
1.  Introduction
Mesoscale eddies, with a horizontal scale roughly equal to the Rossby deformation radius, play a crucial role in 
ocean circulation. Mesoscale eddies carry most of the kinetic energy in the ocean and account for a substantial 
part of the transport of momentum, heat, and salt (Vallis, 2017). The dynamics of mesoscale eddies involve a 
variety of complex physical processes: potential to kinetic energy conversion, upscale energy transfer, upgradient 
fluxes, sharpening of jet currents, along-isopycnal mixing and bolus advection. Primitive equations can poten-
tially capture all these processes if all the relevant spatial scales of motion are directly resolved on the compu-
tational grid. However, direct simulation of mesoscale eddies remains computationally expensive, especially in 
high latitudes where the deformation radius decreases (Hewitt et al., 2020).

Modern global ocean models have an eddy-permitting resolution (around 1/4°, Haarsma et al. (2016)), such that 
the largest mesoscale eddies are resolved but smaller ones are not; therefore the effect of these smaller unre-
solved (subgrid) mesoscale eddies is missing and needs to be parameterized. A range of grid resolutions where 
a physical process is partially (but not fully) resolved is often referred to as the gray zone (Berner et al., 2017; 
Christensen & Zanna, 2022). Traditional methods to parameterize mesoscale eddies (Gent & Mcwilliams, 1990; 
Redi, 1982) were designed to describe their mean effect on the large-scale flow. These parameterizations are 
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Plain Language Summary  The climate system includes physical phenomena on a wide range 
of scales from millimeter scale in the boundary layer to planetary scale. Numerical models used for climate 
projections can directly simulate only the largest spatiotemporal scales of the flow, while the missing physics 
due to unresolved (or subgrid) flows must be parameterized. The prediction of the missing term given only 
the information about the resolved flow is a difficult task, given in part the uncertainty associated with the 
state of the unresolved eddies which were discarded. Generative machine learning models have demonstrated 
an exceptional ability to create realistic images obeying complex distributions learned directly from data. In 
this work, we leverage the generative machine learning approach to build a stochastic parameterization of the 
subgrid eddies which is able to sample many possible realizations of the missing physics forcing. The new 
stochastic models have shown excellent performance in predicting the missing physics term and have the 
promise to improve the simulation of turbulence when implemented online in the idealized ocean model.
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suitable for ocean models with a very coarse horizontal resolution, where there is an approximate scale separation 
between the grid step and the size of mesoscale eddies, but not for the gray zone.

The “Large eddy simulation” approach (LES; Fox-Kemper & Menemenlis, 2008; Sagaut, 2006) is a technique 
to build a mesoscale eddy parameterization in the gray zone. The LES framework introduces a spatial filtering 
(and coarse-graining) operator which splits the flow into resolved and subgrid components. The filter mimics 
the effect of finite resolution and its width is proportional to the grid step of the coarse model. The effect of 
subgrid eddies on the resolved flow is referred to as a subgrid forcing and is diagnosed from the output of the 
high-resolution model by applying the spatial filter to the governing equations. A subgrid model or parameter-
ization is a model which relates the subgrid forcing to the resolved flow. In recent years many new mesoscale 
eddy parameterizations were proposed to better capture the effects of mesoscale eddies in the gray zone using 
some heuristic (or empirical) physical arguments (Bachman, 2019; Bachman et al., 2017, 2018; Berloff, 2018; 
Grooms et al., 2015; Jansen & Held, 2014; Jansen et al., 2019; Juricke et al., 2020; Mana & Zanna, 2014; Pearson 
et al., 2017; Thuburn et al., 2014; Zanna et al., 2017).

Machine Learning (ML) methods have recently gained traction as a new direction for developing subgrid eddy 
parameterizations in geophysics and turbulence (Beck et al., 2019; Beucler et al., 2021; Bolton & Zanna, 2019; 
Guan, Chattopadhyay, et al., 2022; Maulik et al., 2019; Rasp et al., 2018; Shamekh et al., 2023; Wang et al., 2022; 
Yuval & O’Gorman, 2020). ML parameterizations capture the effect of subgrid eddies on the resolved flow by 
training a model in a data-driven fashion. The most popular approach to train ML subgrid models is to minimize 
the mean squared error (MSE) between their output and a subgrid forcing obtained by reducing the resolution of 
a high-resolution model via filtering and coarse-graining (Bolton & Zanna, 2019). Such models typically have 
excellent offline performance: they are able to accurately predict the subgrid forcing. However, the ultimate goal of 
subgrid parameterizations is to improve online performance, once the parameterization is included into the coarse 
ocean model and the model is integrated for a long time. The coarse parameterized model should then reproduce the 
statistical properties of the coarse-grained high-resolution model (Sagaut, 2006). Recent work has shown that the 
offline and online performance of subgrid parameterizations correlate poorly (Ross et al., 2023): models trained with 
the offline MSE loss may be unstable when applied online (Beck et al., 2019; Maulik et al., 2019) and physically 
based parameterizations have very low offline MSE but perform reasonably well online (Ross et al., 2023). Several 
approaches have been proposed to improve ML parameterizations. Kochkov et al. (2021) and Frezat et al. (2022) 
proposed an online training procedure that improves numerical stability properties but requires a differential model 
and has a considerable computational cost. Guan, Chattopadhyay, et al. (2022) suggested gradually enlarging the 
training data set until the rare events in subgrid forcing are well captured. In Guan, Subel, et al. (2022) the MSE loss 
function was modified with an additional constraint involving energy exchange. Frezat et al. (2021), Guan, Subel, 
et al. (2022), and Pawar et al. (2022) proposed to account for physical invariances of subgrid forcing.

Conventional subgrid parameterizations are deterministic and predict a single subgrid forcing for a given input 
(Berner et al., 2017), which represents the mean or most likely prediction given the resolved flow. However, many 
possible states of the subgrid eddies are typically consistent with a given resolved flow, so there is inherent uncertainty 
in the subgrid fluxes (Berner et al., 2017; Christensen & Zanna, 2022; Gerard, 2007). Quantifying this uncertainty 
requires characterizing the distribution of the subgrid forcing, conditioned on the resolved variables. The stochastic 
ML model of Guillaumin and Zanna (2021) performs uncertainty quantification by estimating the pointwise condi-
tional mean and conditional variance of the subgrid forcing, but does not take into account spatial correlations.

Subgrid models incorporating uncertainty quantification (UQ) can be used to build stochastic parameteriza-
tions, where the subgrid forcing is random. Stochastic parameterizations are widely used in climate models and 
have been shown to improve the mean state and variability (Berner et al., 2012, 2017; Christensen et al., 2017; 
Juricke et al., 2017; Palmer, 2000). The two simplest stochastic parameterizations are Stochastically perturbed 
parameterization tendency (SPPT; Andrejczuk et al., 2016; Buizza et al., 1999; Subramanian et al., 2019) 
which multiplies a deterministic subgrid model by a random number with unit mean and non-zero spread and 
Stochastic kinetic energy backscatter scheme (SKEBS; Berner et al., 2009; Storto & Andriopoulos, 2021) 
which introduces additive stochastic forcing. The effect of stochastic parameterizations on online performance 
depends in a complex way on the associated UQ model. There is sensitivity to spatial (Grooms et al., 2015) 
and temporal (Arnold et al., 2013; Berner et al., 2009; Schumann, 1995; Wilks, 2005) correlations of stochas-
tic forcing, its non-Gaussian distribution (Mana & Zanna, 2014; Zanna et al., 2017) and its dependence on the 
resolved flow (multiplicative noise, Arnold et al., 2013; Sura et al., 2005; Zacharuk et al., 2018).
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In this work, we propose to leverage two powerful uncertainty-quantification ML frameworks to data-driven subgrid 
parameterization of mesoscale eddies: variational autoencoder (VAEs; Kingma & Welling, 2013) and generative 
adversarial networks (GANs; Goodfellow et al., 2014). These frameworks provide a data-driven characterization of 
the conditional distribution of the subgrid forcing given the resolved flow. The resulting ML models are generative, 
meaning that they allow us to sample from the conditional distribution, and can be therefore directly deployed as 
stochastic parameterizations. Our proposed ML models do not contain a-priori assumptions about the structure of 
the statistical model. These ML models can therefore potentially capture any statistically significant properties of 
the subgrid forcing such as the spatial correlation of stochastic residuals, dependence on the resolved flow, or proba-
bility distribution (Adler & Öktem, 2018; Alcala & Timofeyev, 2021; Gagne et al., 2020; B. T. Nadiga et al., 2022). 
In addition, generative models can be trained and tested using the same data sets, as MSE-based ML models.

We implement our generative models in an idealized ocean simulation and evaluate them both offline and online. 
Our offline analysis shows that the generative models provide a flow-dependent prediction of uncertainty. The 
resulting stochastic residuals are correlated in space and reproduce stochastic backscatter (Chasnov,  1991; 
Frederiksen & Davies,  1997; Leslie & Quarini,  1979) in the correct band of scales. Additionally, generative 
models accurately simulate large-scale kinetic energy backscatter (Jansen & Held, 2014; Thuburn et al., 2014) 
and properly energize the flow. Our online analysis shows that the generative models have better numerical stabil-
ity and metrics than the baseline ML model in Guillaumin and Zanna (2021) at coarse resolutions.

2.  Idealized Ocean Model and Subgrid Eddy Forcing
In this section, we describe an idealized numerical ocean model based on quasi-geostrophic (QG) equations of 
layered fluid written in Python (pyqg; Abernathey et al., 2022), see Figure 1. The configuration of the QG model 
and the corresponding definition of subgrid forcing are similar to those in Ross et al. (2023). We use this model 
to perform offline and online evaluations of the proposed methodology to build subgrid parameterization for a 
range of resolutions.

2.1.  Governing Equations

We solve numerically the QG equations for potential vorticity (PV) anomalies relative to the mean flow given by 
a prescribed vertical shear that plays the role of external forcing driving turbulence.

