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Abstract

Data-driven methods have become popular to parameterize the effects of mesoscale ed-
dies in ocean models. However, they perform poorly in generalization tasks and may re-
quire retuning if the grid resolution or ocean configuration changes. We address the gen-
eralization problem by enforcing physical constraints on a neural network parameteri-
zation of mesoscale eddy fluxes. We found that the local scaling of input and output fea-
tures helps to generalize to unseen grid resolutions and depths offline in the global ocean.
The scaling is based on dimensional analysis and incorporates grid spacing as a length
scale. We formulate our findings as a general algorithm that can be used to enforce data-
driven parameterizations with dimensional scaling. The new parameterization improves
the representation of kinetic and potential energy in online simulations with idealized
and global ocean models. Comparison to baseline parameterizations and impact on global
ocean biases are discussed.

Plain Language Summary

Ocean models can’t directly simulate eddies that are smaller than the resolution
of the computational grid. The effect of these eddies is represented by parameterizations.
Machine learning offers a new way to build parameterizations directly from data, how-
ever, such parameterizations may fail when tested in new, unseen scenarios. Here, we
leverage physics constraints to mitigate this, generalization, problem. Specifically, we found
that method of dimensional analysis can be used to constrain data-driven parameter-
izations to enhance their accuracy in new scenarios without the need for retraining. New
parameterization is tested in a realistic ocean model and brings us closer to robust, data-
driven methods for ocean and climate models.

1 Introduction

Numerical ocean models rely on parameterizations to represent the effects of phys-
ical processes smaller than the model grid spacing, which are unresolved (Fox-Kemper
et al., 2019; Hewitt et al., 2020; Christensen & Zanna, 2022). Recently, there has been
a growing interest in applying machine learning methods to parameterize these subgrid
physics in ocean models (Bolton & Zanna, 2019; Zanna & Bolton, 2020; Guillaumin &
Zanna, 2021; Zhang et al., 2023; Sane et al., 2023; Yan et al., 2024; Perezhogin, Zhang,
et al., 2024; Maddison, 2024). However, developing data-driven parameterizations for ocean
models is still in its early stages, and their application is often limited to idealized con-
figurations. Deploying data-driven parameterizations in the global ocean presents sev-
eral challenges, one of which is addressed in this study – the problem of generalization
to unseen scenarios.

Data-driven parameterizations rely heavily on sets of training data, and their suc-
cessful implementation often requires tuning when applied to a new grid resolution (Zhang
et al., 2023), flow regime (Ross et al., 2023), model configuration (Perezhogin, Zhang,
et al., 2024), depth, or geographical region (Gultekin et al., 2024). However, in practice,
it would be desirable to have a single parameterization that performs effectively across
a variety of scenarios without requiring retuning. The ability of a data-driven model to
work on new (testing) data, which is distinct from the training data, is measured by the
generalization error (Bishop & Nasrabadi, 2006; Hastie et al., 2009). Data-driven meth-
ods work best when the testing data is drawn from the same distribution as the train-
ing data. However, in geophysical applications, the distribution of physical variables can
vary vastly across different scenarios—a phenomenon referred to as a distribution shift

(Beucler et al., 2024; Gultekin et al., 2024). In this case, domain knowledge and physics
constraints can be leveraged to mitigate the generalization error of data-driven models
(Kashinath et al., 2021).
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In this work, we demonstrate how physics constraints can be leveraged to enhance
the generalization of an Artificial Neural Network (ANN) parameterization of the ocean
mesoscale eddy fluxes. Following Beucler et al. (2024), we rescale features of the ANN
to minimize the distribution shift. To identify a suitable normalization technique for eddy
fluxes, we apply dimensional analysis and Buckingham (1914)’s Pi theorem. Specifically,
we introduce a local dimensional scaling constructed from the grid spacing and veloc-
ity gradients (Prakash et al., 2022). The local scaling improves offline generalization of
the ANN parameterization to unseen grid resolutions and depths, as found in the global
ocean dataset CM2.6 (Griffies et al., 2015). Our findings are formulated as a general al-
gorithm that can be used to incorporate the dimensional scaling in future applications.
Additional physics constraints for the ANN parameterization are enforced following Guan
et al. (2022) and Srinivasan et al. (2024). We present an online evaluation of the new
ANN parameterization in the GFDL MOM6 ocean model (Adcroft et al., 2019) in ide-
alized and global configurations.

2 A Method to Constrain Neural Network with Dimensional Scaling

Here we introduce the concept of physical dimensionality and demonstrate how it
can be used to constrain data-driven parameterizations. We start with a trivial exam-
ple, followed by a general algorithm. Finally, we draw connections to existing approaches.

2.1 Trivial Example

Consider the case where a scalar momentum flux T (units of m2s−2) can be pre-
dicted using a length scale ∆ (units of m) and inverse time scale X (units of s−1):

T = f(∆, X). (1)

Eq. (1) must remain invariant under rescaling the units of time and length, that is for
any α, β > 0, the equality must hold: f(α∆, βX) = α2β2f(∆, X). However, the unit
invariance can be violated when f is parameterized by neural networks. One way to en-
force it is by leveraging Buckingham (1914)’s Pi theorem, which states that the dimen-
sional equation (such as Eq. (1)) can be rewritten in non-dimensional form. Specifically,
for a set of three dimensional variables (T , ∆, X) with two independent dimensions (length
and time), there is only one (three minus two) non-dimensional variable (π1 = T/(∆2X2)).
Thus, Eq. (1) transforms to π1 = const, or equivalently:

T = ∆2X2θ, (2)

where θ can be interpreted as a non-dimensional Smagorinsky (1963) coefficient. A data-
driven parameterization in the form of Eq. (2) with a trainable parameter θ, which is
constant, follows the dimensional scaling as a hard constraint, in contrast to Eq. (1), which
does not guarantee dimensional consistency. Eq. (2) promotes generalization as it ex-
plicitly accounts for the change in the magnitude of independent variables (∆ and X),
constraining the learnable part of the mapping (θ) to be on the order of unity.

