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Abstract14

We present a novel, data-driven approach to predict systematic model errors in the ocean15

component of a coupled general circulation model leveraging deep learning and data as-16

similation. We examine the skill of the proposed scheme in learning systematic model17

errors, including their spatial patterns, variance, scales, and test its sensitivity to differ-18

ent predictors and neural network architecture. The scheme utilizes local state variables19

such as ocean temperature, salinity, velocities, and surface fluxes to predict corrections20

to temperature tendency for the upper 1000 meters in the ocean on daily timescales. The21

performance is evaluated on the withheld test dataset and compared against the empir-22

ical climatological temperature corrections that are geographically dependent. The per-23

formance is depth-dependent, with significant improvements over the benchmark in the24

upper 20 meters in the ocean. It degrades rapidly with depth but remains comparable25

to the climatology benchmark. Neural networks can capture up to 40−50% of the daily26

variance in temperature increments in the upper 20 meters relative to the benchmark’s27

20%. The improvements are associated with networks predicting finer spatiotemporal28

scales than the benchmark. They are expected to perform better in reducing surface ocean29

mixed layer bias than previously used techniques. Despite being column-local without30

geographical inputs, networks can sufficiently reproduce spatial patterns on daily and31

longer timescales. The patterns consist of corrections to regional dynamical features such32

as western boundary currents, equatorial undercurrents, bathymetry-related corrections33

in the Southern Ocean, and warm surface increments over subtropical and midlatitude34

belts.35

Plain Language Summary36

The ocean is a complex system, and we use ocean general circulation models to study37

it. However, these models are imperfect and have errors in representing the subgrid-scale38

processes. We present a new way to correct these errors using deep learning and data39

assimilation. This method uses information about the ocean thermodynamic state, such40

as temperature, velocity, and surface fluxes, to predict and correct errors. We found that41

the new method performs better in the upper 20 meters of the ocean and captures a sig-42

nificant fraction of daily corrections to the temperature equation. This new method can43

help us reduce bias in the upper ocean mixed layer.44

1 Introduction45

Climate models, when used for climate predictions and projections, often exhibit46

systematic differences from the real world, wherein ’systematic’ implies that the discrep-47

ancies are persistent rather than random over time. These systematic discrepancies are48

often called model drift or model bias, and they can manifest in forms of both fast model49

dynamics and physics, as well as slow climatological equilibrium. The sea surface tem-50

perature (SST) bias pattern is an example of a systematic error that is persistent across51

different generations and configurations of climate models (Farneti et al., 2022). SST bias52

is particularly detrimental, as it affects processes across the climate system. For exam-53

ple, it impacts climate sensitivity via SST-Cloud feedback (Hyder et al., 2018) , trop-54

ical cyclone density via surface heat fluxes and vertical shear in the tropical atmosphere55

(Vecchi et al., 2014), North American precipitation by altering large-scale atmospheric56

flow (Johnson et al., 2020), and the arctic amplification (Wu et al., 2023).57

Much like the inaccurate parameter values in Lorenz63 or incomplete representa-58

tion of sub-grid scale term in two-scale Lorenz96 models that lead to systematic errors59

in the evolution of the respective systems (Chen et al., 2015; Arnold et al., 2013), cli-60

mate models develop biases partially due to numerical errors from discretization and trun-61

cation, and parameterization-related errors such as inaccurate and missing subgrid-scale62

parameterizations.63
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Reducing model bias is a priority of various climate modeling and prediction cen-64

ters across the world (Fox-Kemper et al., 2021). The fundamental way to reduce model65

bias would require improvements in the model structure. Besides correcting the model66

structure, numerous bias correction methods have been developed for climate model ap-67

plications such as prediction and projection. Some examples include flux adjustment for68

coupled climate model simulations (Robert et al., 1997), diagnostic lead-time-dependent69

bias correction for prediction post-processsing (Kirtman et al., 2014; Nadiga et al., 2019),70

and prognostic bias correction in the form of tendency adjustment for weather and cli-71

mate prediction (Lu et al., 2020; Chang et al., 2019), all of which are state-independent72

and climatological in nature, and typically correct some persistent spatiotemporal pat-73

terns associated with the bias without explicit dependence on any specific structural de-74

ficiency in the model. For example, the Ocean Tendency Adjustment (OTA) method from75

Lu et al. (2020) uses grid-dependent climatology of data assimilation (DA) increments76

to prognostically correct temperature and salinity tendencies in an ocean component of77

the NOAA Geophysical Fluid Dynamics Laboratory’s Seamless System for Predictions78

and EArth system Research (GFDL’s SPEAR) model. It has been successfully imple-79

mented in NOAA GFDL’s SPEAR-ocean data assimilation (ODA) and experimental real-80

time seasonal prediction systems, significantly reducing climatological model drift and81

improving forecasts of ENSO, Arctic and Antarctic sea ice (Bushuk et al., 2021, 2022),82

atmospheric rivers (Tseng et al., 2021), extratropical baroclinic waves (G. Zhang et al.,83

2021), and extreme events (Jia et al., 2023, 2024).84

Despite the success of OTA in reducing the ocean model bias, there are drawbacks85

to the OTA procedure. First, the OTA corrections, by construction, can only capture86

the seasonally varying climatology of the DA increments. Second, the corrections are fixed87

on the SPEAR model grid, which could limit the method’s capability to generalize to88

other modeling frameworks. Last but not least, the climatological DA increments highly89

depend on the spatial and temporal coverage of the assimilated datasets, particularly Argo90

floats (Wong et al., 2020). Therefore, the OTA corrections may be subject to sampling91

errors over locations or periods less frequented by Argo floats. To mitigate the sparsity92

of subsurface ocean observations, a seasonal climatology of DA increments is computed93

to increase sampling sizes for each model location and average out random variations not94

related to systematic model bias. These random variations are a result of a) significant95

subgrid-scale variations that are present in the observations but are not resolved in the96

ocean model, b) deterministic chaos which may result in errors, even on resolved scales,97

due to initial condition sensitivity, c) representational uncertainty (mismatch between98

the model grid and the observational points), for example, an observed mixed layer of99

12.5 meters would be represented as either too shallow or too deep if the vertical res-100

olution of the model is five meters in the upper ocean, and d) impacts of systemic bi-101

ases, such as depth of the mixed layer or location of a boundary current on variability.102

For example, a location with a systematically shallow mixed layer will exhibit a response103

that is too large to transient warming and cooling events on subseasonal time scales. The104

neural network approach presented here may partially capture the effects of the last two105

factors discussed.106

The availability of efficient optimization algorithms and fast computation has re-107

cently spurred interest in using machine learning (ML) to improve existing subgrid-scale108

parameterizations and develop new data-driven parameterizations. The rationale behind109

this push is that many subgrid-scale processes are complex, nonlinear, and involve multi-110

scale interactions, and can not be adequately described by low dimensional empirical and111

analytical relationships as in traditional parameterizations. Therefore, a high dimensional112

nonlinear model such as neural networks (NNs) could provide benefits over the tradi-113

tional approach. These methods require a large amount of data for training. They may114

also need some physically relevant quantities that may not be directly observed in the115

physical world, so much so that a higher fidelity, higher resolution numerical simulation116

is almost always used for training machine learning models instead of the actual obser-117
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vations. Rasp et al. (2018), Yuval and O’Gorman (2020) and Brenowitz and Brether-118

ton (2018) are a few recent examples of studies parameterizing deep convection in the119

atmosphere using cloud-resolving model outputs. They all attempt to build nonlinear120

mappings from spatially coarsened state variables to sub-grid scale fluxes to develop data-121

driven parameterizations. (Bolton & Zanna, 2019) and Guillaumin and Zanna (2021) used122

a similar coarsening approach to parameterize sub-grid mesoscale momentum fluxes in123

the surface ocean, with the latter using the state-of-the-art high-resolution ( 1/10o) cli-124

mate simulation and predicting both deterministic and stochastic parts.125

ML applications in weather and climate modeling can also utilize real-world ob-126

servations directly or indirectly. For example, Holder and Gnanadesikan (2023) train Ran-127

dom Forest on satellite-derived observations to predict phytoplankton biomass in the ocean.128

ML weather forecast models (Pathak et al., 2022; Lam et al., 2023; Arcomano et al., 2020)129

are trained on reanalysis datasets, which are the data assimilation products that com-130

bine numerical models with real-world observations, e.g., ERA5 (Hersbach et al., 2020).131

