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ABSTRACT

The current explosion in machine learning for climate has led to skilled, computa-
tionally cheap emulators for the atmosphere. However, the research for ocean
emulators remains nascent despite the large potential for accelerating coupled
climate simulations and improving ocean forecasts on all timescales. There are
several fundamental questions to address that can facilitate the creation of ocean
emulators. Here we focus on two questions: 1) the role of the atmosphere in im-
proving the extended skill of the emulator and 2) the representation of variables
with distinct timescales (e.g., velocity and temperature) in the design of any em-
ulator. In tackling these questions, we show stable prediction of surface fields for
over 8 years, training and testing on data from a high-resolution coupled climate
model, using results from four regions of the globe. Our work lays out a set of
physically motivated guidelines for building ocean climate emulators.

1 INTRODUCTION

In the last few years, we have seen substantial growth in the development of machine-learning (ML)
methods applied to weather and climate problems. In particular, many have successfully built data-
driven emulators to provide low-cost representations for the complex dynamics of the climate system
(Beucler et al., 2023). Several emulators have been shown to perform as well or better than state-of-
the-art numerical weather models on short-time scales (Bi et al., 2023; Kochkov et al., 2023; Pathak
et al., 2022).

Beyond weather, the related problem of long-term atmosphere emulation, that is, time scales span-
ning ten to hundreds of years, has emerged in the literature (Kochkov et al., 2023; Bonev et al., 2023;
Watt-Meyer et al., 2023). Recently, three applications of ocean emulation have shown some success:
an idealized model for multi-decadal timescales (Bire et al., 2023), a regional emulation on subsea-
sonal timescales (Chattopadhyay et al., 2023), and a 3D global emulation on 30-day timescales
(Xiong et al., 2023). The emulation of ocean dynamics involves a different set of challenges to that
of the atmosphere. As we continue to confront the growing risks of a changing climate, the need
to develop reliable models to simulate the global climate will prove essential for adaptation and
mitigation.

In this work, we highlight key considerations for building emulators of regional (and global) ocean
climate models by assessing the role of boundary conditions and designing a framework for multi-
scale emulation (e.g., different spatio-temporal scales). Understanding the appropriate boundary
inputs and scales on which to model velocity and temperature is critical for successfully emulating
complex multi-scale ocean physics. Using a simple network design, a U-Net (Ronneberger et al.,
2015), we can run a large array of experiments that explore the sensitivities of the model to different
inputs and time steps. Our results, which focus on emulating surface ocean fields, in which multi-
scale physics is a determining factor, should help guide future implementations of more costly,
state-of-the-art machine learning techniques.
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2 METHODS

2.1 DATA

We use data from the last 20 years of a pre-industrial control simulation of the GFDL CM2.6 coupled
climate model, with a nominal ocean resolution of 1/10◦ (Delworth et al., 2012). We focus on
emulating four regions (the Gulf Stream, the Tropics, the South Pacific, and the African Cape, see
fig. 4), which provide a range of dynamics for evaluating the emulators. The data are regridded
from the native ocean resolution of 1/10◦ onto a grid with a resolution of 1/4◦ (equivalent to a
coarser version of the same climate model, CM2.5). To remove mesoscale turbulence, a source of
short-term, local variability, the data is further filtered at a fixed factor corresponding to 1◦ (Loose
et al., 2022). For the atmospheric data, which is natively on a 1/2◦-resolution grid, we use bilinear
interpolation of the data directly onto the 1/4◦-resolution grid.

We will consider the state vector predicted by the network to be Φ = (u, v, T ), which represents
the zonal velocity, meridional velocity, and temperature, respectively, in the surface layer. We let
τ = (τu, τv, Tatm) represent the state vector for the surface atmosphere boundary conditions, which
are zonal wind stress, meridional wind stress, and air temperature respectively. We include details
on the training and testing splits in the appendix.

2.2 INPUT FEATURES

Our network is a U-Net with four upsampling and downsampling layers, yielding O(107) param-
eters. It takes in an input vector with 9 channels: three channels correspond to the ocean state
Φ = (u, v, T ), three channels for the atmospheric boundary τ = (τu, τv, Tatm), and another three
channels for the lateral boundary conditions of Φ.