2.2 General Algorithm

Extending the example above, we suggest an algorithm to enforce dimensional scal-
ing in ANN parameterizations by preprocessing input and output features:

1. Identify the input features that contribute significantly to the accurate prediction
of the output features;

2. Construct non-dimensional input and output features from a combined set of iden-
tified input and output features;

3. Verify that a traditional known parameterization is a special case of the constructed
non-dimensional mapping.
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Step 1 follows standard dimensional analysis textbooks (Bridgman, 1922; Baren-
blatt, 1996). Specifically, a relevant set of input features can be identified by physical
intuition or through ablation studies by evaluating the gain in offline performance from
including additional dimensional features in the input set. Constructing non-dimensional
features is a common approach in physics-constrained data-driven parameterizations (Ling
et al., 2016; Schneider et al., 2024). However, the normalization of input features is of-
ten considered separately from the normalization of output features (Xie et al., 2020; Kang
et al., 2023; Beucler et al., 2024; Christopoulos et al., 2024), unlike our proposed method
(step 2 above). Additionally, the emphasis in these works is often placed on identifying
normalization factors that minimize the distribution shift, while we suggest starting with
identifying features responsible for the prediction (step 1). Finally, traditional param-
eterizations are often used to propose efficient normalization factors (Xie et al., 2020; Kang
et al., 2023; Connolly et al., 2025), while we instead advocate for having traditional pa-
rameterizations as a special case (step 3, Prakash et al. (2022, 2024)).

3 Physics Constraints for Ocean Mesoscale Parameterization

Our goal is to predict the subfilter momentum fluxes of mesoscale eddies using an
Artificial Neural Network (ANN) parameterization, see schematic in Figure 1(a). Var-
ious physical invariances were imposed to promote generalization.

3.1 Learning Subfilter Fluxes

We consider the acceleration produced by subfilter ocean mesoscale eddies (subfilter
forcing, Bolton & Zanna, 2019):

∂tu = S = (u · ∇)u− (u · ∇)u, (3)

where u = (u, v) is the horizontal ocean velocity, ∇ = (∂x, ∂y) is the horizontal gra-
dient, and (·) is the horizontal filter. The subfilter forcing can be approximated (Loose,
Marques, et al., 2023) as a divergence of the momentum flux:

S ≈ ∇ ·T (4)

where

T =

(
Txx Txy

Txy Tyy

)
=

(
uu− uu u v − uv
u v − uv v v − vv

)
. (5)

We predict the three components of T, namely Txx, Txy, Tyy, similarly to Zanna and Bolton
(2020) (ZB20 hereafter) to (i) impose momentum conservation as a hard constraint, (ii)
enforce symmetry of the tensor, which leads to angular momentum conservation (Griffies,
2018, Section 17.3.3).

We learn the components of T by minimizing the mean squared error (MSE) loss
function:

LMSE = ||(S−∇ · T̂) ·m||22 / ||S ·m||22, (6)

where m is the mask of wet points and T̂ ≡ T̂(X) is the prediction of the subfilter flux
with X being the vector of input features discussed below. See SI for further details.

3.2 Input Features

Following ZB20, we consider the components of the strain-rate tensor and vortic-
ity as input features for prediction:

σS = ∂yu+ ∂xv – shearing strain,

σT = ∂xu− ∂yv – horizontal tension/stretch,

ω = ∂xv − ∂yu – relative vorticity.

(7)
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(a)

(b)

(c)

(d)

ANN schematic

Snapshots of predictions

Generalization to various resolutions/depth

X =

[Ã
S] µ 9

[Ã
T] µ 9

[Ë ] µ 9

ANN
» ' ç T

Figure 1. (a) Artificial neural network (ANN) parameterization predicting the subfilter fluxes

given the velocity gradients on the horizontal stencil of 3×3 points. (b) Snapshots of predictions

by two ANNs: with local dimensional scaling (Eq. (11), center column) or with fixed normaliza-

tion coefficients (Eq. (9), right column) at the resolution (0.9◦) and depth (5m) used for training

(testing data is separated by 10 years). (c) Prediction at the unseen resolution (0.4◦) and the

same depth (5m). (d) Coefficient of determination (R2) in prediction of subfilter fluxes for vari-

ous resolutions and depths, different from that used for training (0.9◦, 5m). The R2 is averaged

over 2 years of held-out data and excludes 2 grid points adjacent to the coastline, where green

and orange boxes correspond to panels (b) and (c), respectively.
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These input features exclude explicit dependence on the velocity, guaranteeing Galilean
invariance of the parameterization (Srinivasan et al., 2024; Pope, 1975; Lund & Novikov,
1993; Ling et al., 2016). When using the input features (Eq. (7)) pointwise, the result-
ing ANN parameterization highly correlates with the ZB20 equation-discovery model.
Thus, we decided to include the non-local contribution of these features (Srinivasan et
al., 2024). To do so, the input vector to the ANN consists of velocity gradients, each de-
fined on a 3 × 3 horizontal stencil and flattened into a vector of length 9 (denoted as
[·] ↕9):

X =



[σS ] ↕9
[σT ] ↕9
[ω] ↕9


 ∈ R

27. (8)

Including information about velocity gradients from the closest neighboring points is a
common approach in subgrid modeling (Maulik & San, 2017; Maulik et al., 2019; Pawar
et al., 2020; Wang et al., 2021, 2022; Gultekin et al., 2024).

3.3 Neural Network Parameterizations

We consider a baseline data-driven parameterization of eddy fluxes with fixed nor-
malization coefficients:

T ≈ T̂(X) = aTANNθ(X/aX), (9)

where ANNθ is the neural network with trainable parameters θ, X is the input features
(Eq. (8)), and coefficients aT =10−2m2s−2 and aX = 10−6s−1 approximate the stan-
dard deviations of eddy fluxes and velocity gradients in our dataset. Using fixed normal-
ization coefficients in parameterizations similar to Eq. (9) is a common practice (Srinivasan
et al., 2024). Below, we contrast this approach to a normalization that follows solely from
dimensional analysis presented in Section 2.