Direct use of observational data is seen in models like MetNet-3, which employs weather132

station data for training and evaluation (Andrychowicz et al., 2023). Similar approaches133

have also been applied to the ocean, where the historical lack of subsurface and long-term134

data is a challenge for training. The introduction of Argo floats over the past 20 years135

has improved in situ observations down to 2000 meters. However, their spatial and tem-136

poral coverage remains insufficient to characterize the multi-scale variability in the ocean.137

An alternative approach is to use ocean reanalysis datasets for training, but they them-138

selves are inherently uncertain due to limited observations. Further, the long timescale139

variability in the ocean (days to multidecadal) relative to the atmosphere (hours to days)140

would require longer data records for training. In short, the combination of data spar-141

sity and short data records in the ocean makes it challenging to train ML models for oceanic142

applications without the help of dynamic general circulation models.143

In this study, we choose an alternate approach that uses real-world observations144

with the help of dynamic models, specifically the DA corrections or increments, to learn145

the state-dependent ocean component bias in the SPEAR coupled climate model. In-146

stead of learning sub-grid scale fluxes, we directly target the difference between the model147

and the observed state through cycled ocean DA experiments. The DA increments act148

as a proxy of the fast errors that eventually lead to model drift, and could be linked to149

deficiencies in model parameterizations (Rodwell & Palmer, 2007). In other words, we150

plan to build a ML-enhanced version of the OTA bias correction scheme that makes state-151

dependent predictions of the tendency adjustment terms. Similar approaches have been152

tested in the atmosphere (Watt-Meyer et al., 2021; Chapman & Berner, 2024) and sea153

ice components (Gregory et al., 2023, 2024). Watt-Meyer et al. (2021) nudged a low-resolution154

atmosphere model to an observational analysis and used the nudging tendencies to train155

state-dependent ML models that can predict corrective tendencies for atmosphere tem-156

perature, specific humidity and horizontal winds. Gregory et al. (2023) and Gregory et157

al. (2024) use the increments from a sea ice DA system to train convolutional neural net-158

works (CNN) that can predict skillful sea ice concentration increments, and apply such159

CNNs to reduce sea ice bias in SPEAR coupled climate simulations.160

The following section 2 details the data and neural network problem formulation161

and training, followed by a rationale for learning DA increments in section 3. We then162

quantitatively summarize the skill of neural networks on the withheld-test dataset in sec-163

tion 4. Then we summarize mean and daily patterns of predictions in section 5 followed164

by its temporal characteristics in section 6. The broader implications of the results are165

discussed in section 7. We finally summarize the findings and conclude in section 8.166
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2 Data and Methods167

We aim to build a state-dependent model of systematic ocean DA increments for168

the upper thousand meters that can either correct model errors in the MOM6 ocean com-169

ponent of a free-running SPEAR coupled simulation or serve as a bias correction scheme170

for the seasonal to decadal prediction system within SPEAR. To achieve this, we are em-171

ploying a neural network-based approach. This section details the datasets, supervised172

learning problem formulation, various design choices, training procedure, evaluation, and173

lessons learned. We use Python’s PyTorch library to accomplish this.174

2.1 Dataset175

Data for developing the state-dependent model comes from simulations using NOAA176

GFDL’s SPEAR model. SPEAR is the current modeling system at GFDL that enables177

a wide range of climate research and operations, including large ensemble simulations178

(Delworth et al., 2020), seasonal prediction (Lu et al., 2020) as part of the North Amer-179

ica MultiModel Ensemble (NMME), subseasonal prediction (Xiang et al., 2022), as well180

as decadal (Yang et al., 2021) and sea ice prediction (Bushuk et al., 2021, 2022) through181

international inter-comparison programs. SPEAR consists of the AM4.0/LM4.0 atmo-182

sphere and land models (Zhao et al., 2018), and the MOM6/SIS2 ocean and sea ice mod-183

els (Adcroft et al., 2019). SPEAR includes models of various resolutions that can be se-184

lected to best suit the needs and computational capacity of specific applications. In this185

study, we use the SPEAR-LO model, in which the atmosphere/land resolution is about186

100km and the ocean/sea ice resolution is about 1◦ with tropical refinement to 1/3◦.187

SPEAR ocean data assimilation (SPEAR-ODA) system was developed to facili-188

tate the experimental prediction efforts at GFDL. It provides both an experimental ocean189

analysis product and the oceanic initial conditions for SPEAR seasonal predictions. SPEAR-190

ODA uses the Ensemble Adjustment Kalman Filter (EAKF) algorithm and a daily as-191

similation window. For this study, we only assimilate gridded daily OISST and Argo data192

since other data sources such as XBT (eXpendable BathyThermographs) or tropical moor-193

ings have very uneven spatial or temporal coverage. Full details of SPEAR-ODA can be194

found in Lu et al. (2020), including description of the DA increments. The OTA bias cor-195

rection scheme implemented in the operational real-time SPEAR seasonal predictions196

takes the seasonal cycle of the SPEAR-ODA increments and applies them prognostically197

in the coupled climate predictions. This capability is made possible by the unique de-198

sign of the SPEAR-ODA analysis, where the ocean DA is performed in the coupled SPEAR199

model without any direct observational constraint of the atmosphere component. The200

success of OTA in coupled climate predictions points to the possibility that a ML-enhanced201

state-dependent version of OTA can also be applied to coupled climate model predic-202

tions and projections.203

2.2 Problem Formulation204

We use fully connected dense layer architecture-based neural networks to develop205

a low-dimensional, column-local, and nonlinear mapping from state variables to temper-206

ature increments. The term ”column-local” implies that non-locality is explicitly con-207

sidered in the vertical direction. The horizontal gradient terms implicitly include the non-208

locality in the horizontal direction. Learning model errors from data is challenging as209

there is always a risk of learning i) geographical patterns instead of the underlying physics210

of model errors and ii) propagated errors rather than localized subgrid scale errors. Both211

of these situations can adversely affect the neural network’s ability to generalize across212

different locations, times, models, spatial resolutions, and timescales. In this work, we213

avoid using explicit geographical information and instead rely on instantaneous ocean214

state and boundary flux fields as inputs to address the first issue. The second issue is215

partially addressed by building column-local models and modeling the increments on fast216
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Figure 1. A schematic summarizing the supervised learning problem of modeling systematic

ocean model errors in terms of column-local state variables. The dataset is curated by collecting

data on 2o subsampled ocean model grid across the globe and on the 3-day time frequency span-

ning 2008 to 2022. The vertical extent of the upper 1000 meters in the ocean is non-uniformly

sampled in 51 levels. The feature and target pair consists of a combination of gradients of ocean

temperature (T), salinity (S), zonal and meridional velocities (U and V) along with the radia-

tive, heat and momentum fluxes as inputs (ip) and corresponding vertical profiles of temperature

increments as outputs (op) of the neural network. Different features are stacked together to gen-

erate one long feature vector as an input to a fully connected dense layer architecture neural

network. Every depth level is independently standard normalized (i.e., subtracting the sample

mean and dividing by the sample standard deviation) for each of the input variables.

timescales of the DA cycles, thereby limiting error propagation across space, time, and217

processes. The column-local approach offers an additional advantage of reducing the net-218

work size, thus reducing the inference’s computational cost. One caveat of this approach219

is that the DA increments contain corrections to both model and numerical errors and220

could also be corrupted by errors from other Earth system components in the coupled221

model. We utilize surface fluxes and gradients of ocean state variables (ocean stratifi-222

cation, vertical and horizontal velocity shears) as inputs to learn, to an extent, gener-223

alizable physical relationships and capture the subgrid-scale errors.224

Figure 1 illustrates the machine learning workflow schematically. The workflow con-225

sists of curating vertical profiles of the gradients of state variables and surface fluxes as226

inputs and corresponding vertical profiles of temperature increments as outputs of the227

neural network from across the globe. The vertical profiles span from the sea surface down228

to 1000 meters deep in the ocean in about 51 discrete levels. We use the gradients of scalars229

such as ocean temperature (T), salinity (S), and zonal and meridional components of the230

velocity vector (U, V). The surface fluxes include net longwave and shortwave fluxes, la-231

tent and sensible heat fluxes, and momentum fluxes. The data is subsampled up to 2o232

horizontal spacing and 3-day temporal frequency to reduce the computational cost of train-233

ing and testing networks of different sizes and inputs. Each year, there are about 26.9234

million daily samples on the native grid; however, the subsampling process reduces this235

by a factor of 20, significantly cutting down on training time. As the model output is236

on a staggered horizontal grid, we ensure that different variables are collocated in space,237

targeting local physical errors and not numerical artifacts. The feature vectors are stacked238

into a single vector before being fed into the fully connected neural network.239
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Table 1. Table summarizing different training choices and parameters tested, as well as one

that is presented in this manuscript.