The two-layer QG equations in Cartesian coordinates (x is zonal, y is meridional) are:

𝜕𝜕𝑡𝑡𝑞𝑞𝑚𝑚 + ∇ ⋅ (𝐮𝐮𝑚𝑚𝑞𝑞𝑚𝑚) + 𝛽𝛽𝑚𝑚𝜕𝜕𝑥𝑥𝜓𝜓𝑚𝑚 + 𝑈𝑈𝑚𝑚𝜕𝜕𝑥𝑥𝑞𝑞𝑚𝑚 = −𝛿𝛿𝑚𝑚𝑚2𝑟𝑟𝑒𝑒𝑒𝑒∇
2𝜓𝜓𝑚𝑚 + 𝑠𝑠𝑠𝑠𝑠𝑠◦𝑞𝑞𝑚𝑚,� (1)

𝑞𝑞𝑚𝑚 = ∇2𝜓𝜓𝑚𝑚 + (−1)
𝑚𝑚

𝑓𝑓 2

0

𝑔𝑔′𝐻𝐻𝑚𝑚

(𝜓𝜓1 − 𝜓𝜓2), 𝑚𝑚 ∈ {1, 2}� (2)

where m is the index of the fluid layer (1 for the upper layer and 2 for the lower layer); qm is the potential vorticity 
(PV) which is conserved on Lagrangian trajectories in absence of forcing and dissipation; ψm is the streamfunc-
tion, related to velocity as um = (um, vm) = (−∂yψm, ∂xψm); Um is the prescribed mean zonal flow (in the x direction); 

𝐴𝐴 𝐴𝐴𝑚𝑚 = 𝛽𝛽 + (−1)
𝑚𝑚+1 𝑓𝑓2

0

𝑔𝑔′𝐻𝐻𝑚𝑚

(𝑈𝑈1 − 𝑈𝑈2) is the meridional gradient of potential vorticity due to differential rotation (in 
β-plane approximation) and prescribed mean flow; rek is the bottom drag coefficient; δm,2 is a Kroneker delta which 
indicates that drag is applied only to the lower layer; f0 is the reference Coriolis frequency; g′ is the reduced gravity 
and Hm is the fluid layer thickness, H = H1 + H2 is the total depth; ∇ = (∂x, ∂y) is a horizontal Nabla operator, 
where ∂x, ∂y are partial derivatives w.r.t. x, y. The kinetic and total energy per unit mass are respectively given by:

𝐸𝐸 =
1

2𝐻𝐻

2∑

𝑚𝑚=1

𝐻𝐻𝑚𝑚⟨|𝐮𝐮𝑚𝑚|2⟩� (3)

 = −
1

2𝐻𝐻

2∑

𝑚𝑚=1

𝐻𝐻𝑚𝑚⟨𝜓𝜓𝑚𝑚𝑞𝑞𝑚𝑚⟩� (4)

where 〈·〉 is 2D spatial averaging.
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2.1.1.  Small-Scale Dissipation and Numerical Scheme

We ignore “molecular viscosity” in the governing Equations  1 and 2, as typically done in ocean modeling 
(Griffies & Hallberg, 2000) due to negligible contribution. Numerical noise is suppressed by the small-scale 
dissipation term (ssd; Ross et  al.,  2023), which smoothes the potential vorticity after every time step 
(qm → ssd(qm)) using an “exponential cut-off” filter (Arbic & Flierl, 2003; Canuto et al., 1988; LaCasce, 1996). 
The filter is defined by its spatial spectrum 𝐴𝐴 𝑠𝑠𝑠𝑠𝑠𝑠 . The highest wavenumbers (κ > κc) are multiplied by the transfer 
function:

𝑠𝑠𝑠𝑠𝑠𝑠(𝜅𝜅) = 𝑒𝑒−23.6(Δ𝑥𝑥)
4(𝜅𝜅−𝜅𝜅𝑐𝑐)

4

,� (5)

where 𝐴𝐴 𝐴𝐴 =

√
𝑘𝑘2 + 𝑙𝑙2 is the radial wavenumber, k and l are zonal and meridional wavenumbers, respectively, Δx 

is the grid step, κc = 0.65κmax and κmax = π/Δx is the Nyquist frequency. The ssd term attenuates the KE spectrum 
near the grid scale: see the abrupt decrease of KE density in high wavenumbers in Figure 1c. The pink lines in 
Figure 1d show the corresponding energy dissipation. At statistical equilibrium, the small-scale dissipation is 
balanced by a spurious positive energy transfer which disappears with an increase in resolution (Figure 1d). The 
ssd term is kept in the unparameterized and parameterized models.

Equations 1 and 2 are solved using the third-order Adamsh-Bashford time integration scheme and a pseudo-spectral 
spatial approximation without dealiasing (Ross et al., 2023).

2.1.2.  Model Setup

The QG system is initially perturbed from rest with random noise in the upper PV field, with a subsequent 
evolution over the next 2–5 years exhibiting a transition to turbulence. The initial random perturbations are 
limited to the range of scales of the coarsest model (48 2), and it allows to simulate similar energy growth 
in the transition from laminar to turbulent regimes at different grid resolutions, see Figure 1a. Our default 

Figure 1.  Reference simulations at five different resolutions: (a) kinetic energy (Equation 3) as a function of time, (b) 
snapshot of the potential vorticity in the model used for diagnosing subgrid forcing, (c) the spectral density of kinetic energy 
normalized as E = ∫E(κ)dκ, (d) total energy transfer from nonlinear advection 𝐴𝐴

1

𝐻𝐻

∑2

𝑚𝑚=1
𝐻𝐻𝑚𝑚Re

(
𝜓̂𝜓∗

𝑚𝑚∇̂(𝐮𝐮𝑚𝑚𝑞𝑞𝑚𝑚 )

)
 ; see Text S1 in 

Supporting Information S1 for the derivation of spectral energy budget. Coarse models fail to reproduce the energy cycle 
when their resolution is insufficient to resolve the deformation radius 𝐴𝐴 𝐴𝐴 = 𝑟𝑟−1

𝑑𝑑
= (15km)

−1 (see blue vertical line). Pink lines 
in panel (d) show the dissipation provided by the ssd term, which causes a spurious forward energy cascade (positive spikes 
in energy transfer).
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configuration is called “eddy” (Table 1). An additional “jet” configuration is dominated by meandering jets 
and used for generalization studies (Ross et al., 2023).

Mesoscale eddies emerge on a spatial scale determined by the deformation radius 𝐴𝐴 𝐴𝐴𝑑𝑑 =

√
𝑔𝑔′

𝑓𝑓2
0

𝐻𝐻1𝐻𝐻2

𝐻𝐻
 (Salmon, 1980; 

Vallis, 2017). Following Hallberg (2013), the model grid step should be small enough rd/Δx ≥ 2 to resolve 
mesoscale eddies on the grid. High-resolution models (256 2, 1,024 2) satisfy this criterion. In the remaining text, 
we will use the 256 2 model as a reference simulation because a further increase of resolution to 1,024 2 almost 
does not change the statistics of the large scales 𝐴𝐴 𝐴𝐴 𝐴 𝐴𝐴−1

𝑑𝑑
 , see spectra left to the blue line in Figure 1. Note that 

fast convergence of statistics of large scales is achieved due to the application of the pseudo-spectral method 
with highly scale-selective dissipation.

The resolution of coarse models (48 2, 64 2, 96 2) is chosen such that rd/Δx < 2. These models fail to reproduce 
various statistical characteristics (Hallberg, 2013; Hewitt et al., 2020), including kinetic energy (KE), spectrum 
of KE, and energy transfer (Figures 1a, 1c, and 1d). In this work, we aim to improve the simulation of turbulence 
in coarse models by incorporating a subgrid parameterization model, which compensates for the missing physics.

2.2.  Filtered Equations

We follow the Large eddy simulation (LES; Sagaut,  2006) approach and define a spatial filtering and 
coarse-graining operator 𝐴𝐴 (⋅) which maps the solution of the high-resolution model (q) to a coarse grid. The 
filtered and coarse-grained field is denoted as 𝐴𝐴 𝑞𝑞 . The time evolution equation for 𝐴𝐴 𝑞𝑞 is derived below and contains 
a new term that describes the interaction with unresolved eddies. This term is not available at the coarse resolu-
tion and needs to be parameterized.

Most of our analysis is performed with the so-called “Sharp” filter introduced in Ross et al. (2023). The Sharp filter 
combines the spectral cut-off coarse-graining followed by the model filter ssd (Equation 5) applied on a coarse grid. 
The spectral cut-off coarse-graining discards the wavenumbers above the Nyquist frequency (π/Δx) of the coarse grid.

QG configuration “Eddy” “Jet”

Integration time 20 years –(same)

Ensemble size 10 runs –

Domain size (L × W) 1,000 km × 1,000 km –

Boundary conditions Periodic –

Upper layer thickness (H1) 500 m –

Ocean depth (H = H1 + H2) 2,500 m 5,500 m

Bottom drag (rek) 5.787 × 10 −7 s −1 7 × 10 −8s −1

Differential rotation (β) 1.5 × 10 −11 (m s) −1 10 −11(m s) −1

Deformation radius 𝐴𝐴

(
𝑟𝑟𝑑𝑑 =

√
𝑔𝑔′

𝑓𝑓2
0

𝐻𝐻1𝐻𝐻2

𝐻𝐻

)
15 km –

Mean flow (U1, U2) (0.025, 0 m/s) –

Velocity scale 𝐴𝐴 (

√
2𝐸𝐸) ≈0.035 m/s ≈0.02 m/s

Grid parameters Resolution Grid step (Δx) (km) Time step (Δt) (hr)

High resolution 256 × 256 3.9 1

Coarse models 96 × 96 10.4 2

64 × 64 15.6 4

48 × 48 20.8 1,2,4,8

Note. In our paper, unless otherwise mentioned, we use the “eddy” configuration.

Table 1 
Parameters of the Quasi-Geostrophic Model in Online Simulations (Ross et al., 2023)
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An additional filtering and coarse-graining operator studied is the combination of the spectral cut-off followed by 
the Gaussian filter (Guan, Chattopadhyay, et al., 2022). The transfer function of the Gaussian filter is:

𝐺𝐺(𝜅𝜅) = 𝑒𝑒−𝜅𝜅
2(2Δ𝑥𝑥)2∕24,� (6)

where Δx is the coarse grid step and 2Δx is the filter width. For brevity, we refer to the combination of cut-off 
and Gaussian filters as “Gaussian.”