To facilitate generalization across different resolutions of the coarse grid (scale-aware
or grid-aware parameterization, Bachman et al., 2017), we include the grid spacing of
the coarse model ∆ =

√
∆x∆y to a set of input features (Lund & Novikov, 1993; Li

et al., 2025):
T ≈ T̂(X,∆). (10)

Including grid spacing is physically justified as velocity gradients and momentum fluxes
differ in dimensionality and require a length scale to be invoked.

Finally, we enforce parameterization given in Eq. (10) with the dimensional scal-
ing. A combined set of input and output features (T, X, ∆) is used to construct non-
dimensional input (X/||X||2) and output (T/(∆||X||2)2) features, where ||X||2 =

√∑
i X

2
i .

This normalization of features is local, that is computed separately for each grid point.
By designing the ANN to operate on non-dimensional variables, we propose a param-
eterization with the local dimensional scaling (Reissmann et al., 2021; Prakash et al., 2022):

T̂(X,∆) = ∆2||X||22ANNθ(X/||X||2). (11)

According to the Buckingham (1914)’s Pi theorem, there is freedom in constructing non-
dimensional variables. We opt to use the non-dimensional vector X/||X||2 to constrain
the range of its components between −1 and 1, thereby reducing the distribution shift
in ANN inputs. The model form (Eq. (11)) admits ZB20, Smagorinsky, biharmonic Smagorin-
sky, and Leith (1996) parameterizations as special cases, with well-behaved functional
representations, see Text S1 in SI for details.

3.4 Summary on Physics Constraints

Parameterization in Eq. (11) encapsulates conservation of momentum, angular mo-
mentum, Galilean invariance, and local dimensional scaling. In addition, we also inde-
pendently rotate the training snapshots by 90◦ degrees, and reflect them along x and y
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axes, creating 8 = 23 training snapshots from one snapshot to promote rotational and
reflection invariances via data augmentation (Guan et al., 2022).

4 Results

4.1 Training and offline generalization

We train ANNs to predict the divergence of subfilter fluxes (Eq. (6)) using filtered
velocity gradients (Eq. (7)) as input features. Our main goal is to demonstrate that the
local dimensional scaling promotes the generalization to unseen grid resolutions and depths.
Limited generalization in such scenarios has been reported for previous machine-learning
models of mesoscale eddies (Zhang et al., 2023; Gultekin et al., 2024; Ross et al., 2023)
and traditional physics-based parameterizations (Yankovsky et al., 2024). The training
dataset is created using the climate model CM2.6 (Griffies et al., 2015) with a 0.1◦ ocean
component. Input and output features are diagnosed by filtering and coarse-graining the
climate model data. The filtering is Gaussian (Grooms et al., 2021) with a filter width
three times the coarse grid spacing. See Text S2 and Table S1 in SI for details.

We compare two ANNs: one incorporating local dimensional scaling (Eq. (11)) and
a baseline ANN with fixed normalization coefficients (Eq. (9)). Both ANNs are very small
and have only one hidden layer with 20 neurons, chosen to fit the ANN inference time
within 10% of ocean model runtime (see Texts S2 and S3 in SI). To explore generaliza-
tion, we let the ANNs learn based solely on data from one combination of depth (5m)
and coarse grid spacing (0.9◦) during training. The offline evaluation of ANNs on held-
out data similar to that used for training is shown in Figure 1(b). Since there is no dis-
tribution shift between training and testing data, the baseline ANN demonstrates rea-
sonably high pattern correlation (0.83) and R2 (0.56) in the prediction of subfilter fluxes.
Incorporating the local dimensional scaling improves the pattern correlation (0.91) and
R2 (0.79) due to the latitudinal dependence of the grid spacing over the domain.

We now consider generalization to different grid resolutions, which results in a dis-
tribution shift between testing and training data. Refining the grid spacing assigns fewer
eddies to the subfilter scales but more eddies to the resolved scales, leading to weaker
subfilter fluxes but stronger velocity gradients. Figure 1(c) shows snapshots of ANN pre-
dictions at a grid resolution which is finer (0.4◦) compared to that used for training (0.9◦).
The baseline ANN parameterization (Eq. (9)) predicts subfilter fluxes at a new grid res-
olution with a reasonably high pattern correlation (0.75). However, the magnitude of the
prediction is too large, resulting in a low R2 (−6.16). Instead, the ANN with dimensional
scaling (Eq. (11)) naturally accounts for the reduction of the grid spacing and reduces
the magnitude of the prediction, resulting in high pattern correlation (0.92) and R2 (0.83)
metrics (Figure 1(c)).

The generalization to both finer and coarser grids, and additionally to different depths,
is summarized in Figure 1(d). At coarser grid spacings (1.2◦, 1.5◦) compared to that used
for training (0.9◦), the local dimensional scaling again helps to achieve higher R2 by in-
creasing the magnitude of the prediction. In the deep layers, the subfilter fluxes and ve-
locity gradients are considerably smaller than near the surface. Thus, a baseline ANN,
trained near the surface (such as here, at depth 5m), can lead to overestimating the mag-
nitude of the prediction at depth, resulting in a negative R2. However, the local dimen-
sional scaling adjusts the prediction proportionally to the square magnitude of the ve-
locity gradients. It improves the generalization to deep unseen layers, resulting in a high
R2 (≈ 0.8 at resolution 0.9◦).
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Figure 2. Effect of increasing resolution in idealized configuration NeverWorld2 (Marques et

al., 2022) in the upper row, where 1/32◦ represents filtered and coarse-grained high-resolution

simulation. Impact of the ANN parameterization with local dimensional scaling (Eq. (11)) on-

line at resolution 1/4◦ in the lower row. We consider three depth-integrated metrics: difference

(denoted as ∆) in Eddy Kinetic Energy (EKE) (left column); diagnosed and predicted online

upscale kinetic energy transfer (center column) (positive values represent backscatter); difference

in Available Potential Energy (APE) (right column). All metrics are averaged over 160 snapshots

corresponding to the last 800 days of the simulations.
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4.2 Online evaluation in the MOM6 ocean model