Used in this manuscriptRange of options tested

(i)

Training/Validation (80/20)
i. [2008-2018]a

ii. [2008-2012,2017-2022]b

Testing
i. [2019-2022]a

ii. [2013-2016]b

Data Split1

(i) and (ii)

Standard normalization  
i. Independently for each variable, 

for each depth
ii. Independently for each variable; 

all depths are considered 
together

Data Normalization2

2 hidden layers, 16 nodes,
ReLU

Fully Connected
# hidden layers:   [1,2,3,4,5]
# nodes:  [8,16,32,64,128,256,320]
Activation 

i. ReLU
ii. Tanh 

Architecture3

MSE, L2 (⍺=10-4), Adam
Mean Squared Error (MSE) with L2 
regularization (⍺=[10-4,10-3,10-2])
Adam 

Loss /Optimizer4

Step, (5×10-4,0.25,20)

Constant
[10-4,5×10-4,10-3,5×10-3,10-2]

Step
Initial LR = [10-4,5×10-4]
Gamma = [0.25,0.5]
Step Size = [20,25,30]

Learning Rate (LR)5

[213][210,213,215,218]Batch Size6
[50]Epochs = [50,60,90,100,200]Stopping Criteria7

2.3 Training240

The neural network training involves exploring various hyperparameters, such as241

learning rate, batch size, regularization rate, and additional factors, including the size242

of the neural network, methods for feature and label normalization, training and test-243

ing periods, and data subsampling. We will outline the training procedure, explain our244

rationale, and share lessons learned. An example of a canonical network, showcasing the245

choices and parameters used, is presented in Table 1.246

We utilize a fully connected neural network architecture that employs a ReLU (Rec-247

tified Linear Unit) nonlinear activation function. For our loss function, we use mean squared248

error and select the Adam optimizer for training. The daily global data is subsampled249

up to 2o horizontal grid and 3-day temporal frequency. The training period covers the250

years 2008 to 2018, during which 20% of the randomly shuffled grid points from around251

the globe are set aside for validation (∼ 3 million samples), while the remaining 80%252

are used for training (∼ 12 million samples). Additionally, the independent test period253

spans from 2019 to 2022 with total number of samples ∼ 5.5 million. Even though fea-254

tures and labels exhibit non-stationarity in time, the use of different training and test-255

ing periods does not affect the general results and conclusions presented in this study.256

We trained different sizes of fully connected neural networks with a number of hid-257

den layers ranging from one to five and a number of nodes ranging from 8 to 320. We258

find that for most combinations of input predictors, a neural network with two hidden259

layers with sixteen nodes in each layer is sufficient to outperform our benchmarks with260

little to no overfitting. We employ L2 (or ridge) regularization with a rate ranging be-261

tween 1× 10−2 to 1× 10−4 across all our neural networks to further reduce any over-262

fitting. Some example training and validation learning curves for networks using six sur-263

–7–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 2. Training (bold) and validation (light) mean squared loss as a function of training

epoch. Different colors represent different neural network sizes, specified as 2hN, where 2h de-

notes two hidden layers and N denotes the number of nodes in the two hidden layers.

face flux variables, four vertical gradient profiles of T,S,U and V and four horizontal gra-264

dient profiles of U and V are shown in Figure 2.265

We examined the sensitivity to different batch sizes and ultimately selected a batch266

size of 213. This choice is influenced by two factors, i) the memory of the GPU node, and267

ii) the size of the input feature vector size which ranges between 51 and 618. We ran-268

domly shuffled the mini-batches across both space and time to ensure that each mini-269

batch is representative of profiles from different seasons and regions of the ocean. Af-270

ter selecting the network and batch sizes, we experimented with a range of constant learn-271

ing rates from 1×10−4 to 1×10−2. We observed that a relatively small learning rate272

leads to a stable solution; however, it results in slow convergence. Conversely, a larger273

learning rate accelerates the convergence rate, but the solution may become unstable.274

An unstable solution is indicated by predicted spatial patterns that fluctuate significantly275

between successive training epochs, particularly in sparse data regions such as subsur-276

face and polar latitudes. This inter-epoch variability complicates the process of select-277

ing an optimized network, making it somewhat arbitrary.278

We found that using an adaptive learning rate effectively addresses issues related279

to slow convergence and the stability of the solution. Our approach involves starting with280

an initial learning rate of 5×10−4, which is then reduced to a quarter of its value ev-281

ery 20 to 30 epochs, repeating this process 3 to 4 times. Each time we decrease the learn-282

ing rate, we observe a notable reduction in both training and validation errors, although283

the magnitude of this reduction becomes smaller with each successive adjustment. Ad-284

ditionally, the learning curves become smoother following these reductions. The opti-285

mality and stability of the solution were evaluated based on two factors. The first fac-286
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tor was the plateauing of the validation error curve, while the second was the standard287

deviation of validation errors across successive training epochs. We tested both a sin-288

gle standard deviation metric for the entire validation dataset and a metric where the289

standard deviation was projected onto latitude-depth space. This approach allowed us290

to assess the stability of the solution across different depths and latitudinal zones. One291

drawback of this approach is that the network’s weights and biases must be saved to disk292

after every epoch. However, this is a minor inconvenience for the relatively small net-293

works used in this study. Early stopping is commonly used in prior research to prevent294

overfitting. However, we did not utilize this approach because our neural networks are295

relatively small and already incorporate regularization techniques. Instead, we followed296

a standard stopping criterion, which involves halting training after 50 to 60 epochs.297

We use two different normalization approaches for the inputs and outputs of the298

network. The first method involves applying standard normalization (i.e., subtracting299

the sample mean and dividing by the sample standard deviation) independently to each300

variable and depth. The second approach, however, standard normalizes each variable301

while considering all depths together. The latter approach preserves the vertical struc-302

ture of the oceanic variable, unlike the first approach. The first approach results in a slightly303

better performance and is presented here, with the overall metrics based on the second304

approach added to the supporting information. Additionally, we have either tried trans-305

forming temperature increments into fluxes through vertical integration or weighting them306

with layer thickness prior to the normalization step. We find similar performances in each307

of these cases and have decided to omit the comparisons for brevity.308

We compared the performance of neural networks trained on datasets sampled near309

Argo locations and surfacing times (referred to as ”training in Argo space”) with those310

trained in the model grid space. This comparison is motivated by the significant influ-311

ence that Argo measurements have on subsurface temperature increments at these spe-312

cific locations and times. However, despite this motivation, the networks trained in Argo313

space struggled to learn large-scale and long-term patterns when tested in the model grid314

space. The challenges may stem from the reduced size of the training data and an in-315

creased occurrence of dynamical noise correction relative to systematic correction in the316

Argo space. For this reason, we present results only for the model grid training in this317

study.318

The learning curves in Figure 2 initially trend downward before saturating at a spe-319

cific non-zero value. We could interpret this non-zero residual MSE as caused by the un-320

predictable part of the DA increments- the part the network could not learn based on321

the given inputs. The residual MSE accounts for random increments due to unresolved322

dynamical variations and the unpredictable systematic part, either because of the neu-323

ral network’s lack of expressive power, not knowing the relevant predictors, or insuffi-324

cient observational sampling. We will not dwell on the predictability issue here, as this325

is the topic for another study, and instead focus on learning and interpreting predicted326

DA increments.327

3 Why model Data Assimilation Increments?328

Figure 3 (a) shows the SST bias pattern in free-running coupled climate simula-329

tion using the GFDL’s SPEAR-LO model. The assimilation of gridded sea surface tem-330

perature and the Argo data on daily timescales significantly reduces global mean SST331

bias (Figure 3 (b) ), as expected in ocean analysis products compared to the free-running332

model. Refer to Lu et al. (2020) to see the spatial and vertical structure of the bias re-333

duction on assimilating ocean observations. This reduction in bias in the SPEAR-ODA334

system results from a series of daily corrections sequentially applied to the model state,335

specifically to temperature and salinity fields. The 16-year average, spanning 2003 to 2018,336

of such daily temperature corrections or increments at the sea surface is shown in Fig-337
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Figure 3. Sea surface temperature bias relative to Hadley centre global sea surface tempera-

ture (HadISST) record for 2003-2018 period for (a) free-running SPEAR simulation (Free), and

