Results are presented as mean ± standard error from three
independent model realizations. Time-dependent regularization improves calibration substantially (lower ECE),
while maintaining a comparable AUC, which results in superior probability estimates (lower CE and BS).

Scenario Regularization ECE (↓) AUC (↑) CE (↓) BS (↓)

Seaquest
✗ 0.0590 ± 0.0035 0.8887 ± 0.0045 0.9032 ± 0.0779 0.1386 ± 0.0016

time-dependent 0.0316 ± 0.0017 0.8938 ± 0.0009 0.6070 ± 0.0110 0.1301 ± 0.0053
constant 0.0298 ± 0.0017 0.8827 ± 0.0021 0.6227 ± 0.0278 0.1289 ± 0.0007

River Raid
✗ 0.0841 ± 0.0008 0.7007 ± 0.0046 1.4968 ± 0.0497 0.2264 ± 0.0031

time-dependent 0.0652 ± 0.0012 0.6997 ± 0.0036 1.1587 ± 0.0117 0.2248 ± 0.0018
constant 0.0689 ± 0.0005 0.6926 ± 0.0026 1.3235 ± 0.0434 0.2225 ± 0.0015

Bank Heist
✗ 0.0534 ± 0.0035 0.7254 ± 0.0036 1.0618 ± 0.0563 0.2287 ± 0.0030

time-dependent 0.0184 ± 0.0005 0.7033 ± 0.0021 0.7616 ± 0.0046 0.2141 ± 0.0008
constant 0.0405 ± 0.0022 0.7149 ± 0.0124 0.8431 ± 0.0080 0.2168 ± 0.0013

H.E.R.O.
✗ 0.0993 ± 0.0039 0.7063 ± 0.0002 1.0290 ± 0.0371 0.1195 ± 0.0021

time-dependent 0.0645 ± 0.0087 0.7420 ± 0.0132 0.7189 ± 0.0289 0.1151 ± 0.0029
constant 0.0418 ± 0.0019 0.7249 ± 0.0141 0.7283 ± 0.0572 0.1208 ± 0.0024

Road Runner
✗ 0.0870 ± 0.0061 0.6790 ± 0.0091 1.2813 ± 0.0244 0.1693 ± 0.0039

time-dependent 0.0207 ± 0.0012 0.6772 ± 0.0107 0.5489 ± 0.0089 0.1449 ± 0.0003
constant 0.0321 ± 0.0032 0.6905 ± 0.0135 0.6654 ± 0.0304 0.1472 ± 0.0012

FaceMed
✗ 0.1488 ± 0.0026 0.7533 ± 0.0066 1.6428 ± 0.0147 0.3465 ± 0.0012

time-dependent 0.0888 ± 0.0065 0.7603 ± 0.0040 1.0224 ± 0.0348 0.3350 ± 0.0018
constant 0.0984 ± 0.0042 0.7652 ± 0.0050 0.9875 ± 0.0372 0.3354 ± 0.0016

Table 5: Performance comparison of time-to-event prediction confidence intervals (CI) across
six scenarios. The table presents metrics from the same experiments as in Table 1. The time-dependent
regularization model achieves significantly better 90% CI (I0.9) coverage, indicating improved calibration of
uncertainty estimation.

Scenario Regularization Coverage Prob. of I0.9 Relative Width of I0.9 Relative MAE (↓)

Seaquest
✗ 0.3420 ± 0.0177 0.7401 ± 0.0149 0.4622 ± 0.0112

time-dependent 0.7065 ± 0.0121 2.1718 ± 0.0521 0.5297 ± 0.0079
constant 0.4440 ± 0.0162 0.9409 ± 0.0266 0.4538 ± 0.0069

River Raid
✗ 0.4463 ± 0.0105 1.0734 ± 0.0398 0.5679 ± 0.0044

time-dependent 0.8345 ± 0.0090 1.8720 ± 0.0520 0.5674 ± 0.0037
constant 0.6241 ± 0.0018 1.2079 ± 0.0241 0.5580 ± 0.0012

Bank Heist
✗ 0.7066 ± 0.0134 1.8289 ± 0.0330 0.5811 ± 0.0052

time-dependent 0.9243 ± 0.0048 2.8099 ± 0.0535 0.5991 ± 0.0080
constant 0.8133 ± 0.0083 1.9123 ± 0.0335 0.5464 ± 0.0025

H.E.R.O.
✗ 0.2252 ± 0.0009 0.3712 ± 0.0122 0.2849 ± 0.0057

time-dependent 0.6850 ± 0.0121 0.9035 ± 0.0266 0.3316 ± 0.0041
constant 0.5827 ± 0.0102 0.7158 ± 0.0330 0.3337 ± 0.0025

Road Runner
✗ 0.2646 ± 0.0128 1.2432 ± 0.1125 0.6079 ± 0.0277

time-dependent 0.7507 ± 0.0086 2.9315 ± 0.0277 0.6419 ± 0.0012
constant 0.4971 ± 0.0073 1.6267 ± 0.1351 0.5652 ± 0.0078

FaceMed
✗ 0.2789 ± 0.0039 0.1329 ± 0.0035 0.1594 ± 0.0005

time-dependent 0.7169 ± 0.0322 1.0421 ± 0.0232 0.2311 ± 0.0066
constant 0.5897 ± 0.0227 0.7632 ± 0.0212 0.4753 ± 0.0032
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Figure 8: Entry-wise metrics for conditional probability estimation. The figure plots the entry-level
ECE, AUC, BS, and CE of the proposed foCus framework for estimation of conditional probabilities. It compares
versions of foCus: without regularization (black), time-dependent regularization (red), and constant regularization
(blue). Both constant regularization and time-dependent regularization improve calibration and overall estimation
quality compared to without regularization. Time-dependent regularization’s improvement is more significant
than constant regularization.
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Figure 9: Confidence intervals for time-to-event prediction and coverage probability. The upper
panel of each subplot shows heatmaps of the length of 0.9 confidence intervals for time-to-event prediction
using the proposed foCus framework without and with time-dependent regularization. The histograms below
show the frequency of intervals containing the true times, as a function of the true times. Unregularized foCus
produces short intervals with poor coverage, whereas regularization yields intervals that tend to be larger when
the ground-truth times are larger, and are much better calibrated. The subplots correspond to the River Raid,
H.E.R.O., Road Runner, and Bank Heist datasets.