To construct our regional emulators, we follow the standard practice in regional ocean modeling
and using the true state at the open boundaries to capture inflow and outflow dynamics correctly
(Marchesiello et al., 2001). To encourage the network to learn a specific relationship between the
open boundaries and the interior cells, we provide input channels of the boundary halo taken to be
4 cells wide. The standard input channels are kept as the total size of both the interior and the halo,
and the network outputs the full field, including the halo region. At the time of testing, to avoid
divergence between the interior and the true boundary condition, the halo region of the prediction is
replaced with the true boundary values at each time step (see figure 5 for a diagram of this process).

2.3 TRAINING

For training the network, we perform multi-step predictions to create a loss function that captures
dynamics beyond the time step of the emulator, ∆t. For convenience, we use the following notation
for recurrent passes of the network: Φ̃t+n∆t = F

(n)
θ (Φt, τt), where (n) indicates the number of re-

current passes, ·̃ is a predicted state, and Fθ is the neural network. The loss function is a combination
of mean squared error with an additional point-wise loss on kinetic energy such that:

L(N) =

N∑
n=1

λn

(
(1− α)L(n)

mse + αL(n)
KE

)
. (1)

Here, L is the total loss function, Lmse =
∥∥∥Φt+n∆t − F

(n)
θ (Φt, τt)

∥∥∥2
2

is the MSE loss and LKE =∥∥(u2
t+n∆t + v2t+n∆t

)
−
(
ũ2
t+n∆t + ṽ2t+n∆t

)∥∥2
2

is the loss contribution from kinetic energy. N is
the total number of recurrent passes. λn are parameters weighting the loss after each recurrent pass;
these are weighted highest for n close to N . α is a balancing parameter to weight between the MSE
loss and the kinetic energy loss, we choose α = .05. To avoid over-complicating the loss from
the start, the value of N is increased incrementally as the network converges for each N . Unless
otherwise specified, N = 4 and ∆t = 1 day.
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3 RESULTS

3.1 IMPACT OF BOUNDARY INFORMATION

Accounting for the role of the atmosphere as an external forcing is essential for emulating the evolu-
tion of the ocean, especially for surface fields. Providing inputs with a seasonal imprint is necessary
when using a training window, N ×∆t, much shorter than seasonal timescales. For example, ocean
SSTs are beneficial for building long-term atmosphere emulators (Watt-Meyer et al., 2023). Here,
we explore the role of wind stress and surface air temperature in increasing the performance of the
ocean emulator.

In Fig. 1, the emulator provided with no atmospheric boundary information (green line) drifts in
all predicted fields. Providing the wind stresses (yellow line) helps the emulator recover most of
the missing dynamics in velocity, but it deteriorates the seasonal cycle; the skill in temperature
prediction is only marginally changed. The addition of surface air temperature (blue line) has the
most pronounced benefit due to its high decorrelation time; however, this emulator fails to capture
the full range of time scales in velocity. Providing both boundary inputs (red line) leads to the
best balance of performance across fields. It suggests that both high and low-frequency boundary
information are necessary for emulating the surface ocean.

Since regional ocean models are constructed with open boundaries,

we build in the lateral information yields, which yield only small performance gains, even with the
full set of τu, τv , and Tatm passed to the model (see appendix).

Figure 1: Impact of atmospheric boundary information, showing the skill of each emulator in per-
forming long roll-outs (prediction). Left: the time spectra of the mean zonal velocity; Right: mean
temperature timeseries. The shading shows the standard deviation across rollouts for 3 initial condi-
tions.

3.2 CAPTURING MULTI-TIMESCALE DYNAMICS

Previous studies have investigated, or at least suggested, that the training window of the model can
impact performance (Bire et al., 2023; Bi et al., 2023). Here we address this question for ocean
surface emulation evolving at multiple timescales. We perform a sensitivity study to identify the
necessary conditions for improved skill. Our baseline emulator, with ∆t = 1 and N = 4, captures
the velocity dynamics well but struggles to emulate the slowly evolving field, temperature. Figure 2
demonstrates this as the anomaly correlation coefficient (ACC) of temperature drops quickly for the
baseline emulator (red). This error accumulates and drives a drift for the temperature in the African
Cape region (see appendix for long rollouts results). Increasing ∆t leads to an improvement in the
ACC for temperature, with an increase in skill in 10-day ACC from 0.73 to 0.84 at ∆t = 2 (cyan)
and a further increase to 0.91 with ∆t = 5 (green); see temperature snapshots in fig. 3.