(b) a SPEAR simulation with ocean data assimilation (DA). (c) 2003-2018 average sea surface

temperature increments in the DA run. The colored contours in the polar regions represent the

2003-2018-mean 15 % sea ice concentration in HadISST (black), Free (blue), and DA (magenta)

runs.

ure 3 (c). Regions with negative increments imply that the surface ocean in the model338

is biased warm on average for the short-term forecasts over the daily DA cycles, and pos-339

itive increments mean that it is biased cold. The negative increments along the western340

coast of African and American continents correspond to the contemporary warm bias341

in climate models resulting from erroneous coastal upwelling and air-sea interactions. No-342

tably, there is a prominent pattern of positive increments in the mid-latitude oceans along343

the western boundary current regions where large subgrid-scale variability exists due to344

processes that are not resolved in the coarse-resolution model like the one used in this345

study. In the Southern Ocean, alternating positive and negative increments extend zon-346

ally across all the longitudes. These corrections seem to be anchored to the ocean bathymetry,347

and alternating patterns imply that they are dependent on the local flow. Additionally,348

the Southern Ocean is also the region where coarse-resolution models can not explicitly349

represent subgrid-scale variability. Polar regions in both hemispheres are biased warm,350

perhaps an indication of low sea ice bias, resulting in negative increments except for the351

Greenland-Iceland-Norwegian seas. These mean increments are organized in large-scale352

patterns across the globe and reminiscent of the SST bias pattern shown in Figure 3(a).353

This high correspondence between the climatological bias and the mean increments based354

on fast error growth from the DA cycle indicates that the DA increments could be used355

to calculate spatially varying climatological correction tendencies. Lu et al. (2020) com-356

puted such climatological three-dimensional tendency fields for temperature and salin-357

ity and applied them prognostically in operational SPEAR seasonal predictions using358

the OTA procedure. OTA reduces the climatological drift in the ocean component of the359

coupled climate predictions, and improves the prediction skills across various processes360

such as ENSO. Additionally, Dee (2006) showed that bias in atmospheric GCMs can be361

corrected using the systematic components of the DA increments, which according to362

Rodwell and Palmer (2007), may also project onto subgrid-scale errors. This suggests363

that we can learn something about model errors from DA increments.364

4 Offline Evaluation365

The neural networks’ overall performance is evaluated on a withheld test dataset366

spanning 2019 to 2022. Root mean squared error (RMSE) is the square root of the loss367

function that is minimized during the training. The coefficient of determination (R2) is368
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Figure 4. Overall (a-e) and depth-dependent (f-j) evaluation on the withheld test of the same

size neural networks (2h16) using different input features (in colors) and comparison against

the three benchmarks (in dashed line, black bar and grey bar). The performances are com-

pared in terms of various metrics, including (a,f) root mean squared error, (b,g) coefficient of

determination, (c,h) an average of daily pattern correlations between true and predicted fields,

(d,i) the pattern correlation of the time-mean fields, and (e,j) differences between true and pre-

dicted means. The feature sets are indicated in the legend as concatenated strings. The letter

’z’ indicates the vertical gradients of T (temperature), S (salinity), U (zonal velocity), and V

(meridional velocity); similarly, the letters’ x’ and ’y’ indicate zonal or meridional gradients, re-

spectively. The term ’fluxes’ indicates a collection of radiative, heat, and momentum fluxes at the

ocean-atmosphere interface.

the fraction of variance (of the true labels) predicted by the network. Pattern correla-369

tions (rdaily, rdaily) characterize networks’ ability to predict large-scale spatial patterns370

despite being column-local. We simultaneously care for solutions with lower RMSE, higher371

R2, and higher pattern correlations. The three benchmarks used for comparison include372

a null model (which predicts the average of the training labels in the physical space or373

zero vector in a non-dimensional space), grid-dependent monthly climatology (or clima-374

tology benchmark), and a linear model (neural network without any nonlinear activa-375

tion) in that order of complexity. The climatology benchmark, also referred to as OTA376

increments as described in Lu et al. (2020), is computed from the training dataset by377

linearly interpolating the monthly mean climatology onto the daily timescale at every378

grid point, and is also currently applied in the real-time SPEAR seasonal prediction sys-379

tem. The following subsections summarize networks’ global space-time integrated per-380

formance, predictor dependencies, and depth variations in the physical space.381
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4.1 Global Metrics382

Figures 4 (a-e) display the global space-time integrated metrics for the different neu-383

ral networks. These networks have the same network architecture (two hidden layers with384

sixteen nodes) but different combinations of input predictors, as indicated by the con-385

catenated string. The predictions are compared with two reference benchmarks - the cli-386

matology of the training increments (referred to as the climatology benchmark or OTA)387

and a linear neural network (linNN) without any hidden layer or non-linear activations.388

The dashed black line in Figures 4(a,b,e) corresponds to the null network that predicts389

the mean of the training labels in the physical space or, equivalently, zeros in the non-390

dimensional space. In non-dimensional space, it is expected to result in the mean squared391

error (MSE) of one, an R2 of zero, and a zero bias. However, the non-dimensional MSE392

of greater than one (Supplementary Figure S1) indicates distributional shifts between393

the training and the test labels, associated with an increased variance in test labels rel-394

ative to the training labels (not shown).395

The RMSE loss decreases with the addition of new predictors (Figure 4(a)). The396

network with only temperature as input does not improve upon OTA or LinNN, while397

the use of vertical temperature gradient (Tz) makes a big difference. The RMSE is fur-398

ther decreased when adding additional input features, including vertical salinity gradi-399

ent (Sz), vertical shear (Uz and Vz), and the fluxes. Beyond the local vertical gradients400

and fluxes, adding horizontal gradients provides less marginal improvement, which could401

benefit implementation since the vertical gradients and fluxes depend only on local vari-402

ables. As the RMSE decreases on adding predictors, the R2 increases, indicating that403

networks capture additional space-time variance (Figure 4(b)). Albeit small, the NNs404

show positive R2 values with improvements ranging between 1-10% over the climatol-405

ogy benchmark. The relatively low R2 values are due to subgrid-scale dynamical noise406

in temperature increments and significant representational errors associated with Argo407

profiles, which the network does not predict.408

The two pattern correlation metrics based on the Pearson correlation statistics mea-409

sure the similarity between the predicted and the actual three-dimensional fields of tem-410

perature increments. Figure 4(c) compares the mean of daily pattern correlations, re-411

vealing the degree of similarity between the predicted and the actual pattern on any given412

day. On average, most networks perform better than the climatology benchmark in pre-413

dicting daily fields despite the relatively weak correlation (< 0.35) highlighting the im-414

portance of unpredictable noise. The second pattern correlation (Figure 4d) measures415

the similarity between time-averaged three-dimensional fields of actual and predicted in-416

crements. The high correlation (∼ 0.9) for OTA is expected since the time-averaged in-417

crements for the training and test periods are sampled from the same underlying distri-418

bution. The correlations for various NNs reaches up to ∼ 0.8 compared to the upper419

limit from the climatology benchmark. The pattern correlation of 0.8 is noteworthy, given420

that the model is column-local and has no geographical inputs. All the NNs, as well as421

OTA have negative bias compared to the labels (Figure 4(e)). As mentioned earlier, the422

negative bias of OTA is likely caused by the shifting in the distribution of the increments423

between the training and testing periods due to low-frequency climate variability or changes424

in the Argo coverage. Such negative bias is amplified by the NNs, which are predicting425

increments with larger variance than OTA.426

A linear neural network (linNN) is optimized using the stochastic gradient tech-427

nique for comparison and provides a second benchmark. The linNN directly connects428

the input to the output layer, without intermediate hidden and non-linear activation lay-429

ers. The input vector consists of six individual surface fluxes and four vertical gradients430

of T, S, U, and V. This is similar to a two-hidden layer neural network shown as a light431

orange bar in Figure 4 (a-e). All NNs, except the one using temperature profiles, per-432

form better than the linNN. However, the linNN has lower MSE and higher R2 than the433
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climatology benchmark, indicating that part of the variance in the temperature incre-434

ments is linearly predictable.435

4.2 Depth Metrics436

The depth-varying metrics (Figure 4(f-l)) help distinguish the performance of dif-437

ferent neural networks over the different depths in the ocean. As evident from vertical438