Applying the filter 𝐴𝐴 (⋅) to the governing Equations 1 and 2, we obtain a set of governing equations for the filtered 
and coarse-grained solution:

𝜕𝜕𝑡𝑡𝑞𝑞𝑚𝑚 + ∇ ⋅

(
𝐮𝐮𝑚𝑚𝑞𝑞𝑚𝑚

)
+ 𝛽𝛽𝑚𝑚𝜕𝜕𝑥𝑥𝜓𝜓𝑚𝑚 + 𝑈𝑈𝑚𝑚𝜕𝜕𝑥𝑥𝑞𝑞𝑚𝑚 = −𝛿𝛿𝑚𝑚𝑚2𝑟𝑟𝑒𝑒𝑒𝑒∇

2𝜓𝜓𝑚𝑚 + 𝑆𝑆 + 𝑠𝑠𝑠𝑠𝑠𝑠◦𝑞𝑞𝑚𝑚,� (7)

𝑞𝑞𝑚𝑚 = ∇2𝜓𝜓𝑚𝑚 + (−1)
𝑚𝑚

𝑓𝑓 2

0

𝑔𝑔′𝐻𝐻𝑚𝑚

(
𝜓𝜓1 − 𝜓𝜓2

)
, 𝑚𝑚 ∈ {1, 2}.� (8)

S is the additional subgrid forcing produced by the unresolved eddies on the resolved scales,

𝑆𝑆 = ∇ ⋅

(
𝐮𝐮 𝑞𝑞 − 𝐮𝐮𝑞𝑞

)
,� (9)

which needs to be parameterized. To simplify notation, we will omit the index m for the subgrid forcing and 
related variables. The dissipation term ssd on a coarse grid in Equation 7 is added a-posteriori to ensure the 
numerical stability of the simulations. In deriving Equation 7, we used commutativity between derivatives and 
spatial filtering, which holds for spectral numerical schemes and spectral filters (Ghosal, 1996). Both subgrid 
forcing and numerical advection scheme are formulated in the form of divergence of flux, so we include numer-
ical approximation errors into the definition of subgrid forcing (Chow & Moin, 2003; Ghosal, 1996; Gullbrand 
& Chow, 2003).

2.3.  Subgrid Forcing Data Set

The data set to train ML subgrid parameterization models is obtained as follows. We integrate the governing 
equations in time for 10 years at high resolution (256 2) with time step 1 hr and save snapshots every 1,000 hr, for 
a total of 86 snapshots. The training data set consists of 250 runs, each corresponding to a different random initial 
condition, for a total of 21,500 snapshots. The validation and testing data sets consist of 25 runs each. For each 
coarse resolution (48 2, 64 2, 96 2), we compute a filtered solution represented on a coarse mesh (𝐴𝐴 𝑞𝑞 , 𝐴𝐴 𝐮𝐮 ) and subgrid 
forcing (Equation 9) using Sharp or Gaussian filters. The spectral content of the resulting subgrid forcing greatly 
depends on the scale selectivity of the filter; see Figure 2.

3.  Data-Driven Stochastic Subgrid Models
In this section, we introduce a probabilistic approach for predicting subgrid forcing, which can be used to build 
data-driven stochastic parameterizations.

Conventional subgrid parameterizations establish a functional relationship between the subgrid forcing (S, Equa-
tion 9) and the resolved flow 𝐴𝐴

(
𝑞𝑞
)
 in the form of 𝐴𝐴 𝐴𝐴 ≈ 𝑆𝑆

(
𝑞𝑞
)
 . Such parameterizations are typically deterministic; they 

produce a single prediction for a given input. However, there is inherent uncertainty in the prediction of subgrid 
forcing because many possible states of the subgrid eddies are consistent with a given resolved flow. Therefore, 
we propose to instead generate a probabilistic prediction, by attempting to sample from the conditional distribu-
tion of the subgrid forcing given the coarse-grained flow 𝐴𝐴

(
𝑆𝑆 ∼ 𝜌𝜌

(
𝑆𝑆|𝑞𝑞

))
 .

To generate a probabilistic prediction of the subgrid forcing, we propose to apply a generative ML frame-
work, where samples from a desired distribution are obtained by transforming white noise using a mapping 
learned directly from data (Goodfellow et al., 2014; Kingma & Welling, 2013). We design and compare three 
different approaches, depicted in Figure 3, to learn this transformation: (a) A model based on Guillaumin and 
Zanna (2021), which predicts the pointwise mean and pointwise standard deviation of the conditional distribu-
tion of the subgrid forcing. (b) A generative adversarial network (GAN), consisting of a generator that generates 
subgrid-forcing samples by trying to fool a discriminator, trained to distinguish between these samples and the 
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true high-resolution data. (c) A variational autoencoder (VAE) consisting of an encoder, which maps the input 
signal to a latent space, and a decoder, which decodes the latent variables to produce subgrid-forcing samples. 
The remainder of this section provides a more detailed description of each approach.

Figure 2.  Subgrid forcing (S, Equation 9) at different resolutions was diagnosed using a Sharp filter (top row), or a Gaussian filter (bottom row). Left: power spectrum 
of S for the upper fluid layer (solid lines) and lower fluid layer (dashed lines). Colors: 48 2 (gray), 64 2 (violet), 96 2 (yellow). Vertical lines show grid cut-off for coarse 
mesh κmax = π/Δx. Right: Snapshots of S at three different resolutions for the upper layer.

Figure 3.  Schematic of three stochastic subgrid models attempting to sample from the conditional distribution 𝐴𝐴 𝐴𝐴
(
𝑆𝑆|𝑞𝑞

)
 : (a) GZ model, (b) GAN model and (c) VAE 

model. GZ model predicts uncorrelated stochastic residuals, but generative models (GAN and VAE) transform white noise using a mapping learned directly from data 
(gray-shaded box). Discriminator and Encoder are supplementary networks that allow training of the mapping but are not required for subgrid forcing prediction.
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3.1.  Guillaumin and Zanna Model (GZ)

Guillaumin and Zanna  (2021) presented a probabilistic ML parameterization, where the mean and variance 
of the subgrid forcing are estimated at every grid point using a neural network. The original formulation in 
Guillaumin and Zanna  (2021) minimizes an i.i.d. Gaussian likelihood cost function to optimize the param-
eters of the network. Here, we propose an alternative training procedure, which we have found to be more 
efficient. Following the approach of Adler and Öktem (2018), we estimate the pointwise means and variances 
sequentially.

First, we estimate the conditional mean at each grid point by minimizing the MSE loss function:

MSE =
1

2𝑛𝑛2
‖𝑆𝑆 − 𝑆𝑆mean

𝜃𝜃

(
𝑞𝑞
)
‖2
2
,� (10)

where 𝐴𝐴 𝑆𝑆mean

𝜃𝜃

(
𝑞𝑞
)
 is the output of a neural network with parameters denoted by θ, which receives 𝐴𝐴 𝑞𝑞 as an input. 

𝐴𝐴 𝐴𝐴𝐴𝑆𝑆mean

𝜃𝜃
, 𝑞𝑞 ∈ ℝ

2×𝑛𝑛×𝑛𝑛 are tensors representing two layers of fluid, each layer having n × n points. The norm in the 
cost function is the ℓ2 norm of the vectorized tensor, which for the vector of length D is 𝐴𝐴 ‖𝐱𝐱‖2 =

√
𝑥𝑥2

1
+⋯ + 𝑥𝑥2

𝐷𝐷
 . 

The loss function is minimized over a training set consisting of samples of the resolved flow 𝐴𝐴 𝑞𝑞 and the corre-
sponding high-resolution forcing S obtained as described in Section 2.3. Minimization of 𝐴𝐴 MSE yields an optimal 
set of parameters θ* and a corresponding model which we denote as 𝐴𝐴 𝑆𝑆mean

(
𝑞𝑞
)
 .

Second, we estimate the conditional variance at each grid point, based on the residual of the conditional-mean 
estimate 𝐴𝐴 𝐴𝐴 = 𝑆𝑆 − 𝑆𝑆mean

(
𝑞𝑞
)
 . To this end, we minimize the cost function

VAR =
1

2𝑛𝑛2
‖𝑟𝑟2 − 𝑆𝑆var

𝜙𝜙

(
𝑞𝑞
)
‖2
2
,� (11)

where 𝐴𝐴 𝑆𝑆var

𝜙𝜙

(
𝑞𝑞
)
 is the output of a neural network with parameters denoted by ϕ, which receives 𝐴𝐴 𝑞𝑞 as an input. 

The final layer of the network is a softplus activation function ln(1 + e x) to ensure that the variance estimates 
are nonnegative. The loss function is minimized over the training set fixing the residual r. The resulting model 
is denoted by 𝐴𝐴 𝑆𝑆var

(
𝑞𝑞
)
 . The architecture of the CNNs (convolutional neural network) used to parameterize the 

mappings 𝐴𝐴 𝑆𝑆mean
(
𝑞𝑞
)
 and 𝐴𝐴 𝑆𝑆var

(
𝑞𝑞
)
 and details of the optimization algorithm are provided in Appendix A3.

The conditional-mean and conditional-variance models are used to implement a stochastic parameterization with 
white noise, as follows (see Figure 3a):

𝑆𝑆
(
𝑧𝑧𝑧 𝑞𝑞

)
= 𝑆𝑆mean

(
𝑞𝑞
)
+

(
𝑆𝑆var

(
𝑞𝑞
))1∕2

⋅ 𝑧𝑧𝑧� (12)

where 𝐴𝐴 𝐴𝐴 ∈ ℝ
2×𝑛𝑛×𝑛𝑛 is sampled from a standard normal distribution.

3.2.  Generative Adversarial Network Model (GAN)

We propose to leverage the framework of generative adversarial networks (GANs) to build a probabilistic model 
(Goodfellow et al., 2014), which generates samples from the distribution of possible subgrid forcings (S) at a 
given resolved flow 𝐴𝐴

(
𝑞𝑞
)
 denoted by 𝐴𝐴 𝐴𝐴

(
𝑆𝑆|𝑞𝑞

)
 , where both variables are considered as 3D fields, 𝐴𝐴 𝐴𝐴𝐴 𝑞𝑞 ∈ ℝ

2×𝑛𝑛×𝑛𝑛 . The 
mentioned distribution is defined implicitly by the data set of pairs of S and 𝐴𝐴 𝑞𝑞 . The GAN framework consists 
of two networks, generator and discriminator, playing an adversarial game: the generator attempts to fool the 
discriminator, which is trained to discriminate between the output of the generator and actual data sampled from 
a desired distribution.