We compare the benefits of increasing the time step against those of increasing the number of recur-
rent passes used to train our baseline emulator, matching the training window of the network with
∆t = 2. This emulator, with N = 8 (blue line; ACC at 10 days of 0.82), shows a similar skill in
predicting temperature to the emulator with ∆t = 2, and the best skill across all velocity metrics.
Reducing the training window for an emulator is detrimental to skill, as shown in the bottom panels
of fig. 2. Networks with longer time steps but with a similar training window to the baseline per-
form poorly and sometimes become unstable. Capturing sufficiently long dynamics during training
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is necessary for an emulator to perform well but is a challenge given the slow timescales in the ocean
(as compared to the atmosphere).

We note that regions with low variance in temperature, such as the tropics, do not show the same
need for increased ∆t or N . Further details in the appendix show preliminary emulation results for
ocean fields at a depth of 525 m and indicate a similar need for long training windows.

Figure 2: Impact of time step and effective training window on the short-term skill of the network
for the African Cape region. ACC for temperature (left) and RMSE for meridional velocity (right).
The top panels showcase the benefit of increasing ∆t, and the bottom panels demonstrate the perfor-
mance loss when decreasing the number of rollouts, N . The shading indicates the standard deviation
across rollouts from 5 initial conditions and using 3 networks trained from different initial weights.

Figure 3: Snapshots of temperature shown for a 1000 days prediction, generated by the emulators
with different ∆t and N (as in fig. 2.)

4 CONCLUSION AND FUTURE WORK

Building computationally inexpensive ocean emulators for multi-decadal time scales can be benefi-
cial for assessing the impacts of climate change, in particular, generating large ensembles for better
estimates of uncertainty. This work identifies drivers of model skill and lays a foundation for the fu-
ture construction of long-term ocean emulators. We demonstrate the role boundary conditions play
in ocean emulation. We highlight the importance of surface air temperature for recovering long-time
scales and wind stress for capturing shorter-time scale dynamics. We show that emulators need to
use training windows spanning several days to accurately capture the evolution of slowly evolving
fields with high variance, in this case, temperature. This can be achieved by increasing the time step
or the number of recurrent passes during training.
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By limiting our tests to the ML-model agnostic features of the emulator, we intend for our results to
hold across a range of architectures and emulation tasks. We chose an ML architecture that is cheap
and flexible (.013 seconds per simulated day; see appendix for performance details) but not the most
advanced, and in some regions, we end up with under-energized flows at long prediction horizons.
We will explore state-of-the-art ML methods, such as neural operators or transformers, following
the principles developed in this work. We also intend to examine full 3D emulation (rather than each
layer independently), where capturing a broader continuum of time scales and interaction between
layers may pose additional challenges.
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APPENDIX

ADDITIONAL INFORMATION ON METHODS

DATA FOR TRAINING AND TESTING

We include outlines of the regions considered in figure 4. For surface emulation, the 20 years of
data corresponds to 7305 samples using a calendar that includes leap years. We train on the first
4000 days of the model, saving 200 days for our validation dataset. For testing the model on long
rollouts, we select our initial condition to be 200 days after the training dataset and run our model for
3000 days, or 8.21 years. We compute our uncertainty ranges over runs performed by 3 emulators,
each with a distinct random seed for initializing weights and training. In figure 1 we also include
two additional runs of 3000 days from initial conditions 100 and 250 days after the training set.
For testing the performance on short rollouts, we choose 5 initial conditions, starting 200 days
after training. Each subsequent initial condition is then selected 200 days after the previous so that
we sample from different points in the seasonal cycle. We compute our uncertainty over these 5
initial conditions using the same three networks mentioned above, yielding a total of 15 rollouts to
compare.