We implement the proposed mesoscale eddy parameterization and evaluate it on-
line in two considerably different configurations of the GFDL MOM6 ocean model (Adcroft
et al., 2019). The difference between the two different ocean configurations and the train-
ing set (CM2.6) in horizontal resolution, vertical coordinate, numerics, and topography
motivated us to use all depths and grid resolutions shown in Figure 1(d) for training. The
retrained ANN with the local dimensional scaling (Eq. (11)) has a comparable offline
skill to the version described earlier, but is less tied to any specific resolution or depth.
The ANN parameterization, as expected, occasionally predicts upgradient fluxes, which
can cause numerical instabilities. Therefore, the grid-scale dissipation is used and given
by a biharmonic Smagorinsky scheme with viscosity coefficient ν4 = 0.06

√
σ2

S + σ2

T∆
4

(Adcroft et al., 2019), applied in control and parameterized (mixed modeling, Meneveau
and Katz (2000)) simulations. Note that we aimed to implement the ANN parameter-
ization without any modifications. However, some adjustments were necessary for nu-
merical stability in an idealized ocean configuration, see implementation details in Text
S3 in SI.

4.2.1 Idealized configuration NeverWorld2

We first consider an idealized adiabatic ocean configuration NeverWorld2 (NW2,
Marques et al. (2022)), which generates various circulation patterns similar to the global
ocean but allows us to isolate the effect of mesoscale eddies. Our goal is to show that
the impact of the ANN parameterization on the flow is similar to that of increasing the
horizontal resolution.

The NW2 configuration is based on the stacked shallow water equations with 15
fluid layers. The configuration includes an idealized Southern Ocean with a reentrant
channel and an idealized Mid-Atlantic Ridge spanning both hemispheres. The circula-
tion is driven by a steady wind forcing and consists of an idealized Antarctic Circum-
polar Current (ACC), and Gyres circulation. We initialize coarse simulations at rest, and
run for 30000 days, similar to Marques et al. (2022) and Perezhogin, Zhang, et al. (2024).

Mesoscale eddies extract available potential energy (APE) from the mean flow, which
is then converted into the eddy kinetic energy (EKE) (Salmon, 1980). At an eddy-permitting
resolution (1/4◦), this energy pathway is partially unresolved (Jansen & Held, 2014; Mana
& Zanna, 2014; Juricke et al., 2019; Loose, Bachman, et al., 2023). As a result, the coarse
ocean model has too low EKE and too large APE when compared to the filtered and coarse-
grained high-resolution simulation, denoted as 1/32◦ (Figure 2(a,c)). However, Figure
2(a) suggests that the missing eddies can be nominally resolved on the coarse grid. Tra-
ditional backscatter parameterizations are designed to directly reduce this EKE bias by
energizing the resolved eddies (Jansen & Held, 2014). More energetic eddies extract more
APE via enhanced turbulent mixing (Yankovsky et al., 2024).

Eddy backscatter is diagnosed when the kinetic energy transfer produced by the
subfilter forcing (Eq. (3)) is predominantly positive (upscale), as shown in Figure 2(b).
We verified that our ANN parameterization accurately predicts the eddy backscatter of-
fline (Figure S1 in SI), suggesting reasonable generalization capabilities of our approach.
In Figure 2(e), we show a more challenging task – the prediction of the eddy backscat-
ter online once the ANN is coupled to the coarse ocean model. The online prediction of
eddy backscatter grossly resembles the diagnosed data shown in Figure 2(b), although
there are slight differences caused by the difference in distributions of input features.

The kinetic energy injection from the ANN parameterization leads to an increase
in EKE that aligns with the high-resolution data, in particular in the ACC region (40◦S−
60◦S), near the western boundaries, and in the subtropics (20◦S−20◦N), see Figure 2(d).
However, the EKE increase in western boundary current extension (40◦N, 10◦E−20◦E)

–9–



manuscript submitted to Geophysical Research Letters

and subpolar gyre (50◦N−70◦N) is smaller than expected from the high-resolution sim-
ulation. The spatial pattern of APE reduction in the parameterized simulation is close
to that produced by increasing horizontal resolution (Figure 2(f)). The APE is predom-
inantly reduced in the Southern Ocean and ACC regions (40◦S−70◦S), followed by APE
reduction in gyres (20◦N− 60◦N, 20◦S− 40◦S). Local patches of APE increase in the
higher resolution model (Figure 2(c)) correspond to enhanced horizontal recirculation
and are reproduced by the ANN parameterization, but less accurately compared to the
diagnosed APE reduction.

4.2.2 Global ocean-sea-ice model OM4

We next evaluate the ANN parameterization in the global ocean model OM4 (Adcroft
et al., 2019). Unlike in the idealized configuration, the interaction of many physical pro-
cesses in driving the circulation in the global ocean model impede our ability to directly
isolate the effect of mesoscale eddies (Ferrari & Wunsch, 2009; Lévy et al., 2010). Build-
ing on the dynamical expectations established in the idealized NW2 configuration, our
goal is to assess whether the global ocean model exhibits similar response patterns to
the eddy parameterization.

The OM4 configuration is a coupled ocean-sea-ice model forced on the air-sea in-
terface by prescribing the atmosphere state according to the CORE-II interannual forc-
ing (IAF) protocol (Large & Yeager, 2009). The simulations span 60 years (1948-2007)
and were initialized with a state of the Control model at year 1977 (after 270 years of
spin-up following the repeating CORE-II IAF protocol).

The prediction of the kinetic energy injection by the ANN parameterization on-
line is shown in Figure 3(a). Similarly to the idealized configuration, the kinetic energy
is injected in the subtropical gyres, near the western boundaries, and occasionally in the
ACC region. The energy injection is accompanied by an increase of the EKE in the same
locations, see Figure 3(b). However, compared to the pattern found in an idealized con-
figuration, the EKE decrease appears more frequently: along topographic features in the
subpolar gyres of the North Atlantic and North Pacific oceans, and occasionally in the
ACC region. The decrease of EKE in these regions is due to a shift or weakening of the
mean currents, potentially as a result of the removal of kinetic energy by the ANN pa-
rameterization along the lateral boundaries, changes in deep water formation, and/or
changes in global overturning circulation. The complexity of the model prohibits us from
identifying a single mechanism.