Sampling from the conditional distribution is possible with the conditional GAN model (cGAN; Mirza & 
Osindero, 2014), which informs both networks with the conditional variable. Specifically, the generator trans-
forms the latent noise variable 𝐴𝐴 𝐴𝐴 ∈ ℝ

2×𝑛𝑛×𝑛𝑛 and PV field to the subgrid forcing, see Figure 3b:

𝑆𝑆 = 𝐺𝐺
(
𝑧𝑧𝑧 𝑞𝑞

)
,� (13)

where the mapping G is parameterized by the same CNN as in the GZ model, and the tensors z and 𝐴𝐴 𝑞𝑞 are concat-
enated to form a single input tensor of size 𝐴𝐴 ℝ

4×𝑛𝑛×𝑛𝑛 . The discriminator 𝐴𝐴 𝐴𝐴
(
𝑆𝑆𝑆 𝑞𝑞

)
 returns a score (scalar value) given 
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a pair of subgrid forcing and PV field concatenated to form a single input tensor. The discriminator D is parame-
terized by a neural network similar to the one used in DCGAN (Radford et al., 2015).

There are many options to define the adversarial loss function (Lucic et al., 2018). We leverage a popular approach 
of Wasserstein GAN (WGAN; Arjovsky et al., 2017) with the following optimization problem:

min
𝐺𝐺

max
𝐷𝐷

𝔼𝔼
[
𝐷𝐷
(
𝑆𝑆𝑆 𝑞𝑞

)
−𝐷𝐷

(
𝐺𝐺
(
𝑧𝑧𝑧 𝑞𝑞

)
, 𝑞𝑞
)]
,� (14)

where 𝐴𝐴 𝔼𝔼 is the mathematical expectation over the training samples. The discriminator estimates the Wasserstein-1 
𝐴𝐴 (1) distance between the distributions 𝐴𝐴 𝐴𝐴

(
𝑆𝑆|𝑞𝑞

)
 and 𝐴𝐴 𝐴𝐴

(
𝑆𝑆|𝑞𝑞

)
 , which quantifies how close they are. This distance 

has a complicated definition and cannot be computed directly but can be shown to satisfy the equality (Adler & 
Öktem, 2018)

1

(
𝜌𝜌
(
𝑆𝑆|𝑞𝑞

)
, 𝜌𝜌

(
𝑆𝑆|𝑞𝑞

))
= max

𝐷𝐷
𝔼𝔼

[
𝐷𝐷
(
𝑆𝑆𝑆 𝑞𝑞

)
−𝐷𝐷

(
𝑆𝑆𝑆 𝑞𝑞

)]
,�

which is the inner optimization problem in Equation 14. The optimization of the generator (minG in Equation 14) 
is designed to minimize the distance between the true and generated distributions.

Solving the optimization Problem 14 may lead to the mode collapse phenomenon when the generator ignores the 
latent variable z: for every coarse field 𝐴𝐴 𝑞𝑞 the model may produce a single fixed subgrid forcing (Isola et al., 2017; 
Mao et al., 2019; Ohayon et al., 2021; Yang et al., 2019). To overcome mode collapse, we apply a technique 
proposed by Adler and Öktem (2018): feeding multiple generator outputs 𝐴𝐴 𝑆𝑆  to the discriminator for a given input 

𝐴𝐴 𝑞𝑞 . Identical outputs are readily detected and penalized by the discriminator. We define the GAN loss function 
accounting for this technique in Appendix A1. The architecture of the networks parameterizing G and D and the 
optimization algorithm are described in Appendix A3.

Once trained, the GAN generator Equation 13 can be used as a stochastic parameterization by sampling the latent 
variable 𝐴𝐴 𝐴𝐴 ∈ ℝ

2×𝑛𝑛×𝑛𝑛 from a standard normal distribution.

3.3.  Variational Autoencoder Model (VAE)

As an alternative to the GAN framework, we propose leveraging the variational autoencoder (VAE; Kingma 
& Welling,  2013) to sample from the conditional distribution 𝐴𝐴 𝐴𝐴

(
𝑆𝑆|𝑞𝑞

)
 . The VAE framework consists of two 

networks: the encoder and the decoder. The encoder produces a latent representation and the decoder reconstructs 
the subgrid forcing from this representation. A regularization term constrains the latent vector to be close to a 
simple distribution, chosen a priori.

The conditional VAE (cVAE) is obtained by feeding a conditional variable to the encoder and decoder 
(Doersch, 2016; Mishra et al., 2018; Pagnoni et al., 2018; Sohn et al., 2015; Zhang et al., 2016): the decoder maps 
the latent noise and conditional variable 𝐴𝐴 𝑞𝑞 to the subgrid forcing, see Figure 3c:

𝑆𝑆 ∼ 𝜌𝜌𝜃𝜃

(
𝑆𝑆|𝑧𝑧𝑧 𝑞𝑞

)
,� (15)

where free parameters are denoted by θ and we emphasize that the mapping is probabilistic. The probabilistic 
encoder with free parameters ϕ is denoted as 𝐴𝐴 𝐴𝐴 ∼ 𝑞𝑞𝜙𝜙

(
𝑧𝑧|𝑆𝑆𝑆 𝑞𝑞

)
 . The encoder and decoder are trained jointly to 

maximize the lower bound of the likelihood of observing the training sample (also known as evidence lower 
bound, ELBO):

ln𝜌𝜌𝜃𝜃
(
𝑆𝑆|𝑞𝑞

)
≥ 𝔼𝔼𝑞𝑞𝜙𝜙(𝑧𝑧|𝑆𝑆𝑆𝑞𝑞) ln𝜌𝜌𝜃𝜃

(
𝑆𝑆|𝑧𝑧𝑧 𝑞𝑞

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
reconstruction

−𝐷𝐷KL

(
𝑞𝑞𝜙𝜙
(
𝑧𝑧|𝑆𝑆𝑆 𝑞𝑞

)
‖𝜌𝜌(𝑧𝑧)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
regularization

= −VAE,
� (16)

where 𝐴𝐴 𝐴𝐴KL(𝑝𝑝(𝑥𝑥), 𝑞𝑞(𝑥𝑥)) = 𝔼𝔼𝑝𝑝(𝑥𝑥) ln
𝑝𝑝(𝑥𝑥)

𝑞𝑞(𝑥𝑥)
 is Kullback–Leibler divergence, a measure of the difference between two 

distributions. The reconstruction term encourages the encoder to seek an accurate latent representation of the 
subgrid forcing and encourages the decoder to assign a high probability to the training samples. The regulari-
zation term constrains the encoder to be close to the prior distribution ρ(z). We parameterize the encoder and 
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decoder with CNNs predicting mean and variance of Gaussian distributions. The resulting loss function is equiv-
alent to a regularized MSE as explained in more detail in Appendix A2.

The mean channel of the Gaussian decoder (Equation 15) can be used as a stochastic parameterization by sampling 
the latent variable 𝐴𝐴 𝐴𝐴 ∈ ℝ

2×𝑛𝑛×𝑛𝑛 from a standard normal distribution.

4.  Offline Analysis of Stochastic Subgrid Models
In this section, we perform an offline evaluation of the stochastic subgrid models described in Section 3 using the 
data set described in Section 2.3. We show spatial maps and spectra of the predicted subgrid forcing. We propose 
metrics for the evaluation of the predicted subgrid forcing and stochastic residuals and compare them for a range 
of resolutions.

For every resolution (48 2, 64 2, 96 2), we train three machine learning models: GZ, GAN, and VAE. The baseline 
deterministic subgrid model is trained with the MSE loss function and it is referred to as “MSE” (we simply take 
the mean channel of GZ model). Following Kochkov et al. (2021), every model was trained five times with differ-
ent random seeds. Three training instances failed and were excluded from the subsequent analysis: 2 realizations 
of VAE models at resolution 64 2 experienced the posterior collapse problem (zero spread; Dai et al., 2020), and 
one realization of GZ model at resolution 48 2 had a large generalization error.

In this section, we show subgrid models trained and evaluated on the data set obtained with the Sharp filter. Simi-
lar results for the Gaussian filter are shown in Figures S1–S3 of the Supporting Information S1.

4.1.  Analysis of Stochastic Predictions

In this section, we compare stochastic predictions of subgrid forcing to the true subgrid forcing. We suggest 
to split the stochastic prediction into the deterministic part and the stochastic residual. We define the deter-
ministic part as a mean prediction of subgrid forcing at a fixed resolved field 𝐴𝐴 𝑞𝑞  —it is conditional mean 
denoted as 𝐴𝐴 E

(
𝑆𝑆|𝑞𝑞

)
 . The deterministic part of the GZ model is given by the mean channel 𝐴𝐴 𝑆𝑆mean

(
𝑞𝑞
)
 . For 

GAN and VAE models, we fix the conditional variable 𝐴𝐴 𝑞𝑞  and sample many realizations of subgrid forcing 

prediction 𝐴𝐴 𝑆𝑆  by sampling in the latent space z. We then average over 1,000 realizations to estimate the deter-

ministic part 𝐴𝐴 E

(
𝑆𝑆|𝑞𝑞

)
 similarly to Adler and Öktem (2018). We define the stochastic residual as a deviation 

of 𝐴𝐴 𝑆𝑆  from its deterministic part, 𝐴𝐴 𝐴𝐴𝐴 = 𝑆𝑆 − E

(
𝑆𝑆|𝑞𝑞

)
 . Each realization of 𝐴𝐴 𝑆𝑆  provides a unique realization of 𝐴𝐴 𝐴𝐴𝐴  . 