R2, the performance is coherent in the upper 20 meters in the ocean, with a sharp de-439

cline in R2 below 20 meters, followed by an increase that peaks at 150 meters around440

the typical thermocline depth. The NNs with horizontal gradients show a ∼ 20% increase441

in R2 relative to the climatological benchmark in the top 20 meters and a 7−8% in-442

crease at 150 meters, while other NNs show improvement mostly in the upper 20 me-443

ters only, indicating that the horizontal gradients are necessary for NN prediction skill444

around the thermocline. These subsurface improvements are concentrated around the445

equator in the thermocline layer, as discussed later in the section 5.4. At other depths,446

the amount of variance explained by neural networks is similar to the climatological bench-447

mark. We can not see the aforementioned depth-dependence as clearly in the vertical448

profile of RMSE in the physical space as the shape of the standard deviation curve over-449

whelms it. The non-dimensional MSE (shown in supplementary Figure S1(f)), however,450

does show the depth-dependence more clearly. A close correspondence between vertical451

profiles of R2 and rdaily also suggests that both these metrics are driven by predictions452

of fine-scale spatio-temporal variability that peaks at the surface and around 150 me-453

ters. On the other hand, the pattern correlation of predicted time-mean fields is always454

smaller than that of the climatological benchmark derived from the training dataset, which455

sets an upper limit on the predictions. In the following sections, we will choose 2 NNs456

for more detailed analysis, with NN1 (TzSzUzVz) including only column-local ocean vari-457

ables, and NN2 (fluxesTzSzUzVzUxUyVxVy) additionally including surface fluxes and458

horizontal velocity gradients.459

4.3 Spatial Metrics460

Spatial maps evaluating the performance of NN1, NN2 and OTA for the upper 20461

meters in the ocean are shown in Figure 5. While RMSE patterns for NNs and OTA look462

comparable (as RMSE is dominated by variability), the R2 distinguishes the NNs from463

OTA, as NNs display widespread improvements of 20–30% over the low and mid lati-464

tudes except for small regions near the coasts and in the equatorial eastern Pacific. On465

the other hand, OTA displays large R2 over the polar regions where NNs have low and466

even negative values, which suggests that NNs have difficulty learning increments over467

the poles. A possible explanation include lack (Argo) of observations to assimilate, and468

different dynamics including the impact of sea ice. The time correlation also displays sim-469

ilar patterns as R2. The bias patterns, on the other hand, are proportional to the RMSE,470

thus the variance. The comparison with R2 also suggests that some negative R2 values471

are associated with NNs being unable to correctly predict the mean values, e.g., near coasts472

and the eastern equatorial Pacific.473

5 Patterns of time-averaged and daily predictions474

5.1 Average of the 2019-2022 test data475

In this section, we compare the spatial maps of seasonal and annual averages of true476

and predicted fields over the three depth ranges, namely, 0-20 meters, 100-300 meters,477

and 700 to 1000 meters (Figure 6). We show DJF and JJA averages for the upper 20 me-478

ters and annual averages for two deeper layers. We compare predictions from two neu-479

ral networks with the same number of hidden layers (2) and nodes (16), NN1 and NN2480

as described in 4.2. The two networks differ in the input predictors used. NN1 is truly481
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Figure 5. Spatial maps of offline metrics for OTA and NN predictions over the test dataset

for 0 to 20 meters depth range. (a-c) RMSE, (d-f) R2, (g-i) Pearson correlation coefficient, and

(j-l) bias.
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Figure 6. 2019-2022 seasonal and annual mean of true and predicted patterns for two differ-

ent networks and the three depth ranges: (a-f) 0 to 20 meters, (g-i) 100 to 300 meters, and (j-l)

700 to 1000 meters. The seasonal or annual averaging periods are indicated at the top right cor-

ner of each map. The seasonal means are shown for the surface layer ((a-c) DJF and (d-f) JJA)

and the annual means for the deeper layers (g-l). The two neural networks, NN1 and NN2, differ

in input features. NN1 uses vertical gradients of T, S, U, and V, indicated by string, ’TzSzUzVz’

in Figure 2; NN2 uses six flux variables, vertical gradients of T, S, U, and V, along with the hor-

izontal gradients of U and V, as indicated by the string, ’fluxes-TzSzUzVz-UxUyVxVy’ in Figure

2. The pattern correlation metrics between a) true and predicted fields and b) true and OTA

fields (reference benchmark) are indicated in the two parentheses in the title of each plot. The

first parenthesis indicated by superscript ’1’ is for the average of daily pattern correlations, and

the second is for the pattern correlation of the mean fields.
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Figure 7. Daily snapshots of true, OTA and predicted increments for three depth ranges.

Refer to Figure 6 for details.
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column local in the ocean as it only depends on the vertical gradients of T, S, U, and482

V. Meanwhile, NN2 also uses six surface fluxes and four horizontal gradients of U and483

V, with 4419 and 7779 as a total number of parameters in NN1 and NN2, respectively.484

The horizontal gradients in NN2 make it implicitly nonlocal in horizontal directions. The485

pattern correlations between true and predicted fields on daily and climatological timescales486

are provided for further interpretation in the titles. We also compare daily snapshots of487

true, predicted, and from the climatology benchmark in Figure 7.488

We can identify several spatial features in predicted fields reminiscent of the ocean’s489

thermal and dynamic structures. Some examples include the Gulf Stream and the Kuroshio490

current in the northern hemisphere, alternate bands of positive and negative increments491

following the bathymetry in the Southern Ocean, basin-wide increments over the equa-492

torial Pacific between 100 and 300 meters, and widespread positive increments over the493

winter hemisphere subtropical oceans in the upper 20 meters. These regions are essen-494

tial for local and global climate and have significant implications for climate predictabil-495

ity. Reducing biases over these regions is, therefore, essential.496

The two NNs compared in Figure 6 have similarly good fidelity in capturing the497

mean patterns in the upper 20 meters, with DJF (JJA) pattern correlations of 0.74 (0.78)498

and 0.79 (0.80). Both NNs capture the hemispheric signal that changes signs between499

the two seasons, most evident over the polar latitudes. Such large-scale seasonal changes500

in temperature increments are associated with model bias in simulating the seasonal cy-501

cle. The correlations between the 2019-2022 average and the OTA fields (second in each502

parentheses) are high across seasons and depths, as expected, since the OTA fields are503

the 2008-2018 average. This is also confirmation that the climatological DA increments504

do not change significantly, although the climate is not stationary and the observation505

network changes from year to year.506

The seasonal cycle and associated bias are suppressed in the deeper layers, thus we507

focus on annual mean patterns for the two sub-surface layers.As we go deeper into the508

ocean, the pattern correlation decreases quickly between the NN predictions and truth.509

NN1 has difficulty learning increments in 700-1000 meters and predicts lower amplitude510

equatorial corrections in the 100-300 meters depth range. NN2, with the additional sur-511

face fluxes and horizontal gradients, performs considerably better in predicting the mean512

patterns over the equatorial Pacific at 100-300 meters and around the WBCs and the513

Southern Ocean at 700-1000 meters.514

5.2 Daily snapshots515

The daily snapshots are on the opposite end of the spectrum to time-mean patterns.516

While the former relates to an average correction tendency applied to the temperature517

equation in the physical space and projects on the mean bias, the latter corrects errors518

on fast timescales. We care about fast timescale corrections because the model errors519

are localized and happen on short timescales. Correcting for the long-term mean alone520

is like any other bias correction technique. Having fast timescale corrections in addition521

to slower ones is where this approach significantly differs and may provide an improve-522

ment over other bias correction techniques used in climate modeling.523

Figures 7 (a-p) show patterns of actual and predicted daily temperature increments524

in three depth ranges and the measure of NN’s skill using the pattern correlation met-525

ric as shown in the titles. January 1st and June 30th of 2020 are shown for 0-20 meters,526

while only one date of December 20th is shown for 100-300 meters and 700-1000 meters.527

For comparison, the daily corrections from OTA, which are linearly interpolated from528

the monthly seasonal cycle, are also shown.529

In the surface layer of 0-20 meters, the true DA increments (a,e) show corrections530

over most of the global ocean thanks to the daily global coverage of SST observational531
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data, except for polar sea-ice covered oceans in the winter hemisphere. The OTA incre-532

ments are subdued in magnitude because large daily DA increments are likely averaged533

out in the seasonal climatology. On the other hand, state-dependent NN predictions show534

larger corrections, albeit still smaller than the true DA increments. The pattern corre-535

lations of the NN predictions are also higher than the OTA for these 2 dates, indicat-536

ing that the NNs are better at providing the necessary corrections to reduce model er-537

ror growth over short forecast windows.538

As we go deeper into the ocean, the actual daily increments (i,m) are only present539

when and where Argo observations exist, resulting in sparse and spotty distributions.540