For the subsurface fields, the 20 years of data corresponds to 1459 samples. We train on the first
1000 data samples and use the next 50 samples as validation. The last 400 samples, 2000 days, are
held for testing.

Figure 4: Global ocean surface zonal velocity, and 4 domains considered.

COMPUTING WIND STRESS

To compute the components of wind stress, we use the values of 10m wind velocities and wind
speed along with a constant value for density (ρ = 1.293 × 10−3 kg

m3 ) and drag coefficient (Cd =

1.2×10−3). Though the drag coefficient may vary in both space and time, we simplify the estimation
of wind stress by choosing the constant in a reasonable range of expected values (Kara et al., 2007).
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Figure 5: Methodology used to incorporate lateral boundary conditions into the model (section 2.2).

ARCHITECTURE

We use the same U-net architecture for all networks in this paper. Each network has O(1e7) pa-
rameters. The network is built on 4 downsampling and upsampling operations, with the number of
channels going from Nin to 64 to 128 to 256 to 512. Here, Nin is equal to the number of channels
in Φ, τ , and Φlateral. There is a batch norm operation between each convolutional layer, except for
the final output layer.

COMPUTATIONAL COST

The model we use here is lightweight, and we can train models quickly. Using two Nvidia RTX8000
GPUs the model trains in an hour or less. For cases where we train on more than 4 rollout steps, we
run the model on four RTX8000s and train in less than 3 hours. To give a more exact sense of the
runtime cost of the model, we provide table 1 showing the cost of running a leap year (366 days) of
simulation for each model on a single RTX8000 GPU. In the largest, and thus slowest, region, this
corresponds to a runtime of 0.013 seconds per day.

Region Domain Size (Nx, Ny) Simulation Cost per Year
South Pacific 224× 241 4.72± 0.07 Seconds
Gulf Stream 119× 189 2.34± 0.04 Seconds
African Cape 204× 241 4.29± 0.06 Seconds

Tropics 124× 281 3.31± 0.04 Seconds

Table 1: Relative computational cost between regions of running one simulated year using a single
Nvidia RTX8000 GPU.

METRICS

To evaluate the performance of our network, we define a series of metrics that evaluate the emulator
on short- and long-timescale predictions.

SHORT-TIME SKILL

To quantify the performance over short time scales, we look at metrics of correlation coefficient
(CC), anomaly correlation coefficient (ACC), and root mean squared error (RMSE). These take the
following forms:
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CC(u, ũ) =

∑Nx,Ny

i,j Ai,jWi,jui,j ũi,j√∑Nx,Ny

i,j (Ai,jWi,jui,j)
2 ∑Nx,Ny

i,j (Ai,jWi,j ũi,j)
2

(2)

ACC(u, ũ) =

∑Nx,Ny

i,j Ai,jWi,j(ui,j − Ci,j)(ũi,j − Ci,j)√∑Nx,Ny

i,j Ai,jWi,j (ui,j − Ci,j)
2 ∑Nx,Ny

i,j Ai,jWi,j (ũi,j − Ci,j)
2

(3)

RMSE(u, ũ) =

√√√√∑Nx,Ny

i,j Ai,jWi,j(ui,j − ũi,j)2∑Nx,Ny

i,j Ai,jWi,j

(4)

In these equations, Nx, Ny are the number of grid points in the zonal and meridional directions
respectively. Ai,j is the cell area for the point i, j. Wi,j is the wet mask at the point, 1 if the point is
ocean and 0 if the point is land. Ci,j is the pointwise climatology for the day of year computed over
the entire 20 year dataset.