The error of the deterministic part 𝐴𝐴

(
𝑟𝑟 = 𝑆𝑆 − E

(
𝑆𝑆|𝑞𝑞

))
 can be used to study the statistical properties of the 

stochastic residuals 𝐴𝐴 𝐴𝐴𝐴  . We refer to r as a true residual; in the literature, it is often simply called “residual,” 
see Wilks (2005), Arnold et al. (2013), and Gagne et al. (2020). Wilks (2005) proposed a statistical model 
of stochastic residuals where free parameters were estimated from the time series of true residuals. Addi-
tional works that compare the statistical properties of stochastic 𝐴𝐴 𝐴𝐴𝐴  and true r residuals include Shutts and 
Palmer (2007), Arnold et al. (2013), Mana and Zanna (2014), Gagne et al. (2020), Agarwal et al. (2021), and 
Guillaumin and Zanna (2021).

In Figure 4 we show predictions of the stochastic subgrid models. The deterministic part 𝐴𝐴

(
E

(
𝑆𝑆|𝑞𝑞

))
 is similar for 

three stochastic models. The rightmost column shows a single realization of the stochastic residual. The stochastic 
residual for GZ model looks like uncorrelated spatial white noise in contrast to the true residual. The stochastic 
residuals for the other two models (GAN and VAE) are more visually similar to the true one. The pointwise 
standard deviation is a measure of the local uncertainty in the deterministic prediction and can be related to the 
second moment of residuals as:

Std

(
𝑆𝑆|𝑞𝑞

)
=

√

E

((
𝑆𝑆 − E

(
𝑆𝑆|𝑞𝑞

))2||||
𝑞𝑞

)
=

√
E
(
𝑟̃𝑟2|𝑞𝑞

)
.�

It is directly accessible for the GZ model, and for GAN and VAE models it can be estimated similarly to the 
conditional mean. The standard deviation fields have similar spatial structures for all three stochastic models.
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We use the spatial power spectrum to analyze the spatial correlation. In Figure 5a we show the power spectrum 
of stochastic residuals. The true residuals are concentrated near the grid cut-off (Nyquist frequency, κmax = π/Δx) 
and near the spatial frequency of ssd filter (κ = 0.65π/Δx). The GZ model does not reproduce the two-hill shape 
of the power spectrum of residuals. The GAN model accurately reproduces the power spectrum of residuals and 
improves the power spectrum of subgrid forcing (Figure 5b) compared to the deterministic and stochastic base-
lines (MSE, GZ). Note that accurate prediction of the power spectrum of subgrid forcing is a challenging task 
for deterministic models (Guan, Subel, et al., 2022) because optimization of the mean squared error leads to the 
loss of details in small scales (Isola et al., 2017). The VAE model predicts the correct shape of the spectrum of 
residuals, but the total variance of residuals is underestimated. The power spectrum of subgrid forcing for the 
VAE model is also lower compared to the other models on small spatial scales, that is, large wavenumbers, see 
Figure 5b. We explain it by the well-known issue of VAE architecture to predict locally smooth images (Takida 
et al., 2022).

An important property of subgrid forcing in QG turbulence is an ability to energize turbulence on a coarse grid, 
that is, kinetic energy backscatter (Jansen & Held, 2014). There are two popular approaches to simulate backs-
catter: stochastic residuals near the grid scale (Chasnov, 1991; Frederiksen & Davies, 1997; Grooms et al., 2015; 
Leslie & Quarini, 1979; Schumann, 1995) and mean energy injection in large scales (Frederiksen et al., 2003; 
Graham & Ringler, 2013; Jansen & Held, 2014; Juricke et al., 2020; Kraichnan, 1976; Thuburn et al., 2014). 
These two types of backscatter result from physical processes of a very different nature: stochastic backscat-
ter simulates the loss of information about unresolved degrees of freedom but energy injection in large scales 
compensates for  the unresolved inverse energy cascade. All the stochastic models are accurate in predicting 

Figure 4.  Prediction of subgrid forcing (S) by stochastic models at a fixed conditional variable 𝐴𝐴 𝑞𝑞  on the testing data set: GZ in upper row, GAN in middle row and VAE 
in lower row. Stochastic residual is shown for a single realization of the latent vector z. Stochastic and true residuals should be statistically similar for an accurate model. 
The root mean square (rms) value of each field is shown in the box.
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large-scale energy injection (Figure 5c), and GAN model is the best in predicting stochastic residuals near the 
grid scale.

Marginal PDF of subgrid forcing is often used to evaluate subgrid models (Maulik & San,  2017; Pawar 
et al., 2020). Both GZ and GAN models improve this PDF in the high-probability region and in the tails compared 
to the baseline MSE model, see Figure 5d. The VAE model is similar to the baseline MSE in this characteristic.

We further emphasize that the stochastic residuals 𝐴𝐴 𝐴𝐴𝐴  of the proposed subgrid models statistically emulate the error 
of the deterministic prediction 𝐴𝐴

(
𝑟𝑟 = 𝑆𝑆 − E

(
𝑆𝑆|𝑞𝑞

))
 . Consequently, the spread of the stochastic residuals should be 

sensitive to the accuracy of the deterministic prediction. The deterministic prediction may be affected by many 
factors including model expressivity (number of hidden layers) and amount of training data. In Figure 6a we show 
that by reducing the number of hidden layers in CNNs, the quality of the deterministic part deteriorates (MSE 
increases), accompanied by an increase of the spread of the stochastic residuals for all three subgrid models (GZ, 

Figure 5.  Offline analysis of stochastic subgrid models (GZ, GAN, VAE): (a) power spectrum of stochastic residuals and (b) 
subgrid forcing; (c) energy transfer 𝐴𝐴

(
−Re

(
𝜓̂𝜓

∗

𝑆𝑆

))
 and (d) marginal PDF of subgrid forcing. MSE is the deterministic subgrid 

model given by the mean channel of GZ model. On panel (a) we show the true residuals for the GAN model in black dashed 
line; true residuals for the other two models (GZ, VAE) are similar and not shown for conciseness.

Figure 6.  Sensitivity of the model spread to the accuracy of the prediction of the deterministic part. (a) Effect of reducing the 
number of hidden layers in CNN representing the stochastic subgrid model. (b) Effect of using a fraction of the training data 
set (in %). The number of (a) hidden layers and (b) amount of training data are indicated by the size of the markers. Data set: 
48 2, Sharp filter.
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GAN, VAE). Under the assumption of statistical similarity between r and 𝐴𝐴 𝐴𝐴𝐴  , the MSE should be equal to the 
spread of stochastic residuals, that is, 𝐴𝐴 ‖𝑟𝑟‖2

2
= ‖𝑟̃𝑟‖2

2
 , represented by the diagonal black line. Our formulation of the 

GZ model explicitly fits the empirical variance (r 2) on the training set, which is why the corresponding markers 
are on the black line. The GAN model slightly underestimates the spread. The VAE model is the least accurate 
and significantly underestimates the spread, see Figure 6a. In Figure 6b we reduce the size of the training data 
set and show how the stochastic models perform on the testing data set. The GZ and VAE models can be trained 
with the least amount of training data: the model quality (MSE and spread) almost does not change when 10% 
of the training data is used. On the contrary, the MSE and spread of the GAN model change even when 20% of 
the training data is used. Note that while the MSE error for the GAN model improves with a slight reduction of 
training data, the prediction of the power spectrum of residuals deteriorates (not shown). Finally, all stochastic 
models behave similarly in the limit of very low amount of training data (2%): the MSE of the deterministic part 
is too large, and the spread of stochastic residuals is too low. This indicates that the subgrid parameterizations 
memorize the training data set and effectively become deterministic.

4.2.  Quantitative Offline Analysis and Metrics

Above we presented a qualitative analysis of the stochastic subgrid models, and here we propose metrics for 
their quantitative evaluation. We consider three classes of metrics, which demonstrate: the quality of the subgrid 
forcing, its deterministic part, and stochastic residuals, see Table 2. We include spectral metrics for the subgrid 
forcing and residuals (𝐴𝐴 S and 𝐴𝐴 r ) in order to evaluate to what extent the models capture the corresponding spatial 
structure.

In Figure 7 we report the evaluation of the offline metrics for the different models for a range of resolutions. The 
upper row provides metrics on the test data set with the same turbulence regime as the training set. We observe 
that the generative models (GAN and VAE) have slightly greater deterministic error 𝐴𝐴 (rmse) compared to the 
model optimizing this metric directly (GZ and MSE model). The GAN and GZ models correctly predict spread of 
stochastic residuals 𝐴𝐴 𝐴𝐴2

spread
≈ 1 , but the VAE model underestimates spread 𝐴𝐴 𝐴𝐴2

spread
≈ 0.35 . The GAN model clearly 

outperforms the rest in predicting the spectra of the subgrid forcing 𝐴𝐴 S and the residuals 𝐴𝐴 r . The VAE model on 
the contrary has high errors 𝐴𝐴 S and 𝐴𝐴 r because it predicts oversmoothed samples with reduced diversity.

In the lower row of Figure  7, we evaluate the generalization ability of the models by computing the offline 
metrics on the data set corresponding to a different turbulence regime, where flow is dominated by meandering 
jets (Table 1), and which is therefore systematically different from the training data. GZ model considerably 
overestimates the spread of the residuals 𝐴𝐴

(
2 < 𝜎𝜎2

spread
< 10

)
 , and it deteriorates the spectral metrics (𝐴𝐴 S and 𝐴𝐴 r ). 

The VAE model demonstrates the best generalization capabilities to the jet configuration: it has reasonable spread 
𝐴𝐴 𝐴𝐴2

spread
≈ 0.8 , and outperforms other models in the error of the deterministic prediction 𝐴𝐴 rmse , the quality of the 

subgrid forcing 𝐴𝐴 S and residuals 𝐴𝐴 r . The GAN model generalizes better than GZ for most of the metrics, without 
reaching the performance of the VAE model. As we noted above, the VAE model underestimates the power spec-
trum of the subgrid forcing producing smooth images. This property likely facilitates the generalization to the 
jet data set because the RMS value of the subgrid forcing on the jet data set is twice as small as on the eddy data 
set. We observe similar generalization results for the Gaussian filter, see Figure S3 in Supporting Information S1.