The daily OTA corrections take on completely different patterns due to the climatolog-541

ical averaging. This demonstrates that with over a decade (2008-2018) of Argo obser-542

vations, we have enough samples to retrieve large-scale climatological corrections that543

correspond to certain model deficiencies based on the spotty daily increments.544

The NN state-dependent predictions show coherent large-scale patterns that resem-545

ble the OTA corrections more than the spotty daily increments. This is important since546

the proper bias corrections should not be determined by the availability of the observa-547

tions like in the case of the daily increments. It is reassuring that the NNs are able to548

predict corrections for the subsurface ocean that do not look spotty like daily increments.549

One primary purpose of using ML in this study is to generalize the daily increments to550

work everywhere all the time, while providing additional state-dependent information.551

Furthermore, we do not expect the bias corrections to vary significantly at depth, where552

the natural variability of the ocean is on the timescale of months to decades. Between553

NN1 and NN2, the NN1 predictions are much smaller for both depth ranges, indicating554

the importance of horizontal velocity gradients as inputs. Most increments in the 100-555

300 meters depth range are concentrated in the tropical belt and near the WBCs. In the556

deeper layer of 700-1000 meters, the corrections are limited to WBCs and the Southern557

Ocean, similar to the OTA climatology.558

Overall, NNs, particularly NN2, are able to predict daily increments that, while match-559

ing the OTA corrections climatologically, also provide additional state-dependent cor-560

rections at spatial and temporal scales beyond the OTA climatology. The temporal char-561

acteristics of the NN predictions compared to OTA will be discussed further in Section562

6.563

5.3 Zonal mean cross-section564

Figure 8 compares the time-average zonal mean patterns of true and predicted fields565

from six neural networks with layer-wise pattern correlations summarized in Figure 8h.566

We find that the zonal mean patterns of temperature increments are primarily made up567

of localized features, such as WBCs, and do not entirely project on the zonal mean of568

state variables (shown in the Supplementary Figure S3). Despite that, the latitude-depth569

structure facilitates comparison between different networks, as described below. Gen-570

erally, different NNs can capture zonal mean patterns in the upper ocean fairly well but571

perform differently in capturing deeper increments.572

All the six NNs shown here have very similar skills in predicting the pattern in the573

upper 78 meters in the ocean, with pattern correlations between 0.8 and 0.9 (Figure 8h).574

The pattern consists of alternating positive increments over the subtropical ocean and575

negative increments over the equatorial and polar oceans, strongly influenced by the sea-576

sonal changes. The negative increments over the polar regions are associated with warm577

bias in both hemispheres in the summer months. The positive increments in the subtrop-578

ical belt in both hemispheres are determined by winter mean patterns, indicating cooler579

mixed layer temperatures than observed. The negative increments over the equatorial580

region, on the other hand, are associated with the warm bias of the eastern equatorial581
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Figure 8. 2019-2022 mean zonal mean (a) true and (b-g) predicted patterns. The title of

(b-g) indicates the combination of input features used by each neural network. (h) Layer-wise

pattern correlation between true and NN predicted increments for three depth ranges: 0-78 me-

ters, 78-276 meters, and 276-1000 meters, which are indicated by horizontal black lines in (a-g).
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Figure 9. 2019-2022 mean vertical cross-section of (a) true and (b-g) predicted increments at

equator for six different networks. (h) Pattern correlation between true and predicted increments

in three depth ranges. Refer to Figure 8 for details.

basins in boreal winter months, as indicated by DJF means (Figure 6a-c), and may be582

tied to the coupled ocean-atmosphere interactions.583

The dipole pattern seen in the 78-276 meter depth range between +-10 degree lat-584

itudes is associated with changes in the shape of the tropical thermocline. The positive585

increments at the equator are flanked by negative increments on either side, as seen in586

Figure 6 (g). Such a spatial pattern, primarily in the west to central equatorial Pacific,587

resembles the shape of the thermocline in the region, which is shallower at the equator588

and deeper on either side of it. Such a resemblance indicates corrections to the thermo-589

cline bias, associated temperature structure, and dynamical current systems like the east-590

ward flowing equatorial undercurrent. The ability of different neural networks to repro-591

duce this subsurface dipole pattern suggests that vertical and horizontal velocity gra-592

dients are required in addition to stratification for predicting positive increments at the593

equator and negative increments off the equator. We find that NN utilizing vertical gra-594

dients of T, S, U, and V (Figure 8 (c)) can predict the subsurface dipole over the equa-595

tor. However, NN utilizing two additional horizontal temperature gradients and fluxes596

(Figure 8 (d)) can not, despite having a smaller overall RMSE than the former, as was597

shown in Figure 4 (a). This may be due to a trade-off in predicting surface versus sub-598

surface increments between the two networks.599
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5.4 Equatorial cross-section600

There are significant increments in the thermocline layer roughly 50-300 meters deep601

in the equatorial ocean (Figure 9), with positive increments in the eastern Indian Ocean,602

western Atlantic Ocean, and the central Pacific Ocean, and negative increments elsewhere.603

The central Pacific positive increments penetrate beneath the thermocline layer down604

to 1000 meters. The surface ocean has largely negative increments except over the cen-605

tral Pacific, where subsurface positive increments extend to the surface. Even though606

it is evident that these increments project strongly on the thermodynamical structure607

of the equatorial ocean, it is difficult to tease out the origin of these increments due to608

intricate coupling and feedback between different components and physical processes with-609

out targeted experiments.610

The pattern correlation metrics provide information on the predictability of these611

patterns with a maximum value of 0.65 in the surface layer, which degrades with depth.612

The comparison of longitude-depth patterns, as predicted by NNs based on different in-613

puts, once again reveals the importance of velocity shears in reproducing the mean pat-614

tern subsurface. The horizontal velocity shears, particularly Ux and Vy, add to the spa-615

tial variance as indicated by small spatial scales superimposed on the large-scale struc-616

ture. The layerwise pattern correlation between actual and predicted mean fields in Fig-617

ure 9 (h) shows that NN with horizontal divergence as one of its inputs performs the best618

in the top two layers. In contrast, the NN with the vertical component of the vorticity619

performs best in the deeper layer, 276-1000 meters. The NN with all four horizontal shears620

performs reasonably in all three layers.621

The seasonal cycle of the zonal mean increments at the equator, as shown in Sup-622

plementary Figure S2, reveals significant seasonal dependence. The increments are pos-623

itive during the boreal summer, fall, and late winter months, whereas they are negative624

during the spring and early summer months. The maxima in the negative increments625

in the spring season are reproduced even by the NN that only uses stratification as in-626

puts. In contrast, velocity shears are necessary to capture positive increments in other627

months.628

6 Temporal variability and timescale629

Figures 10 (a-d) show maps of the standard deviation of actual, OTA, and NN-predicted630

increments averaged over the upper 20 meters in the ocean. The true increments have631

expectedly higher variance over the WBCs, equatorial Pacific, and the Southern Ocean.632

Even though NNs predict a fraction of the total variance of the actual increments (38%633

for NN1 and 42% for NN2), they are significantly higher than that of the OTA. It im-634

plies that NNs capture variances in the increments at timescales other than the seasonal635

cycle, also shown in the regionally averaged time series later (Figure 11).636

Figure 10(e) shows the map of the Pearson correlation coefficient between the OTA637

and the true daily increments averaged between 0 and 20 meters, and Figures 10(f,g) show638

similar correlation maps for the two NNs but of the differences from the OTA. Over most639

of the global ocean between 60◦S and 60◦N , the NN-predicted daily increments are more640

correlated with the true increments than OTA, which only contains seasonal-cycle vari-641

ability. The zonal-mean correlations in Figure 10(h) confirm the improvement by the NNs.642

The loss of correlation implies that NNs have difficulty capturing the seasonal vari-643

ance over the high latitudes. Overall, there is 100% improvement in the median value644

globally. The zonal mean value of the correlation between actual increments and OTA,645

NN1, and NN2 are shown in Figure 10 (h). The two NNs perform better than the OTA646

over latitudes ≤ ± 65◦, and worse otherwise. Moreover, NN2 performs better than NN1647

at almost all latitudes.648
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Figure 10. Spatial maps of (a) true,(b) OTA, and (c,d) predicted standard deviations in the

upper 20 meters of the ocean for the 2019-2022 period. The numbers at the top (b-d) indicate

the percentage of the spatial variance (of the true standard deviation in (a)) that is captured by

OTA and the two neural networks: NN1 and NN2. (e) The correlation coefficient between the

true and OTA time series spanning 2019 to 2022 at every grid point. The number at the top is

the median of correlation coefficients globally. (f,g) Differences in maps of correlation coefficients

of OTA and the two neural networks. The numbers indicate the median value of the differences.