E Regularization Sensitivity Analysis

In this section, we explore how regularization at a single entry affects model performance. Using the Seaquest game,
we train four versions of foCus, each applying regularization to a different entry in the sequence, corresponding to
0, 3, 6, and 9 seconds. As shown in Tables 6 and 7, the model with regularization applied at the beginning (0
seconds) exhibits the most significant improvement in calibration, both for marginal probability estimation and
time-to-event prediction confidence intervals. This suggests that applying regularization early in the sequence is
crucial for maintaining proper calibration throughout the whole sequence. These results also validate our heuristic
procedure to implement time-dependent regularization.

Table 6: Marginal probability estimation performance sensitivity analysis on Seaquest. We compare
versions of foCus where regularization is applied to a single random variable which is 0, 3, 6, and 9 second(s)
after the start of the sequence. Results are presented as mean ± standard error from three independent model
realizations. Best performance is achieved when applying regularization to the random variable immediately after
the sequence starts.

Reg. Time ECE (↓) AUC (↑) CE (↓) BS (↓)
0 second 0.0290 ± 0.0008 0.8748 ± 0.0033 0.8073 ± 0.0120 0.1164 ± 0.0008
3 seconds 0.0424 ± 0.0019 0.8705 ± 0.0027 1.0227 ± 0.0150 0.1227 ± 0.0011
6 seconds 0.0424 ± 0.0016 0.8783 ± 0.0024 0.9599 ± 0.0208 0.1211 ± 0.0009
9 seconds 0.0409 ± 0.0020 0.8784 ± 0.0023 0.9450 ± 0.0065 0.1212 ± 0.0013

Table 7: Time-to-event prediction confidence interval performance sensitivity analysis on Seaquest.
The table presents metrics on time-to-event prediction confidence intervals from the same experiments as in
Table 6. Regularizing he random variable immediately after the sequence starts significantly improves 90% CI
(I0.9) coverage.

Reg. Time Coverage Prob. of I0.9 Relative Width of I0.9 Relative MAE (↓)
0 second 0.4972 ± 0.0208 1.6983 ± 0.0497 0.5162 ± 0.0125
3 seconds 0.3577 ± 0.0171 0.7056 ± 0.0320 0.4466 ± 0.0036
6 seconds 0.3556 ± 0.0099 0.7338 ± 0.0126 0.4495 ± 0.0070
9 seconds 0.3578 ± 0.0016 0.7421 ± 0.0308 0.4522 ± 0.0138

F Conditional Probability Estimation

In this section, we illustrate the conditional probability estimation task by showcasing how early actions
substantially influence probability predictions at later stages, as shown in Figure 10.

We analyze the probabilities estimated from a frame of the game Seaquest (right panel of Figure 10) by foCus
using time-dependent regularization. We estimate the conditional probabilities given two different first-step
actions: Up Fire and Up Left Fire. The left panel of Figure 10 shows the resulting conditional probability
estimation. When the first action is Up Left Fire instead of Up Fire, the frequency of NOOP (no operation)
decreases significantly, accelerating the player’s progress toward scoring. This makes intuitive sense, as Up Left
Fire moves the green submarine closer to the enemy blue submarine, allowing the torpedo to reach its target more
quickly. This analysis illustrates that the model effectively learns meaningful conditional probability estimates.

G Supplementary Figures

This section displays the learning curves for various sequence-level metrics on the test set at different epochs during
training. All models were trained for 200 epochs, and the metrics were calculated separately for time-to-event
prediction confidence intervals Figure 11, marginal probability estimation Figure 12, and conditional probability
estimation Figure 13. These curves highlight the trade-offs between discriminability and calibration over the
course of training: lower relative MAE is associated with lower coverage probabilities, and higher AUC tends to



Length Interval: [2, 200]

Length Interval: [1, 80]

Figure 10: Action distribution conditioned on different first actions. The figure shows empirical action
distribution for a Seaquest game frame (shown on the right) given first condition actions: Up Fire and action Up
Left Fire.

come with higher ECE. Despite such trade-offs, the figures demonstrate that among the three foCus variants,
the model with time-dependent regularization strikes the best balance, maintaining calibration while improving
discriminability throughout training.
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Figure 11: Time evolution of metrics for time-to-event confident intervals. It plots how coverage
probability and relative MAE of I0.9 evolve along training epochs for three versions of foCus: without regularization
(black), time-dependent regularization (red), and constant regularization (blue). The time-dependent regularization
model achieves significantly better coverage probability.
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Figure 12: Learning curves of sequence-level metrics for marginal probability estimation. It plots
how ECE, AUC, BS, and CE evolve along training epochs for three versions of foCus: without regularization
(black), time-dependent regularization (red), and constant regularization (blue). The discriminability improves as
the calibration decays. The time-dependent regularization model is able to keep calibrated while improving the
discriminability.
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Figure 13: Learning curves of sequence-level metrics for conditional probability estimation. A similar
pattern in Figure 12 is observed for conditional probability estimation from how ECE, AUC, BS, and CE evolve
along training epochs for three versions of foCus.
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