Metric 𝐴𝐴 rmse  𝐴𝐴 S  𝐴𝐴 r  𝐴𝐴 𝐴𝐴2

spread
 

Expression
𝐴𝐴

‖𝑆𝑆−E(𝑆𝑆|𝑞𝑞)‖2
‖𝑆𝑆‖2

  𝐴𝐴
‖𝑠𝑠𝑠𝑠(𝑆𝑆)−𝑠𝑠𝑠𝑠(𝑆𝑆)‖2

‖𝑠𝑠𝑠𝑠(𝑆𝑆)‖2
  𝐴𝐴

‖𝑠𝑠𝑠𝑠(𝑟𝑟)−𝑠𝑠𝑠𝑠(𝑟̃𝑟)‖2
‖𝑠𝑠𝑠𝑠(𝑟𝑟)‖2

  𝐴𝐴
‖𝑟̃𝑟‖2

2

‖𝑟𝑟‖2
2

 

Optimal value 0 0 0 1

Unparameterized model 1 1 1 0

Quality of Deterministic part Full forcing Residuals Residuals

Note. We denote computation of isotropic power spectrum as sp(·).

Table 2 
Metrics for Offline Analysis of Stochastic Subgrid Model 𝐴𝐴 𝑆𝑆  : RMSE of the Deterministic Part 𝐴𝐴 (rmse) , RMSE in the 
Spectrum of the Full Subgrid Forcing 𝐴𝐴 (S) , RMSE in the Spectrum of Stochastic Residuals 𝐴𝐴 (r ) and Spread of the Samples 
of Conditional Distribution 𝐴𝐴

(
𝜎𝜎2

spread

)
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During the first few years of simulation, QG model undergoes a transition from a laminar to a turbulent flow 
regime. Generalization to the transitional regime is a difficult test for subgrid models (Frezat et al., 2021) because 
the subgrid forcing is a few orders of magnitude smaller compared to the developed turbulence regime. Although 
we include the transitional regime in the training set, the relative importance of these samples is small due to their 
small norm. As a result, all subgrid models have large errors compared to the norm of the subgrid forcing during 
the first few years of simulation (t < 2 years), see Figure 8. The generative models (GAN and VAE) demonstrate 
the best performance in the transitional regime: error is one order of magnitude smaller compared to GZ. In the 
next section, we show that generative models are also superior to the baseline in the online simulation of transi-
tional flow.

5.  Online Simulations With Subgrid Models
In the previous section, we demonstrated the encouraging ability of gener-
ative models GAN and VAE to simulate various statistical characteristics 
of subgrid forcing. In this section, we evaluate the performance of trained 
subgrid models in online simulations. In more detail, we use the output of the 
subgrid model 𝐴𝐴 𝑆𝑆  to replace the true subgrid forcing S in the governing equa-
tion for the coarsegrained dynamics Equation 7, and perform numerical time 
integration. Our goal is to study how the subgrid parameterizations impact 
the dynamics of mesoscale eddies in a statistical equilibrium regime.

Our online experiments are summarized in Table  1 (“eddy” configuration 
in this section). Compared to the generation of the training data, we run 
experiments for twice as long (20  years). Recall that we train 5 different 
models (differing only in the initialization of the weights) for every combi-
nation of resolution, filter and type of subgrid model. Each of these models 
is evaluated in an ensemble of 10 online runs, with different random initial 
conditions. The total number of runs is approximately 1,200. The statistical 
characteristics of the turbulence are averaged over the 10 ensemble members 
(and the last 15 years if applicable). We provide the confidence bounds for 
every averaged statistic defined by the minimum, maximum and median 
values over 5 realizations of the training algorithm.

Figure 8.  Offline analysis of RMSE of deterministic part in transitional 
regime (t < 2 years) on the test data set. Norm ‖·‖ is given per one grid point. 
Shading corresponds to different training realizations of the same model. 
Sharp filter, resolution 48 2. Each line is given twice: for the lower and upper 
fluid layer.

Figure 7.  Offline metrics from Table 2 on the testing data set in the upper row and generalization to configuration with jets (Table 1) in the lower row. Optimal values 
are given with arrows. Each model is trained 5 times with different random seeds. The shading area shows min-max values among training realizations, markers show 
median value.
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Before passing the subgrid forcing prediction into the governing equation, 
we subtract the spatial mean in each fluid layer to ensure the conservation 
of PV. Without this subtraction, some experiments become unstable when 
the spatial mean exceeds the spatial RMS of the PV of the solution. In the 
conclusion, we discuss possible options to include the conservation of PV in 
suggested subgrid models.

Among mentioned experiments, there were a few unstable simulations at 
resolution 96 2: one run of the VAE model for Sharp filter, and 3 GAN models 
out of 5 training realizations for Gaussian filter. We exclude mentioned 
experiments from the analysis. In these experiments, an eddy emerges which 
is constantly amplified by the parameterization, and in a spectral space it 
corresponds to the overestimated energy injection on the largest scale. This 
effect is possible because we do not control the amplitude of the parameteri-
zation as it is usually done in energetically consistent physical parameteriza-
tions of backscatter (Jansen & Held, 2014).

5.1.  Metrics for Online Analysis

We compare the solution of the coarse parameterized model to the filtered 
and coarse-grained fields of the high-resolution model similarly to B. Nadiga 

and Livescu (2007), Beck et al. (2019), Frezat et al. (2022), Guan, Chattopadhyay, et al. (2022), and Guan, Subel, 
et al. (2022).

Following Ross et  al.  (2023), we consider an error in PDFs of the turbulence fields. Define the Wasserstein 
distance between distributions as 𝐴𝐴 1(𝐹𝐹1, 𝐹𝐹2) = ∫ |𝐹𝐹1(𝜉𝜉) − 𝐹𝐹2(𝜉𝜉)|𝑑𝑑𝑑𝑑 , where F1 and F2 are cumulative distribution 
functions (CDF) of some variable ξ. In computing CDF, we aggregate spatial directions, 15 years of simulation, 
and 10 ensemble members. We consider 5 variables in place of ξ: potential vorticity (qm), velocity (um and vm), 
kinetic energy 𝐴𝐴

(
1

2
|𝐮𝐮𝑚𝑚|2

)
 and relative enstrophy 𝐴𝐴

(
1

2
|curl(𝐮𝐮𝑚𝑚)|2

)
 , and each fluid layer is accounted independently. 

The online distributional metric between the coarse-grid model (Fmodel) and the filtered and coarse-grained 
high-resolution simulation 𝐴𝐴

(
𝐹𝐹
hires

)
 is given by the average of normalized errors:



(
model, hires

)
=

1

10

2∑

𝑚𝑚=1

∑

𝜉𝜉∈Vars𝑚𝑚

1

(
𝐹𝐹model(𝜉𝜉), 𝐹𝐹hires

(𝜉𝜉)
)

√
∫ 𝜉𝜉2𝑑𝑑𝑑𝑑

hires

,� (17)

where 𝐴𝐴 Vars𝑚𝑚 =

{
𝑞𝑞𝑚𝑚, 𝑢𝑢𝑚𝑚, 𝑣𝑣𝑚𝑚,

1

2
|𝐮𝐮𝑚𝑚|2, 1

2
|curl(𝐮𝐮𝑚𝑚)|2

}
 and the normalization constant is the square root of the uncen-

tered second moment.

An additional metric based on spectral characteristics is reported in Supporting Information S1 (Text S3 and 
Figure S4).

5.2.  Sensitivity to the Correlation Time of Latent Variable

In order to leverage the proposed subgrid-forcing models in a stochastic parameterization, we sample the latent 
variable z independently at every time step (discrete white noise) similar to Zanna et al. (2017) and Guillaumin 
and Zanna (2021).

Following (Gagne et  al.,  2020), we also tested the sensitivity of the online simulation results to the correla-
tion time of the latent variable. The time correlation is introduced with the autoregressive model of order one 
(AR1), which has covariance function E(z(t)z(t + nΔt)) = (1 − Δt/τ) n (Schumann, 1995), where n denotes the 
number of time layers between two time moments, τ ≥ Δt is correlation time, and at τ = Δt we restore the 
discrete white noise process. The online distributional metric (Equation 17) as a function of correlation time is 
reported in Figure 9. The optimal online metric corresponds to τ = Δt, which justifies our method of sampling 
(white noise). This result is consistent with our training procedure where we were sampling the latent variable 
independently for every time moment. The autoregressive process can be introduced during a training stage if 

Figure 9.  Online distributional metric (Equation 17) as a function of 
correlation time τ of latent variable z for three stochastic subgrid models (GZ, 
GAN, and VAE) at coarse resolution 48 2 with respect to high-resolution model 
(256 2). Lores is model on a coarse grid without parameterization. Shading area 
shows min-max values among training realizations, and markers show median 
value. Time step of the numerical integration Δt is 4 hr.
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consider sampling from the distribution conditional on the previous time moment, that is, 𝐴𝐴 𝐴𝐴
(
𝑆𝑆(𝑡𝑡)|𝑞𝑞(𝑡𝑡), 𝑆𝑆(𝑡𝑡 − Δ𝑡𝑡)

)
 

(Gagne et al., 2020). We postpone it for future studies.

5.3.  Results

In Figure 10 we show online simulations with subgrid models at the coarsest resolution. The unparameterized 
model (“lores”) has underestimated kinetic energy (a) and underestimated KE spectrum in large scales (b). This 
is due to the poor representation of the inverse energy cascade on the coarse grid (c). The deterministic subgrid 
model (MSE) improves inverse energy cascade and KE spectrum in large scales, but small eddies near the grid 
scale are energized too much, see KE spectrum in small scales, KE level and tails of PDFs. The GZ model does 
not prevent overamplification of the small eddies. In contrast, the generative stochastic models (GAN and VAE) 
improve the simulation of the small eddies: see spectral characteristics in small scales, tails of PDFs and kinetic 
energy. Note that generative models (GAN and VAE) accurately reproduce kinetic energy growth in transitional 
flow (panel (a), t < 2 years) in agreement with the offline analysis.

Snapshots of the velocity modulus are shown in Figure 11. At time step Δt = 2 hr baseline models (MSE and 
GZ) have too many small eddies, and at time step Δt = 1 hr the flow becomes unphysical and overenergized. 