(h) The zonal mean of correlation coefficient maps for the OTA and the two networks.
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(b) Gulf Stream (0.48, 0.74, 0.77)
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(c) West Equatorial Pacific (0.22, 0.79, 0.80)
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(d) South Pacific (0.15, 0.76, 0.78)

Figure 11. Regionally averaged true (grey), OTA (red), and predicted (NN1:blue; NN2:green)

time series of upper 20 meters in the ocean for the four regions indicated by boxes in Figure 5.

The sampling frequency is three days, and the period spans 2019 to 2022, equaling 488 time

points. The three numbers in the parenthesis indicate the correlation coefficients between the

true time series and OTA, NN1, and NN2 in that order.

The 2019-2022 daily time series of the average increments over the top 20 meters649

are plotted for four regions as marked in Figure 10, i.e. around Kuroshio extension, Gulf650

Stream, western Equatorial Pacific, and central south Subtropical Pacific. The correla-651

tion coefficients between the true daily increments and OTA/NN1/NN2 are shown in the652

title of each plot in that order. The true increments display the highest temporal vari-653

ance, especially large spikes of positive or negative increments at synoptic timescale of654

a few days. These large increments over short periods are likely caused by synoptic vari-655

ability that are not present in the atmosphere forcing, and have to been imposed by ODA.656

It is a desirable behavior that such large spikes are not learned and predicted by NNs,657

since they are not necessarily connected to intrinsic oceanic or coupled model biases. The658

NN-predicted increments do show larger variance at subseasonal, seasonal and interan-659

nual timescales that more closely follow the true increments, confirmed by the higher cor-660

relation coefficients of 0.6 to 0.8 depending on the regions. Among the four regions, the661

Gulf Stream region shows the most prominent seasonal cycle in the true increments, which662

leads to high correlation with OTA (0.48), while the other three regions do not show ob-663

vious seasonal cycle in the true increments, demonstrated also by the small magnitude664

of OTA increments throughout the year. The two NNs perform similarly for the top 20665

meters, as indicated by previous666

Figure 10 and 11 point to one of the key limitations of the climatological OTA scheme,667

which only retains climatological corrections that manifest as biases in the seasonal cy-668

cle. Although the seasonal cycle and the annual-mean climatology are important crite-669

ria for the fidelity of climate models, they certainly do not encompass all potential model670

biases. This limitation also provides the room for improvement with our ML-based OTA671

scheme, where the NNs could generalize the DA increments to predict corrections for a672

wide range of timescales, and the corrections are state-dependent to account for the non-673

linear and non-stationary nature of the model biases.674
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7 Discussion675

The time-averaged spatial and zonal-mean plots (Figures 6 and 8) show that NNs676

can learn biases associated with large-scale dynamical features in the ocean, namely, Antarc-677

tic Circumpolar Current (ACC) in the Southern Ocean, Equatorial Undercurrent (EUC)678

in the tropical Pacific, Kuroshio current and Gulf Stream in North Pacific and North At-679

lantic Oceans, and mixed layer depth, particularly over subtropical and mid-latitude open680

oceans. This section will briefly discuss the structure of these biases and potential sources681

of errors.682

The true and predicted temperature increments in the Southern Ocean extend in683

a zonal direction and appear to follow the ocean bathymetry (Figure 6). These incre-684

ments range from the surface down to a depth of 1,000 meters, indicating an equivalent685

barotropic structure similar to that of the Antarctic Circumpolar Current. The ACC con-686

sists of a westward-flowing current system strongly steered by ocean bathymetry. When687

these currents encounter undersea ridges, they create significant meanders, resulting in688

intense eddy activity downstream and standing meanders with pockets of warm (sub-689

tropical) and cold (polar) waters (Hughes, 2005). The zonally alternating positive and690

negative blobs of temperature increments seem to originate from systematic shifts in the691

locations and intensity of these meanders. It is important to note that in non-eddy-resolving692

models, the effect of eddy parameterization tends to smooth out the influence of mean-693

ders as internal interfaces are flattened. In contrast, eddy-resolving models, such as those694

in Hallberg and Gnanadesikan (2001), demonstrate that eddies can enhance bathymetry’s695

influence, causing deep waters to mound over ridges.696

In other words, errors in the representation of ocean flow-bathymetry interactions697

could be the underlying cause which could be related to errors in wind forcing, ocean698

stratification and smoothed bathymetry in coarse-resolution simulations like the one an-699

alyzed here (Hughes, 2005; Thompson & Naveira Garabato, 2014; X. Zhang et al., 2023).700

Additionally, since these regions are closely coupled with the overlying atmosphere, in-701

accuracies in atmospheric fluxes may also alter and introduce further errors in the ocean702

flow and the associated meanders (Vilela-Silva et al., 2024). We found that neural net-703

works, based solely on thermal and salinity stratification, could not predict these alter-704

nating increments despite accurately identifying their locations. However, incorporat-705

ing vertical and horizontal velocity shears allowed the neural networks to learn the zon-706

ally alternating features effectively.707

Another significant correction is evident in the subsurface of the equatorial Pacific708

Ocean (Figures 6 (g,h,i), 8, and 9). This correction is connected to the meridional and709

zonal structure of the thermocline. Generally, the thermocline is shallower at the equa-710

tor and progressively deepens toward the poles. Similarly, the negative increments at the711

surface at the equator spreads poleward and deeper along the thermocline, as seen in the712

zonal mean plots. Additionally, in the equatorial band below the thermocline, the equa-713

torial undercurrent (EUC) appears colder than the observations, as indicated by pos-714

itive increments in zonal-mean and equatorial cross-sections.715

The eastward-flowing EUC originates from the meridional pressure gradient linked716

to the shape of the thermocline. The EUC plays a crucial role in the zonal redistribu-717

tion of mass and heat across the tropical Pacific Ocean, significantly influencing the mean718

thermal structure and circulation, as well as the inter-annual variability associated with719

El Niño-Southern Oscillation (ENSO). A positive temperature correction in the EUC in-720

dicates that it is biased cold compared to observations. The stratification and currents721

in the equatorial Pacific Ocean and the atmospheric trade winds are intricately coupled722

(Coats & Karnauskas, 2018; Karnauskas et al., 2020; Verma et al., 2019). While the er-723

rors in EUC could have originated in any of the coupled processes, from an oceanic per-724

spective, they could be linked to vertical mixing processes. Errors in vertical mixing can725

significantly impact the simulation of the equatorial thermocline and, consequently, the726
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associated EUC, as shown in Pacanowski and Philander (1981). When comparing zonal-727

mean predictions, it becomes evident that vertical shears are critical for predicting the728

average positive corrections to the EUC, which seems consistent with the Pacanowski729

and Philander (1981). The mixing of heat into the EUC is influenced by diurnal mix-730

ing, which is modulated by variability in the surface winds (Schudlich & Price, 1992; Moum731

et al., 2022). This diurnal mixing also depends on how the mixing falls off at high Richard-732

son numbers. While OTA is expected to capture the net effect of these processes, it does733

not account for variability caused by winds or meanders in the path of the EUC.734

In zonal mean plots (Figure 8), particularly between 35-40°N, there is a notable735

negative correction at the surface and a positive correction at deeper depths. These cor-736

rections are linked to biases in the western boundary currents (WBCs) in the North Pa-737

cific and North Atlantic Oceans (Figure 6). Specifically, the Kuroshio current and the738

Gulf Stream are found to be too warm at the surface and too cold beneath compared739

to observational data. Climate models often exhibit inaccuracies in modeling the sep-740

aration of these WBCs from the continental shelf (Schoonover et al., 2017), which can741

significantly impact oceanic and atmospheric conditions in their respective basins. These742

biases may arise from various sources, such as errors in the representation of bottom and743

lateral drag, meso- and submesoscale processes within the ocean, and interactions be-744

tween the ocean and atmosphere. We find both ocean stratification and horizontal shears745

play a crucial role in predicting these corrections, wherein the latter may help define the746

boundaries and fronts associated with these currents.747

Other interesting corrections learned by NNs include corrections in the surface mixed748

layer. As can be seen in Figure 4g, NN based solely on stratification (TzSz) outperforms749