LONG-TIME SKILL

To quantify the skill of the model at longer time scales, we look at how well it captures the mean
trends of the system. The primary metrics are capturing the area-weighted means and variances of
the system as well as comparing the time-spectrum of the means. The formulas for computing the
mean and variance are simply:

u(t) =

∑Nx,Ny

i,j Ai,jWi,jui,j∑Nx,Ny

i,j Ai,jWi,j

(5)

Var(u(t)) =

∑Nx,Ny

i,j Ai,jWi,j(ui,j − u(t))2∑Nx,Ny

i,j Ai,jWi,j

(6)

IMPACT OF LATERAL BOUNDARIES

In this section we show additional results demonstrating the benefit of including lateral boundary
conditions. For the lateral boundary plots we omit the results from the African Cape region as all
models perform poorly without a longer training interval or time step. Fig 6 shows a case where
the lateral boundary conditions yield a significant improvement in predicting temperature. The dis-
tance between the orange (without lateral boundaries) and red line shows that better capturing the
open boundaries prevent the emulator from producing too cold winters. Also, noteworthy across all
regions is that the model with no boundary conditions (purple line), lateral or from the atmosphere,
produces no seasonal cycle in any field. In the South Pacific, a quiescent region with less fluid
advected in and out of the domain, adding lateral boundaries does not lead to significant improve-
ment when the emulator has access to the atmospheric boundary conditions. In these plots Φlateral

references the addition of the lateral boundary halos as inputs.

SUBSURFACE EXPERIMENTS

As a preliminary exploration to help guide future work in emulation that resolves the vertical struc-
ture of the ocean, we performed a set of experiments in the same configuration as the main text
but with different Φ and τ . In these experiments we select an ocean depth below the mixed layer,
z = 525m, where the influence of the atmosphere is near zero and define our Φ = (u525, v525, T525)
and our boundary conditions from the ocean surface as τ = (usurf , vsurf , Tsurf).

For the ocean depth, we have access to the 20 years of data; however, the fields are stored as 5-
day averages, thus reducing the amount of data available for training and testing by a factor of 5.
This reduction in data, alongside the longer timescales at depth, leads to poorer performance of the
models and some drift in the rollouts. Despite this, we obtained meaningful results, even with the
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Figure 6: Impact of lateral boundary information, showing the skill of each emulator in perform-
ing long roll-outs. Left: the time spectra of the mean zonal velocity; Right: mean temperature
timeseries. The shading shows the standard deviation across rollouts from 3 networks trained from
different initial weights.

Figure 7: Impact of lateral boundary information, showing the skill of each emulator in perform-
ing long roll-outs. Left: the time spectra of the mean zonal velocity; Right: mean temperature
timeseries. The shading shows the standard deviation across rollouts from 3 networks trained from
different initial weights.

Figure 8: Impact of lateral boundary information, showing the skill of each emulator in perform-
ing long roll-outs. Left: the time spectra of the mean zonal velocity; Right: mean temperature
timeseries. The shading shows the standard deviation across rollouts from 3 networks trained from
different initial weights. The case for the U-Net with no surface or lateral boundary input is not
shown as it becomes completely unstable.
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lower skill of the models, by comparing the results across time scales. Similar to the rest of the
paper, we find that boundary conditions provide a significant benefit to the model in capturing the
dynamics of the layer. Here, we again find that increasing the ∆t of the model can help improve
the prediction of temperature and, by reducing drift there, help in predicting velocities as well. We
also find a similar relationship with variance in the slow fields as the drift in the Gulf Stream and the
African Cape, with larger variances, is larger than in the lower variance regions.

Figure 9: Impact of model time step at a depth of 525 m, showing the skill of each emulator in
performing long roll-outs. Left: the time spectra of the mean meridional velocity; Right: mean
temperature timeseries. The shading shows the standard deviation across rollouts from 3 networks
trained from different initial weights.

Figure 10: Impact of model time step at a depth of 525 m, showing the skill of each emulator in
performing long roll-outs. Left: the time spectra of the mean meridional velocity; Right: mean
temperature timeseries. The shading shows the standard deviation across rollouts from 3 networks
trained from different initial weights.

FIGURES VARYING BOUNDARY CONDITIONS

Here we include additional versions of figure 1 for the remaining regions not shown in the paper. We
again omit the results from the African Cape region as all models perform poorly without a longer
training interval or time step. We also include some selected snapshots of model prediction from the
Gulf Stream and the Tropics. Results from the African Cape and the South Pacific will be shown for
models varying ∆t and N . For zonal velocities, we show results at 50 days, and for temperature,
we show snapshots 1000 days into a rollout to demonstrate that the model captures the correct phase
of the seasonal cycle. Meridional velocity results look similar to zonal velocity and are omitted for
brevity. We also include here an additional figure showing the time averaged mean kinetic energy
in the gulf stream to help highlight the importance of wind stress terms. With just temperature, the
emulator misplaces the jet slightly, turning eastward at too high a latitude.