Figure 10.  Online simulations with parameterized models (MSE, GZ, GAN, and VAE) and unparameterized model (lores) 
at coarse resolution 48 2. 𝐴𝐴 hires is filtered and coarsegrained high-resolution model (256 2). MSE is a deterministic subgrid 
model given by the mean channel of the GZ model. Energy transfer on panel (c) gives a sum of contributions from the 
resolved advection and subgrid model: 𝐴𝐴

1

𝐻𝐻

∑2

𝑚𝑚=1
𝐻𝐻𝑚𝑚Re

(
𝜓̂𝜓

∗

𝑚𝑚
̂∇
(
𝐮𝐮𝑚𝑚𝑞𝑞𝑚𝑚

)
− 𝜓̂𝜓

∗

𝑚𝑚𝑆𝑆𝑚𝑚

)
 ; see derivation in Text S2 of the Supporting 

Information S1. Shading area shows min-max values among training realizations, and lines show median value. The time step 
Δt is 2 hr.
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GAN and VAE models at both time steps produce physical solutions which look similar to the filtered and 
coarse-grained high-resolution simulation 𝐴𝐴

(
hires

)
 . In Figure 12a we show distributional metric as a function of 

the time step. While baseline models (MSE and GZ) are very sensitive to the time step, the generative models 
(GAN and VAE) are relatively insensitive to the time step and have the smallest errors. This suggests that the 
generative stochastic models have better numerical stability properties. In Text S4 of the Supporting Informa-
tion S1, we further explain that the time step is connected to the effective eddy viscosity in our particular numer-
ical scheme, and thus computations at a small time step reveal numerical stability properties.

In Figure 12b we show the distributional metric as a function of resolution. At the coarsest resolution 48 2, the 
generative stochastic models (GAN and VAE) have 5–10 times lower error compared to the unparameterized 
simulation (lores) and 3–5 times lower error compared to the baseline models (GZ and MSE). For intermediate 
and higher resolutions (64 2 and 96 2) all ML-based models (GZ, MSE, GAN, VAE) improve distributional error 
compared to the unparameterized model, but the confidence intervals (shading area) exceed the difference 
between the median values. So we conclude that the effect of stochastic subgrid models (GZ, GAN, VAE), as 
opposed to the deterministic one (MSE), at these resolutions is negligible. Overall, generative models (GAN 
and VAE) improve simulation if there are issues with numerical stability, and perform as well as the base-
line deterministic model in other cases. Analysis of subgrid models with respect to another metric (error in 
representation of spectral properties) yields similar conclusions, see Text S3 and Figure S4 in Supporting 
Information S1.

Figure 11.  Snapshots of the modulus of velocity in coarse-resolution models (48 2) and high-resolution simulation 
(hires(256 2)). Two columns with Δt = 2 hr correspond to Figure 10. The smaller the time step, the smaller the effective eddy 
viscosity, see Text S4 in Supporting Information S1.

Figure 12.  Online distributional metric (Equation 17): (a) as a function of time step at the coarsest spatial resolution and (b) 
as a function of spatial resolution. The metric is computed with respect to the high-resolution simulation (256 2). The shading 
area shows min-max values among training realizations, and markers show median value.
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The numerical stability issues occurring in MSE and GZ models can be explained by the overestimation of energy 
backscatter in online simulations (positive energy transfer on large scales in Figure 10c). This is in contrast to 
the observation that all subgrid models are equally accurate in predicting energy transfer offline (Figure 5c). We 
expect that GZ and MSE models first fail to reproduce the dynamics of small eddies and it eventually leads to 
transformation of the flow and inaccurate prediction of the backscatter. The discrepancy between the offline and 
online analysis may be due to the inclusion of the ssd term, time sampling method of the stochastic parameteriza-
tion, and time integration scheme. The effect of ssd term on the energy transfer is seen in Figure 10c near the grid 
scale (κ ≈ 10 −4 m −1). The spurious positive energy transfer balances the dissipation produced by ssd term on these 
scales (we already explained it in Section 2.1.1). Removing of ssd term is possible but requires careful treatment 
of the numerical scheme because simulations become fully inviscid. In Text S5 and Figure S6 of the Supporting 
Information S1 we show that proposed subgrid models are stable in fully inviscid simulations and VAE model is 
the most accurate in reproducing energy transfer and other statistical characteristics.

In Figure 13 we show the online results for the subgrid models trained on the data set produced using the Gauss-
ian filter. The subgrid models cannot substantially improve the KE spectrum on large scales with respect to the 
unparameterized model (panel (b)), and it results in little or no improvement in the other statistical characteristics. 
At higher resolutions (64 2 and 96 2) we observe the improvement in reproducing the KE spectrum on small scales, 
but not the large ones (not shown). Similar to Zanna and Bolton (2020), we report in Figure B1 how the kinetic 
energy in online simulation changes when the subgrid model is multiplied by the adjustable parameter. This char-
acteristic clearly demonstrates that subgrid models trained for the Gaussian filter are less efficient in energizing 

Figure 13.  Online simulations with parameterized models. Similar to Figure 10, but for models trained on the data set with 
Gaussian filter.
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the flow. The same issues for the models trained to predict the subgrid forcing diagnosed with the Gaussian filter 
were reported in Ross et al. (2023) and these may be caused by the mentioned discrepancies between the offline 
and online analysis.

In Appendix B we include additional online results. The online generalization to the turbulence configuration 
with jets shows that generative models clearly improve the simulation of the transitional flow, but at a later time, 
all the subgrid models including baselines experience numerical stability issues (Figure B2). It happens because 
of the overestimation of the positive energy transfer (backscatter) on the large scales which is present even in 
offline analysis as a result of generalization error (not shown). Runtime for the generative models is the same as 
for the deterministic baseline (Table B1) because we use the same CNN as a building block in all subgrid models.

6.  Conclusions and Discussion
In this work, we propose to leverage generative machine-learning models (GAN and VAE) to build stochastic 
subgrid parameterizations of mesoscale eddies. Generative models allow to sample from the conditional distri-
bution of subgrid forcing given resolved variables. We performed offline and online evaluations of the proposed 
subgrid models, and compared them against baseline deterministic and stochastic ML models in an idealized 
ocean simulation for a range of resolutions.

Our main findings can be summarized as follows:

•	 �Generative models are able to simulate the stochastic residuals of subgrid forcing with spatial structure similar 
to the true residuals.

•	 �Generative models accurately represent the energy transfer spectrum and thus reproduce the large-scale 
kinetic energy backscatter missing at coarse-resolution.

•	 �The GAN model is superior to others according to the offline metrics for subgrid forcing; however, the VAE 
model demonstrates better offline generalization to the unseen turbulence configuration (meandering jets).

•	 �Both generative models (GAN and VAE) improve the numerical stability properties and prevent overampli-
fication of the unphysical flows in online simulations at the coarsest resolution compared to the baseline ML 
models.

In spite of the different performance of GAN and VAE models in the offline analysis, their performance is similar 
in online simulations. Therefore, offline metrics or loss functions may be bad proxies for the online performance 
(Frezat et al., 2022; Ross et al., 2023). The energy transfer spectrum is one of the main properties of subgrid 
forcing which is essential to properly energize the flow and could be considered as an alternative loss function. 
However, the spatial structure of the subgrid forcing and stochastic residuals may be important to ensure the 
development of the physical solution.

Our online simulations are optimal when the time correlation of the latent variable sampling is equal to the 
model timestep, which is equivalent to a white noise model and consistent with our offline training method-
ology. The effect of the parameterization can be analyzed by decomposing it into deterministic and stochastic 
parts. The deterministic part is defined as the conditional mean; while the stochastic part as a white noise model. 
The white noise process model implies that the energy injection by the stochastic part of the parameterization 
approaches zero in the limit of the small time steps (Alvelius, 1999). In addition, the average energy injection is 
fully described by the deterministic part of the parameterization (i.e., conditional mean, see Moser et al. (2021)). 
One can modify the definition of the subgrid model, for example, by including memory effects, to generate a 
stochastic model with non-vanishing energy input (Agarwal et al., 2021; Berner, 2005; Bhouri & Gentine, 2022; 
Chorin & Lu, 2015; DelSole, 2000; Gagne et al., 2020).

The proposed subgrid parameterizations predict the divergence of subgrid PV flux and thus do not conserve PV. 
Restoring the conservation properties can be done in multiple ways. First, the predicted target can be changed to 
PV subgrid flux (or momentum subgrid flux) similarly to Ross et al. (2023). Second, the divergence operator can 
be implemented as a final convolutional layer in GAN and VAE models similarly to Zanna and Bolton (2020) 
and Srinivasan et al. (2023). Third, a promising approach would be to propose an ML model predicting the free 
parameters in physical parameterizations (Sane et  al.,  2023; Zhu et  al.,  2022) and thus automatically satisfy 
conservation properties. However, we note that a suitable form of parameterization of mesoscale eddy fluxes 
remains to be established. The existing approaches may lead to numerical instabilities due to the presence of 
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negative eddy viscosity or diffusivity. For example, the tracer diffusivity tensor produced by mesoscale eddies 
contains one negative eigenvalue (Bachman et  al.,  2020; Haigh & Berloff,  2021,  2022; Haigh et  al.,  2021; 
Kamenkovich et al., 2021; Lu et al., 2022; Ryzhov & Berloff, 2022). Parameterization of mesoscale momentum 
fluxes by the eddy viscosity operator is also challenging: the crucial physical process of kinetic energy backscat-
ter can be captured only with negative eddy viscosity (Bachman, 2019; Jansen & Held, 2014; Jansen et al., 2019; 
Juricke et al., 2020).

As we noted in Section 4.2, offline generalization results can be partially explained by the difference in the 
magnitude of subgrid forcing on eddy and jet data sets. Thus, all the proposed subgrid models can benefit from 
the normalization of input and output features according to physical scalings (Beucler et al., 2021). For exam-
ple, the input features can be normalized by their RMS values (different for every snapshot), while the RMS 
value for the subgrid flux is unknown and can be estimated given the prediction of velocity gradient model 
(Xie et al., 2020). Composing the training data set representing multiple dynamical regimes also should help to 
improve the generalization ability (O’Gorman & Dwyer, 2018).

Appendix A:  Training of the Machine Learning Models
A1.  GAN Loss Function

The presented below training algorithm closely resembles paper of Adler and Öktem (2018), where the discrim-
inator analyzes two generated images.