(in terms of R2) the state-independent climatology benchmark in the upper ocean, where750

both inputs are expected to be small. NNs must then be partially learning from biases751

in the mixed layer depth, which may have a distinct vertical signature in temperature752

increments near the base of the mixed layer. Comparing the spatial maps of R2 for an753

NN based on stratification (not shown) with that of climatology benchmark predomi-754

nantly shows improvement in subtropical and midlatitude bands similar to the ones high-755

lighted in Figures 10 (f,g). We speculate that these biases may be linked to two factors:756

a) the parameterization of submesoscale processes in the ocean, which tend to restrat-757

ify and shoal the mixed layer (Fox-Kemper et al., 2011) since data assimilation incre-758

ments are produced with submesoscale parameterization disabled in this study, and b)759

the distinction between the ”mixed layer” in which vertical gradients are low and the760

”mixing layer”(layer of active mixing) in which the gradients are essentially zero and dis-761

sipation is high (Giunta & Ward, 2022). By using vertical gradients as predictors, we762

could better characterize the mixing layer, which is vital for understanding short-term763

responses to heat fluxes.764

Although we have shown that systematic corrections learned by NNs are associ-765

ated with ocean dynamical features, we have not been able to attribute them to specific766

subgrid-scale physics, numerics, or atmospheric biases. This issue clearly hinders its adop-767

tion as model error parameterization in ocean models, wherein heat, salt, and momen-768

tum fluxes must be conservatively partitioned into different physical, dynamical, and nu-769

merical sources. We acknowledge that additional research is required, which is out of the770

scope of this manuscript. Despite the limitation, we expect that NNs are at least par-771

tially capturing some model errors and promote their case for testing and evaluation in772

online systems as a bias correction scheme and model error parameterization.773

Future work may involve evaluating online skills and investigating issues related774

to the online implementation of such a scheme within the SPEAR system. A key con-775

cern is the stability of model integration; unphysical corrections and drifts associated with776

global imbalances may lead to instability in model integration. Other research directions777

could include quantifying the sensitivity of data assimilation increments to various subgrid-778

scale parameterizations and conducting specifically designed experiments to eliminate779
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the impact of biases from other Earth system components, such as the atmosphere and780

sea ice.781

Following the work of Rodwell and Palmer (2007), it may also be beneficial to save782

different subgrid-scale heat, salt, and momentum fluxes for use as additional predictors,783

which could aid in attribution. Further constraining the problem by limiting the phys-784

ical space to surface mixed layer corrections or focusing on specific geographical regions785

may be helpful. From an algorithmic perspective, reducing the dimensionality of input786

and output profiles and enforcing physical constraints could enhance performance and787

generalization. All of these aspects are beyond the scope of this manuscript.788

This problem formulation is column-local rather than three-dimensionally local, al-789

lowing predictors in the subsurface ocean to influence surface predictions and vice versa.790

Column-local models are not new and have been extensively used in many data-driven791

physical parameterizations, such as Yuval and O’Gorman (2020), and Laloyaux et al. (2022).792

A simple three-dimensional local model that relies only on local states may struggle to793

capture the complex space-time errors across the upper 1000 meters in the global ocean.794

Other commonly used bias correction methods include flux adjustment, sea sur-795

face salinity restoration, and nudging toward observational products. While these meth-796

ods help prevent long-term drifts in climate models, they have limitations. Unlike the797

flux adjustment and sea surface salinity restoration, the neural network-based approach798

evaluated here estimates systematic corrections at both the surface and the ocean’s in-799

terior. While nudging to the climatology of a reanalysis product could correct some sub-800

surface biases, our approach relies on in situ observations, potentially avoiding system-801

atic biases in the reanalysis product. Lu et al. (2020) also demonstrated the benefits of802

using temperature increments for bias correction. This neural network method builds803

on their work by addressing fast-timescale systematic errors and the local state depen-804

dence of these errors.805

One significant limitation is that the solutions do not always produce zero annual806

mean global averages for the upper thousand meters of the ocean despite being trained807

on near-zero averages. We speculate that non-zero averages are due to the NN’s inabil-808

ity to capture all systematic behaviors across different scales and regions. This issue can809

lead to long-term drifts in simulated climate. A potential solution is to add a corrective810

term, but ensuring a bias-free model should be a priority for future research.811

8 Summary and Conclusions812

This study represents one of the earliest attempts at modeling systematic temper-813

ature increments using a full-complexity ocean general circulation model with neural net-814

works. The end goals are to develop i) a state-dependent bias correction scheme for sea-815

sonal to decadal prediction systems and ii) an ocean model error parameterization for816

a free-running climate model within NOAA GFDL’s SPEAR framework.817

To achieve these goals, we employ relatively small, fully connected neural networks818

trained on data from the SPEAR-ODA system, which assimilates gridded OISST and819

Argo temperature and salinity profiles on daily timescales. The neural networks utilize820

a ”column-local” state (which includes fluxes and vertical profiles) to predict vertical pro-821

files of temperature tendency corrections for the upper 1,000 meters of the global ocean.822

Specific goals are to determine what fraction of the space-time variance and to what823

extent the spatial patterns of temperature increments can be learned from the local state,824

its gradients, and surface fluxes. In this study, we evaluate the performance of neural825

networks on a withheld test dataset, often referred to as an ”offline skill” in the exist-826

ing literature, and compare it to a benchmark, state-independent climatology of tem-827

perature increments as outlined in Lu et al. (2020).828
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Our findings indicate that neural networks can learn systematic space-time vari-829

ance and time-mean spatial patterns in the upper 1,000 meters of the global ocean de-830

spite being horizontally local. In terms of the global R2 metric, the overall space-time831

variability is approximately 15–20% greater than that of the climatology benchmark (as832

shown in Figure 4 b). Moreover, nonlinear activation functions are crucial, as a linear833

network struggles to surpass the benchmark across many evaluated metrics.834

Notably, the upper 20 meters of the ocean—typically part of the ocean surface mixed835

layer—exhibits the lowest root mean square error (RMSE), with an R2 value reaching836

approximately 50%. Below 20 meters, R2 values decline sharply, making prediction of837

subsurface variance more challenging. However, the minimum values remain non-negative,838

suggesting that performance is either better than or at least comparable to the clima-839

tology benchmark. One contributing factor to the low R2 in the subsurface is the pres-840

ence of small-scale dynamical noise in the daily temperature increments, which the cho-841

sen neural networks, based on coarse-resolution model state variables, are unable to pre-842

dict.843

Improvements in the upper 20 meters are uniformly observed across the global ocean,844

except in specific eastern equatorial and polar regions, where the R2 values turn nega-845

tive. Below 20 meters, there are localized areas—such as western boundary currents and846

equatorial regions—where R2 values from neural network predictions are significantly847

above zero. These areas highlight the regions where subgrid-scale errors have a pronounced848

impact on large-scale ocean currents and where a neural network-based approach has the849

potential to enhance forecast skills. We presented these biases’ characteristics, implica-850

tions, and dynamics in the discussion section earlier.851

The pattern correlations of mean fields reveal that neural networks cannot fully repli-852

cate time-mean patterns, particularly in the subsurface; the best-performing neural net-853

work achieves a maximum correlation of approximately 0.4, compared to about 0.8 for854

the climatology benchmark. However, neural networks outperform the climatology bench-855

mark for daily timescale patterns and can reproduce spatial patterns in daily fields (two-856

or three-dimensional) with greater accuracy.857

The performance of the neural networks is also influenced by the combination of858

input predictors, including stratification, vertical and horizontal velocity shears, and sur-859

face radiative, turbulent, and momentum fluxes. Analyzing performance changes by se-860

quentially adding predictors to different neural networks provides qualitative insights into861

the relative importance of those predictors. Our analysis found that thermal and salin-862

ity stratification serves as better predictors of temperature increments than raw fields,863

resulting in lower test RMSE and higher R2, especially in the upper 20 meters of the ocean.864

Including vertical and horizontal shears helps capture the space-time variance in the sub-865

surface below 100 meters.866

Overall, the improvements in depth- and location-dependent metrics demonstrate867

the advantages of using this data-driven approach to correct model errors compared to868

the previously employed climatological corrections by Lu et al. (2020). While our study869

showcases the potential benefits of this approach in an offline (diagnostic) context, fur-870

ther online (predictive) testing is needed to assess how it may reduce ocean model bias,871

affect the stability of model integration, and generalize across ocean models. Future re-872

search may also focus on strategies targeting specific subgrid-scale physics using data873

assimilation experiments and data or domain transformations to attribute corrections874

to various subgrid-scale processes better.875
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