10
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Figure 11: Impact of model time step at a depth of 525 m, showing the skill of each emulator in
performing long roll-outs. Left: the time spectra of the mean meridional velocity; Right: mean
temperature timeseries. The shading shows the standard deviation across rollouts from 3 networks
trained from different initial weights.

Figure 12: Impact of model time step at a depth of 525 m, showing the skill of each emulator in
performing long roll-outs. Left: the time spectra of the mean meridional velocity; Right: mean
temperature timeseries. The shading shows the standard deviation across rollouts from 3 networks
trained from different initial weights.

FIGURES VARYING THE TRAINING WINDOW

Here we include additional versions of figure 2 for the remaining regions not shown in the paper
as well as longer statistics for the same set of models. We also include some selected snapshots
of model prediction from the African Cape and the South Pacific. The snapshots from the African
Cape region show results with models all matching the training window of the base model. These
models match those shown in the bottom row of figure 2. The snapshots from the South Pacific show
results with models varying the time step. These models match those shown in the top row of figure
2. We also include tables comparing the ACC and RMSE evaluated at 10 days for emulators in each
region.
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Figure 13: Impact of atmospheric boundary information, showing the skill of each emulator in per-
forming long roll-outs. Left: the time spectra of the mean zonal velocity; Right: mean temperature
timeseries. The shading shows the standard deviation across rollouts from 3 networks trained from
different initial weights.

Figure 14: Impact of atmospheric boundary information, showing the skill of each emulator in per-
forming long roll-outs. Left: the time spectra of the mean zonal velocity; Right: mean temperature
timeseries. The shading shows the standard deviation across rollouts from 3 networks trained from
different initial weights.

Figure 15: Snapshots of temperature shown for a 1000 days prediction, generated by the emulators
with different atmospheric boundary inputs (as in fig. 1.)

12
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Figure 16: Snapshots of zonal velocity shown for a 50 days prediction, generated by the emulators
with different atmospheric boundary inputs (as in fig. 1.)

Figure 17: Snapshots of temperature shown for a 1000 days prediction, generated by the emulators
with different atmospheric boundary inputs (as in fig. 13.)

Figure 18: Snapshots of zonal velocity shown for a 50 days prediction, generated by the emulators
with different atmospheric boundary inputs (as in fig. 13.)
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Figure 19: Temporal means of kinetic energy shown averaged over 3000 day emulator rollouts
generated by the emulators with different atmospheric boundary inputs (as in fig. 13).

Figure 20: Impact of time step and effective training window on the short-term skill of the network
for the Gulf Stream region. ACC for temperature (left) and RMSE for meridional velocity (right).
The top panels showcase the benefit of increasing ∆t, and the bottom panels demonstrate the perfor-
mance loss when decreasing the number of rollouts, N . The shading indicates the standard deviation
across rollouts from 5 initial conditions and using 3 networks trained from different initial weights.
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Figure 21: Impact of time step and effective training window on the short-term skill of the network
for the South Pacific region. ACC for temperature (left) and RMSE for meridional velocity (right).
The top panels showcase the benefit of increasing ∆t, and the bottom panels demonstrate the perfor-
mance loss when decreasing the number of rollouts, N . The shading indicates the standard deviation
across rollouts from 5 initial conditions and using 3 networks trained from different initial weights.

Figure 22: Impact of time step and effective training window on the short-term skill of the network
for the Tropics region. ACC for temperature (left) and RMSE for meridional velocity (right). The top
panels showcase the benefit of increasing ∆t, and the bottom panels demonstrate the performance
loss when decreasing the number of rollouts, N . The shading indicates the standard deviation across
rollouts from 5 initial conditions and using 3 networks trained from different initial weights.
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Figure 23: Impact of model time step, showing the skill of each emulator in performing long roll-
outs. Left: the time spectra of the mean zonal velocity; Right: mean temperature timeseries. The
shading shows the standard deviation across rollouts from 3 networks trained from different initial
weights. Lines for ∆t = 1 and ∆t = 2, N = 2 are omitted since these predictions drift heavily.