Similarly to the idealized configuration, APE is primarily reduced in the South-
ern Ocean, with minor APE reductions observed in the Subpolar Gyres of the North At-
lantic and North Pacific oceans. APE is additionally reduced in the Arctic Ocean de-
spite the lack of eddy activity in this region. However, this reduction likely represents
a change in the global reference density profile used to compute the APE.

5 Discussion

We discuss the implications of our results, highlighting a few lessons learned.

Role of the grid spacing in the prediction. Here we consider the alternatives
to the local dimensional scaling (Eq. (11)) which invokes the coarse grid spacing as a length
scale. Instead of using grid spacing that way, we tried to pass it as an input feature (Eq.
(10)). This approach gives comparable offline performance for multiple coarse resolutions
as long as they are included in the training dataset. In contrast, improving the predic-
tion in the full water column does not require additional inputs – this can be achieved
by including multiple depths into the training dataset and increasing the neural network
size. These results further support our claim in Section 2.2 that efficient normalization
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Figure 3. Online evaluation of the ANN parameterization in the global ocean-ice model OM4

(Adcroft et al., 2019) at eddy-permitting resolution (1/4◦). The following depth-integrated di-

agnostics are averaged over a year of 2003: (a) upscale kinetic energy transfer predicted by the

ANN parameterization online, (b) difference in Eddy kinetic energy (EKE), (c) difference in

Available potential energy (APE).

starts with identifying which dimensional features are essential for accurate prediction.
Incorporating local dimensional scaling as done in this work, therefore, requires less train-
ing data and smaller networks to achieve similar skill on in-distribution data, while also
improving generalization to unseen grid spacings and depths.
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Implications of APE changes in NW2. The accurate representation of APE
considered in this study directly impacts metrics relevant to the global ocean. The re-
duction in APE leads to flattening of isopycnals and improves the structure of isopyc-
nal interfaces across multiple cross-sections in NW2 (Figure S3 in SI), along with a weak-
ening of ACC transport through the Drake Passage (Table S3 in SI).

Parameterization at coarser and finer resolutions. We performed online
simulations at resolutions 1/3◦, 1/4◦, and 1/6◦ in NW2 with the ANN parameterization
and existing backscatter schemes (Yankovsky et al., 2024; Perezhogin, Zhang, et al., 2024).
Across these resolutions, the ANN parameterization performs similarly or better than
the baselines in representing the structure of isopycnal interfaces, with more accurate
results found at finer resolutions (1/4◦, 1/6◦), see Table S2 in SI. Implementation of the
ANN parameterization at 1/2◦ resolution did not lead to any robust improvements com-
pared to the control simulation. At this resolution in NW2, we are faced with less re-
solved eddies, weaker velocity gradients, and stronger eddy viscosity. All of these changes
might contribute to the poor performance of the parametrization at this resolution. At
coarser resolutions (≈ 1◦), offline learning of the subfilter fluxes is even more challeng-
ing as the Rossby deformation radius is no longer resolved (Figure S2 in SI). At this res-
olution, bulk approaches for parameterizations might be more reliable. In addition, the
extraction of available potential energy might also be more important to directly param-
eterize (Bachman, 2019; Jansen et al., 2019; Grooms et al., 2024; Perezhogin, Balakr-
ishna, & Agrawal, 2024).

Global ocean model biases.
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Figure 4. Comparison of the ANN parameterization to the negative viscosity backscatter

parameterization (Chang et al., 2023) in the global ocean-ice model OM4. Kinetic energy (KE)

and Available potential energy (APE) are integrated globally. Potential temperature is averaged

globally. ACC transport is computed at the Drake Passage section at 70◦W, and AMOC is com-

puted as the maximum over depth streamfunction at 26.5◦N. Model output is averaged over the

years 1981-2007. Observational data for potential temperature is given by World Ocean Atlas

2018 (WOA18, Locarnini et al. (2018)), for ACC transport with error bar is given by cDrake

(Donohue et al., 2016), and for AMOC is given by RAPID (Cunningham et al., 2007) averaged

over 2004-2021 years with error bar showing interannual standard deviation.

We examined responses in more complex metrics of the global ocean circulation
as opposed to APE/KE. For this purpose, we confront our ANN parameterization to a
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traditional anti-viscosity parameterization representing mesoscale eddy effects (Jansen
et al., 2015) and already tested in OM4 by Chang et al. (2023).

Following the analysis of Chang et al. (2023), we found that both ANN and anti-
viscosity parameterizations reduce the regional biases in the Gulf Stream region, see Fig-
ure S4 in SI for the biases in sea surface temperature and salinity. The response in other
metrics of the global ocean circulation is remarkably similar for both parameterization
approaches as well, see Figure 4. Specifically, both parameterizations increase the glob-
ally integrated kinetic energy by roughly the same percentage and reduce the APE by
nearly the same percentage. The restratification effect of mesoscale eddies leads to the
reduction of the globally-averaged potential temperature (Griffies et al., 2015; Adcroft
et al., 2019). As discussed before, the transport through the Drake Passage is reduced
in both simulations with the anti-viscosity and ANN parameterizations, see also Grooms
et al. (2024). Unlike in Chang et al. (2023), both parameterizations weaken the Atlantic
meridional circulation (AMOC). This suggests that the AMOC response depends on the
ocean model state, perhaps to a greater extent than the details of mesoscale eddy pa-
rameterizations. The response of some global metrics (ACC, AMOC, globally-averaged
potential temperature) does not project onto the existing ocean model biases. That is,
both parameterized ocean simulations are less consistent with the observational data (Fig-
ure 4). Here, we note that the goal was to test the effect of the parameterizations, rather
than reducing model biases. In particular, a full recalibration of the ocean model might
be needed, particularly for physical processes that compete with mesoscale eddies in set-
ting ACC and AMOC strength and average potential temperature.