Figure 24: Impact of model time step, showing the skill of each emulator in performing long roll-
outs. Left: the time spectra of the mean zonal velocity; Right: mean temperature timeseries. The
shading shows the standard deviation across rollouts from 3 networks trained from different initial
weights.
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Figure 25: Impact of model time step, showing the skill of each emulator in performing long roll-
outs. Left: the time spectra of the mean zonal velocity; Right: mean temperature timeseries. The
shading shows the standard deviation across rollouts from 3 networks trained from different initial
weights. The line for ∆t = 2, N = 2 is omitted since the emulator becomes unstable.

Figure 26: Impact of model time step, showing the skill of each emulator in performing long roll-
outs. Left: the time spectra of the mean zonal velocity; Right: mean temperature timeseries. The
shading shows the standard deviation across rollouts from 3 networks trained from different initial
weights.
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Figure 27: Snapshots of temperature shown for a 1000 days prediction, generated by the emulators
with different ∆t and N (as in fig. 2.)

Figure 28: Snapshots of zonal velocity shown for a 50 days prediction, generated by the emulators
with different ∆t and N (as in fig. 2.)

Figure 29: Snapshots of temperature shown for a 1000 days prediction, generated by the emulators
with different ∆t and N (as in fig. 21.)
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Figure 30: Snapshots of zonal velocity shown for a 50 days prediction, generated by the emulators
with different ∆t and N (as in fig. 21.)

Table 2: Table for the all regions showing the RMSE and ACC evaluated at 10 days.
Error Metrics for the South Pacific at t = 10 days

∆t 1 2 5 1 2 5
N 4 4 4 8 2 1 Φ(0)

RMSE u 0.040 0.047 0.066 0.038 0.058 0.063 0.075
RMSE v 0.037 0.043 0.059 0.035 0.049 0.054 0.073
RMSE T 0.965 0.596 0.457 0.402 0.704 0.612 0.336
ACC u 0.866 0.802 0.655 0.881 0.708 0.683 0.590
ACC v 0.870 0.813 0.648 0.888 0.764 0.707 0.525
ACC T 0.473 0.771 0.895 0.886 0.760 0.885 0.947

Error Metrics for the African Cape at t = 10 days
RMSE u 0.074 0.078 0.085 0.068 0.094 0.092 0.137
RMSE v 0.075 0.077 0.084 0.070 0.091 0.089 0.142
RMSE T 1.152 0.809 0.624 0.834 1.203 0.925 0.602
ACC u 0.875 0.864 0.835 0.893 0.813 0.810 0.598
ACC v 0.894 0.886 0.866 0.905 0.850 0.854 0.634
ACC T 0.732 0.838 0.906 0.815 0.731 0.794 0.896

Error Metrics for the Gulf Stream at t = 10 days
RMSE u 0.076 0.080 0.074 0.074 0.084 0.074 0.112
RMSE v 0.075 0.075 0.074 0.073 0.080 0.072 0.112
RMSE T 1.461 1.018 0.828 1.165 1.538 1.046 0.822
ACC u 0.862 0.843 0.864 0.867 0.835 0.864 0.713
ACC v 0.855 0.855 0.851 0.863 0.844 0.863 0.688
ACC T 0.701 0.859 0.910 0.795 0.681 0.853 0.191

Error Metrics for the Tropics at t = 10 days
RMSE u 0.088 0.095 0.12 0.081 0.107 0.126 0.161
RMSE v 0.08 0.095 0.116 0.075 0.099 0.114 0.176
RMSE T 1.461 1.018 0.828 1.165 1.538 1.046 0.822
ACC u 0.873 0.859 0.781 0.888 0.81 0.755 0.642
ACC v 0.85 0.785 0.663 0.868 0.771 0.681 0.329
ACC T 0.889 0.896 0.882 0.904 0.895 0.867 0.895
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