6 Conclusions

We address the generalization issue of ANN parameterizations of mesoscale eddies
by embedding physical constraints into the inputs, outputs, and parametrization itself.
The Buckingham (1914)’s Pi-theorem and dimensional analysis are invoked to obtain lo-
cal normalization coefficients. The ANN parameterization with local dimensional scal-
ing significantly outperforms the ANN with fixed normalization coefficients offline, demon-
strating superior generalization to unseen grid resolutions and depths in the global ocean
data CM2.6. A general algorithm for constructing dimensional scaling is discussed, which
can be applied to other neural-network parameterizations.

The proposed ANN parameterization with dimensional scaling is successfully tested
online in the GFDL MOM6 ocean model. It accurately predicts upscale kinetic energy
transfer, despite many challenges presented by online implementation. The parameter-
ization modifies the energy pathways by energizing the resolved eddies and reducing APE,
consistent with the expected restratification effects of mesoscale eddies. These improve-
ments hold across idealized (NW2) and global ocean (OM4) configurations, with the most
pronounced APE reduction occurring in the Southern Ocean. The ANN parameteriza-
tion generalizes well in diverse online simulations. Specifically, the ANN achieves com-
parable or better online results than existing backscatter parameterizations (Chang et
al., 2023; Yankovsky et al., 2024; Perezhogin, Zhang, et al., 2024), without requiring sig-
nificant retuning between idealized and global ocean configurations. Moreover, the ANN
performs well online in NW2 for a range of eddy-permitting resolutions (1/3◦, 1/4◦, 1/6◦)
without retuning. However, generalization to very coarse resolutions (1◦−1/2◦) requires
further research as the deformation radius is not resolved and other eddy effects might
need to be captured. Additional work is needed to enhance data-driven parameteriza-
tions beyond the performance of traditional parameterizations in realistic setups such
as the global ocean. Both parameterization approaches exhibit substantial departures
from observations and contribute comparably to persistent model biases. This highlights
the considerable potential for improving parameterization schemes, evaluation metrics,
and model calibration in ocean modeling. Looking ahead, the generalization issue ad-
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dressed in this study has immediate implications for climate models, where parameter-
izations must remain reliable under changing conditions.

Open Research Section

The training algorithm, plots, ANN weights, implemented parameterization and
MOM6 setups are available at https://github.com/m2lines/ANN-momentum-mesoscale
(archived at https://doi.org/10.5281/zenodo.15361840). The training dataset, of-
fline skill, and simulation data are available at https://doi.org/10.5281/zenodo.15361379.
For high-resolution NW2 simulation data, see https://doi.org/10.26024/f130-ev71.
Observational products can be found: WOA18 (https://www.ncei.noaa.gov/data/
oceans/woa/WOA18) and RAPID (https://rapid.ac.uk/data/data-download).
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1. Text S1. Traditional parameterizations as a special case of dimensional

scaling

Here, we show that enforcing the dimensional scaling constraint on the ANN parameter-

ization is not too restrictive and admits multiple traditional parameterizations as a special

case with well-behaved functional representations (see Prakash, Jansen, and Evans (2022)

for discussion). The ANN parameterization of subfilter momentum flux with dimensional

scaling constraint is:

T̂(X,∆) = ∆2||X||22ANNθ(X/||X||2) ≡ (1)

∆2||X||22

(
ANNxx

θ (x) ANNxy
θ (x)

ANNxy
θ (x) ANNyy

θ (x)

)
, (2)

where the vector of input features is

X =



[σS] ↕9
[σT ] ↕9
[ω] ↕9


 ∈ R

27 (3)

and x = X/||X||2.

Smagorinsky parameterization: We first consider a Smagorinsky (1963) subgrid

parameterization:

T̂ = CS∆
2

√
σ2
S + σ2

T

(
σT σS

σS −σT

)
. (4)

This subgrid model can be given in the form of Eq. (2) if ANN parameterizes the following

functions:

ANNxx
θ (x) = CSx14

√
x2
5 + x2

14 (5)

ANNyy
θ (x) = −ANNxx

θ (x) (6)

ANNxy
θ (x) = CSx5

√
x2
5 + x2

14, (7)
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where x5 and x14 represent components of the non-dimensional vector x which are equal

to σS/||X||2 and σT/||X||2 in the center of 3× 3 spatial stencil, respectively. The derived

functions are well-behaved on a bounded domain (|xi| f 1), and thus they can be easily

learned with the ANN. The functional representations of the parameterizations derived

below are well-behaved as well.

Zanna-Bolton 2020 parameterization: Similarly, we can show that Zanna and

Bolton (2020) parameterization

T̂ = −γ∆2

(
−ω σS ω σT

ω σT ω σS

)
−

1

2
γ∆2(ω2 + σ2

T + σ2
S)

(
1 0
0 1

)
(8)

can be represented as follows:

ANNxx
θ (x) = γx5x23 −

1

2
γ(x2

5 + x2
14 + x2

23), (9)

ANNyy
θ (x) = −γx5x23 −

1

2
γ(x2

5 + x2
14 + x2

23), (10)

ANNxy
θ (x) = −γx14x23. (11)

Leith 1996 parameterization: Next, we consider Leith (1996) parameterization:

T̂ = CL∆
3|∇ω|

(
σT σS

σS −σT

)
. (12)

By approximating the gradient with central differences and assuming an isotropic and

uniform grid, we obtain:

ANNxx
θ (x) =

1

2
CLx14

√
(x24 − x22)2 + (x26 − x20)2, (13)

ANNyy
θ (x) = −ANNxx

θ (x), (14)

ANNxy
θ (x) =

1

2
CLx5

√
(x24 − x22)2 + (x26 − x20)2 (15)
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Biharmonic Smagorinsky parameterization: The biharmonic Smagorinsky sub-

grid model has the form:

T̂ = −CS∆
4

√
σ2
S + σ2

T∇
2

(
σT σS

σS −σT

)
. (16)

By approximating the ∇2 operator on an isotropic and uniform grid, we obtain:

ANNxx
θ (x) = −CS(x15 + x13 + x17 + x11 − 4x14)

√
x2
5 + x2

14, (17)

ANNyy
θ (x) = −ANNxx

θ (x), (18)

ANNxy
θ (x) = −CS(x6 + x4 + x8 + x2 − 4x5)

√
x2
5 + x2

14. (19)

2. Text S2. Training dataset and training algorithm

2.1. Dataset

Following Guillaumin and Zanna (2021), the training dataset used is from the GFDL

CM2.6 climate model (Griffies et al., 2015) with 0.1◦ nominal resolution for the ocean

component. We produce a vast training dataset of subfilter forcing to explore general-

ization. Specifically, the subfilter forcing is created using four coarse-graining factors,

selected to be similar to those used in Gultekin et al. (2024), and 10 depths (extending

Gultekin et al. (2024)), see Table S1. The dataset consists of filtered and coarse-grained

velocity gradients (Eq. (7)) and subfilter forcing (Eq. (3)).

2.2. Training algorithm and boundary conditions

We train the ANN model on data from the full globe, similarly to Gultekin et al. (2024).

The loss function is defined to optimize for the divergence (∇· ) of subfilter fluxes (T)

similarly to Zanna and Bolton (2020) and Srinivasan, Chekroun, and McWilliams (2024).

The mean squared error (MSE) loss is minimized on every 2D snapshot of subfilter forcing

June 12, 2025, 1:44am



: X - 5

S and normalized by the corresponding l2-norm of S (Agdestein & Sanderse, 2025):

LMSE = ||(S−∇ · T̂) ·m||22/||S ·m||22, (20)

where m is the mask of wet points. The input features (velocity gradients, X) and

predicted subfilter fluxes are set to zero on the land as well: T̂ ≡ m · T̂(m ·X). That is,

we impose zero Neumann boundary condition (Zhang et al., 2024) and free-slip boundary

condition. We found that including the grid points adjacent to the land to the loss function

is essential for ensuring the numerical stability of online runs. Another important design

choice for online numerical stability is performing the ANN inference on the collocated,

rather than on the staggered grid, similarly to Guillaumin and Zanna (2021) and Agdestein

and Sanderse (2025). The loss function (Eq. (20)) is evaluated and minimized for a total

of 16000 two-dimensional snapshots during training, see Table S1.

2.3. ANN model architecture

The ANN model is chosen to be small (see Table S1): it has only a single hidden layer

with 20 neurons, as in Prakash et al. (2022), with a total of 623 trainable parameters.

Increasing the number of parameters 60 times reduces the MSE loss averaged over the

dataset from LMSE ≈ 0.5 to LMSE ≈ 0.335. However, we keep our ANN small, within

O(1000) parameters, to bound the ANN inference time within ≈ 10% of the ocean model

runtime. We verified that tripling of the number of ANN parameters has only a marginal

effect on fields produced in online numerical tests. Specifically, we find little to no effect

on the 5-year simulated mean fields in online global ocean model runs or the kinetic energy

in a two-layer Double Gyre configuration.
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2.4. Sensitivity to the random seed

The R-squared of the offline predictions of the ANN is almost insensitive to the random

seed used to initialize the training algorithm. In addition, the prediction errors S−∇·T̂ are

highly correlated between different seeds (as in Srinivasan et al. (2024)). We also confirmed

that the kinetic energy is nearly unchanged in online two-layer Double Gyre experiments,

using ANNs generated from different initializations of the training algorithm, similarly

to Zhang et al. (2024). However, there is some sensitivity to the training algorithm

initialization for the mean flow prediction: the response pattern in the mean flow is

similar, but the response magnitude can vary by 50%. The sensitivity to the random seed

is not apparent in the global ocean configuration OM4.

2.5. Choice of the filter scale in the training dataset

We produce the training data using a Gaussian filter implemented in the package GCM-

Filters (Grooms et al., 2021; Loose et al., 2022) with width ∆, chosen in relation to the

coarse grid spacing ∆. The filter-to-grid width ratio parameter (FGR = ∆/∆) represents

the strength of the subfilter parameterization: relatively low value of FGR (∆/∆ = 1)

in the training dataset results in a learned parameterization that has negligible effect in

online simulations. On the other hand, a relatively large value (FGR = 4) results in over-

energized grid-scale features. The value used here (FGR = 3) corresponds to the strongest

parameterization effect without generating grid-scale noise. Note that the optimal FGR

parameter depends on the numerical and physical dissipation schemes present in the

ocean model, as the ANN subfilter parameterization alone does not produce enough grid-

scale dissipation. For the discussion of how to choose FGR parameter see Perezhogin,
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Balakrishna, and Agrawal (2024); Perezhogin, Zhang, Adcroft, Fernandez-Granda, and

Zanna (2024); Perezhogin and Glazunov (2023).

3. Text S3. Online implementation and numerical stability in MOM6

The trained parameters of the ANN subfilter model are saved to a NetCDF file and

read by the numerical ocean model during initialization. The neural network inference is

implemented using the Fortran module of Sane, Reichl, Adcroft, and Zanna (2023). The

ANN inference takes ≈ 10% of the ocean model runtime, for a neural network with one

hidden layer and 20 neurons. However, the inference can be further accelerated, as we

found that the inference in Python is generally faster than in Fortran.

The implemented ANN parameterization works stably (free of NaNs in prognostic fields)

in idealized Double Gyre and global ocean OM4 configurations, without any tuning, in

part because the biharmonic Smagorinsky model provides the dissipation. In the idealized

configuration NeverWorld2 (NW2, Marques et al. (2022)), however, tuning is required to

improve the numerical stability even when a backscatter parameterization (whether our

ANN or more traditional parametrization) is used together with biharmonic Smagorinsky

model; e.g., Yankovsky, Bachman, Smith, and Zanna (2024). We have modified the

ANN parameterization to achieve stability, without optimizing for online metrics, using

a set of minimal changes. Our tuning includes attenuating the magnitude of the ANN

parameterization in high-strain regions following Perezhogin, Zhang, et al. (2024) and

allowing the MOM6 dynamical core to truncate velocities if they are too big. Additionally,

at resolution 1/6◦ in NW2, we had to reduce the time stepping interval.
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Table S1. Parameters of the training data and artificial neural network (ANN) model

Category Value

Training Data Parameters

High-resolution data CM2.6 (Griffies et al., 2015), 0.1◦ ocean grid
Diagnosed features σS, σT , ω, S
Layer Depths (m) 5, 55, 110, 180, 330, 730, 1500, 2500, 3500, 4500
Coarse Grid Spacing, ∆ 0.4◦, 0.9◦, 1.2◦, 1.5◦

Gaussian Filter Width, ∆ 1.2◦, 2.7◦, 3.6◦, 4.5◦; i.e., ∆/∆ = 3
Training / Validation / Test Splitting (years) 181− 188 / 194 / 199− 200
Snapshot Averaging Interval 5 days
Time Seperation Between Snapshots 1 month
Number of 2D Snapshots used for Training 10× 4× 8× 12 = 3840
Number of Training Iterations 16000 (each iteration randomly selects 2D snapshot)

ANN Parameters

Input Size 3× 3
Number of Hidden Layers 1
Number of Channels in Hidden Layer 20
Activation Function ReLU
Number of Trainable Parameters 623
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RMSE 0◦E 15◦E 30◦E 45◦E
Control(1/3◦) 51.3 46.8 49.1 36.8
Yankovsky24(1/3◦) 33.5 31.6 29.9 27.4
ZB20-Reynolds(1/3◦) 32.7 25.4 26.1 21.6
ANN(1/3◦) 35.0 24.3 30.9 28.6
Control(1/4◦) 52.1 42.1 40.3 34.6
Yankovsky24(1/4◦) 27.8 23.0 20.7 21.3
ZB20-Reynolds(1/4◦) 26.9 21.0 18.4 18.5
ANN(1/4◦) 29.2 20.0 16.7 19.7
Control(1/6◦) 42.7 30.7 31.8 26.7
Yankovsky24(1/6◦) 26.2 22.3 16.1 16.8
ZB20-Reynolds(1/6◦) 27.7 24.5 18.9 18.4
ANN(1/6◦) 23.5 18.8 13.8 14.6

Table S2. Online results in idealized configuration NeverWorld2 at three coarse resolutions

(1/3◦, 1/4◦ and 1/6◦). The root mean squared errors (RMSE) in 1000-day averaged position

of interfaces over four meridional transects at longitudes 0◦E, 15◦E, 30◦E and 45◦E. RMSE

units are metres. The interfaces for Control and ANN-parameterized runs at resolution 1/4◦ at

longitudes 0◦E and 45◦E are also shown in Figure S3. The error is computed w.r.t. 1/32◦ model.

Yankovsky24 stands for parameterization of Yankovsky et al. (2024), ZB20-Reynolds stands for

Zanna and Bolton (2020) parameterization implemented and modified by Perezhogin, Zhang, et

al. (2024). Parameterizations are not retuned when resolution is changed.
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ACC transport [Sv]
1/32◦ 235.3
Control(1/3◦) 242.7
Yankovsky24(1/3◦) 237.4
ZB20-Reynolds(1/3◦) 230.2
ANN(1/3◦) 241.6
Control(1/4◦) 245.1
Yankovsky24(1/4◦) 229.9
ZB20-Reynolds(1/4◦) 225.4
ANN(1/4◦) 236.9
Control(1/6◦) 243.3
Yankovsky24(1/6◦) 230.4
ZB20-Reynolds(1/6◦) 219.5
ANN(1/4◦) 228.8

Table S3. Online results in idealized configuration NeverWorld2. The ACC transport through

the Drake Passage at 0◦E averaged over 800 days.
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Diagnosed from 1/32 ◦

10◦E 30◦E 50◦E

(b)
ANN prediction offline (1/4 ◦ )

10◦E 30◦E 50◦E

(c)
ANN prediction online (1/4 ◦ )

100 10 1 10 2 10 3 0 10 3 10 2 10 1 100

Depth-integrated upscale KE transfer ρS · u [W/m2]

Figure S1. Upscale KE transfer (positive numbers correspond to backscatter) averaged over

800 days and integrated over depth in idealized NeverWorld2 configuration. (a) Diagnosed from

high-resolution (1/32◦) simulation by filtering and coarsegraining, (b) and (c) predicted by the

ANN offline and online, respectively, at coarse resolution 1/4◦. The ANN was trained on global

ocean data and thus generalizes well to a new configuration as seen in the accurate prediction

of KE transfer offline. Prediction offline means that filtered and coarsegrained snapshots of the

high-resolution model were given as inputs to the ANN. Slight degradation of prediction online is

related to the difference in magnitude of small-scale velocity gradients and large-scale circulation

patterns in the coarse ocean model.
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Figure S2. (Upper row) Offline kinetic energy (KE) transfer spectrum, where T (k) =

2πkRe(F(u)∗F(S)), and F is the 2D Fourier transform, Re is the real part, and ∗ is the complex

conjugate. (Lower row) power spectrum of subfilter forcing 2πkF(S)∗F(S). Spectra are com-

puted in the North Atlantic region (25− 45◦N)×(60− 40◦W) and at depth 5m. Rd = 22.6km is

the Rossby deformation radius in this region. A single ANN is trained on all available training

data. Each column shows evaluation of ANN at different resolutions of a coarse grid.
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Figure S3. Online results in idealized configuration NeverWorld2. The 1000-days averaged

isopycnal interfaces in the meridional transect of Drake Passage (Longitude 0◦E, left column) and

at Longitude 45◦E. The blue dashed lines show the position of interfaces in the coarse-resolution

(1/4◦) experiment, and the gray lines show the interfaces of the high-resolution model 1/32◦.

The root mean squared errors (RMSE) between coarse and high-resolution models are provided.
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SST

SSS

Control — WOA18     ANN — Control                    Chang23 — Control     

     Chang23 — Control         ANN — Control               Control — WOA18

Figure S4. Online results in the global ocean-ice model OM4 (Adcroft et al., 2019), North

Atlantic region. Comparison of the ANN parameterization to a baseline parameterization tested

in Chang et al. (2023). We consider biases in sea surface temperature (SST), sea surface salinity

(SSS). Model output is averaged over years 1981-2007. The observational data for SST and SSS

is given by the World Ocean Atlas 2018 (WOA18, Locarnini et al. (2018)). Root mean square

errors (RMSEs) between simulations and observations are provided.
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