We generate two images 𝐴𝐴 𝑆𝑆1 = 𝐺𝐺
(
𝑧𝑧1, 𝑞𝑞

)
 and 𝐴𝐴 𝑆𝑆2 = 𝐺𝐺

(
𝑧𝑧2, 𝑞𝑞

)
 for a given 𝐴𝐴 𝑞𝑞 with two samples from standard normal 

distribution 𝐴𝐴 𝐴𝐴1, 𝑧𝑧2 ∈ ℝ
2×𝑛𝑛×𝑛𝑛 and stack them in layer dimension:

𝐒𝐒1 =

(
𝑆𝑆1, 𝑆𝑆

)
, 𝐒𝐒2 =

(
𝑆𝑆𝑆 𝑆𝑆2

)
, 𝐒̃𝐒 =

(
𝑆𝑆1, 𝑆𝑆2

)
,�

where 𝐴𝐴 𝐒𝐒1,𝐒𝐒2, 𝐒̃𝐒 ∈ ℝ
4×𝑛𝑛×𝑛𝑛 . The WGAN loss (Equation 14) for a single data sample transforms to:

W =

[
1

2

(
𝐷𝐷
(
𝐒𝐒1, 𝑞𝑞

)
+𝐷𝐷

(
𝐒𝐒2, 𝑞𝑞

))
−𝐷𝐷

(
𝐒̃𝐒, 𝑞𝑞

)]
.�

The discriminator D should be 1-Lipschitz in the first argument, and we enforce it with the gradient penalty 
(WGAN-GP; Gulrajani et al., 2017):

grad =

(
‖∇

𝐒̂𝐒
𝐷𝐷

(
𝐒̂𝐒, 𝑞𝑞

)
‖2 − 1

)2

,�

where 𝐴𝐴 𝐒̂𝐒 = 𝜖𝜖𝐒𝐒 + (1 − 𝜖𝜖)𝐒̃𝐒 . The random number ϵ is uniformly distributed on [0,1] and chosen uniquely for 
every training sample. For every batch we choose randomly S from set {S1, S2}. Note that 𝐴𝐴 𝐴𝐴

(
𝐒̂𝐒, 𝑞𝑞

)
∈ ℝ , 

𝐴𝐴 ∇
𝐒̂𝐒
𝐷𝐷

(
𝐒̂𝐒, 𝑞𝑞

)
∈ ℝ

4×𝑛𝑛×𝑛𝑛 and norm ‖·‖2 for tensor is defined above. Regularization preventing drift of discriminator:

drift =
[
𝐷𝐷
(
𝐒𝐒1, 𝑞𝑞

)]2
.�

We minimize the following loss for the discriminator:

D = −W + 10grad + 10−3drift,� (A1)

and the loss to be minimized for the generator is:

G = −𝐷𝐷

(
𝐒̃𝐒, 𝑞𝑞

)
.� (A2)

In the original paper 𝐴𝐴 G = W (Adler & Öktem, 2018), but we follow a typical approach when only generated 
samples constitute the generator loss (Dong & Yang, 2019). Following Arjovsky et al. (2017), we optimize the 
discriminator loss (Equation A1) for five batches in a row, and then we optimize the generator loss (Equation A2) 
for one batch.
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A2.  VAE Loss Function

To train the VAE model we parameterize every probability density in the VAE loss function (Equation 16) with 
Gaussian distributions.

The distributions for encoder, decoder and prior, respectively:

𝑞𝑞𝜙𝜙
(
𝑧𝑧|𝑆𝑆𝑆 𝑞𝑞

)
= 

(
𝜇𝜇𝜙𝜙

(
𝑆𝑆𝑆 𝑞𝑞

)
, diag

(
𝜎𝜎2

𝜙𝜙

(
𝑆𝑆𝑆 𝑞𝑞

)))
� (A3)

𝜌𝜌𝜃𝜃
(
𝑆𝑆|𝑧𝑧𝑧 𝑞𝑞

)
= 

(
𝜇𝜇𝜃𝜃

(
𝑧𝑧𝑧 𝑞𝑞

)
, 𝛾𝛾𝛾𝛾

)
� (A4)

𝜌𝜌(𝑧𝑧) =  (0, 𝐼𝐼),� (A5)

where 𝐴𝐴 𝐴𝐴 ∈ 
2𝑛𝑛2×2𝑛𝑛2 is identity matrix, γ is free parameter and 𝐴𝐴 𝐴𝐴𝐴 𝑞𝑞𝑞 𝑞𝑞 ∈ ℝ

2×𝑛𝑛×𝑛𝑛 . The encoder is parameterized by a 
single CNN predicting two features: mean 𝐴𝐴 𝐴𝐴𝜙𝜙 ∈ ℝ

2×𝑛𝑛×𝑛𝑛 and log-variance 𝐴𝐴 ln

(
𝜎𝜎2

𝜙𝜙

)
∈ ℝ

2×𝑛𝑛×𝑛𝑛 of the latent variable. 
The decoder is parameterized by CNN predicting the mean of subgrid forcing 𝐴𝐴 𝐴𝐴𝜃𝜃 ∈ ℝ

2×𝑛𝑛×𝑛𝑛 .

The loss function to be minimized (Equation 16) for one training sample transforms to:

VAE =
1

2𝛾𝛾
‖𝑆𝑆 − 𝜇𝜇𝜃𝜃

(
𝑧̂𝑧𝑧 𝑞𝑞

)
‖2
2
+

1

2

∑

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

(
𝜎𝜎2

𝜙𝜙
+ 𝜇𝜇2

𝜙𝜙
− 1 − ln

(
𝜎𝜎2

𝜙𝜙

))
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

,� (A6)

where we replaced the mathematical expectation over the encoder distribution with a single sample from this 
distribution (reparameterization trick; Kingma & Welling, 2013), that is, 𝐴𝐴 𝐴𝐴𝐴 = 𝜇𝜇𝜙𝜙 + 𝜖𝜖𝜖𝜖𝜙𝜙 , 𝐴𝐴 𝐴𝐴 ∼  (0, 𝐼𝐼) . Note that 
as suggested by Rybkin et al. (2021), we sum values of MSE loss and KL loss across dimensions. The variance 
of decoder distribution γ is a parameter regulating the relative importance of reconstruction and regularization 
terms. According to Takida et al. (2022), common problems of VAE such as posterior collapse and smoothness 
of generated images may result from the incorrect choice of parameter γ. Following Rybkin et al. (2021), we esti-
mate the variance of the decoder as a mean squared error: 𝐴𝐴 𝐴𝐴 =

1

2𝑛𝑛2
‖𝑆𝑆 − 𝜇𝜇𝜃𝜃‖22 . We compute γ uniquely for every 

batch and do not differentiate it.

A3.  Neural Networks and Optimization Algorithm

All image-to-image mappings (mean and variance prediction in GZ, generator in GAN, encoder and decoder in 
VAE) are based on the same convolutional neural network (CNN) similar to Guillaumin and Zanna (2021) and 
Ross et al. (2023) with parameters given in Table A1. Discriminator D in GAN is parameterized by DCGAN 
discriminator (Radford et  al.,  2015) with two modifications: we remove the activation function in the final 
layer and remove batch normalization because it is necessary for proper use of gradient penalty (Gulrajani 
et al., 2017).

We follow a common approach with the normalization of input and output variables before passing them to 
neural networks. Each channel representing a different physical quantity or different fluid layer is normalized by 
a unique standard deviation computed over the training data set. Note that the variance channel of GZ model is 

Number of input/output images Arbitrary (nin, nout)

Resolution of input/output/hidden layers Arbitrary, but the same

Number of filters 128, 64, 32, 32, 32, 32, 32, nout

Kernel size 5, 5, 3, 3, 3, 3, 3, 3

Boundary conditions Periodic (“circular padding”)

Activation function ReLU, in hidden layers

Batch normalization After ReLU, in hidden layers

Table A1 
Configuration of Convolutional Neural Network (CNN) Parameterizing Image to Image Mapping
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normalized by the squared standard deviation of the mean channel. Normalization constants become part of the 
model and they are not adjusted in offline or online tests.

Models are trained in Pytorch (Paszke et al., 2019), batch size is 64, training algorithm is Adam (Kingma & 
Ba, 2014) with standard parameters (β1, β2) = (0.9, 0.999) for GZ and VAE, and (β1, β2) = (0.5, 0.999) for GAN 
(Radford et al., 2015). The learning rate is lr = 0.001 for GZ and lr = 0.0002 for GAN and VAE. GAN and 
VAE models are optimized for 200 epochs, and in GZ model each channel (mean and variance) is optimized 
for 50 epochs. Early stopping or any other criteria for choosing the best epoch was not used. Weight decay was 
not used. We use the following scheduler of the learning rate for GZ and VAE: on every milestone [1/2, 3/4, 
7/8] ⋅ Nepoch multiply learning rate by γ = 0.1, for GAN γ = 0.5. Weights of the discriminator and generator of 
GAN are initialized with zero mean and standard deviation 0.02 (Radford et al., 2015). During inference, neural 
networks are switched to evaluation mode so that batch normalization layers use parameters accumulated during 
training.

Appendix B:  Additional Online Results
See Appendix Figure B1.

Figure B1.  We multiply the subgrid model by a parameter α ∈ [0, 1.5] as 𝐴𝐴 𝑆𝑆 → 𝛼𝛼𝑆𝑆  and show the kinetic energy after spin-up. 
Subgrid models which efficiently simulate backscatter are able to energize the flow when the amplitude is increased, see 
supplemental Figure S9 in Zanna and Bolton (2020). All models trained for the Sharp filter efficiently energize the flow, but 
for the Gaussian filter they mostly do not energize the flow. Time step Δt is 4 hr.
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See Appendix Figure B2.

See Appendix Table B1.

Data Availability Statement
The Python software, including the subgrid ML models and plotting scripts, is available at Perezhogin and 
Zanna (2023). The training and simulation data are available at Perezhogin (2023).
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Figure B2.  Online generalization to turbulence configuration with jets (Table 1). Generative models (GAN and VAE) 
clearly better reproduce transitional flow (t < 2 years), however many of the presented models have problems with numerical 
stability at a larger time. Improving the generalization capabilities of presented models requires further research. The shading 
area shows min-max values among training realizations, lines show median value. The time step is 2 hr.

Δt 1 hr 2 hr 4 hr

n × n 256 × 256 96 × 96 48 × 48

Model – – – MSE GZ GAN VAE

Runtime, sec 1,300 130 25.4 756 1,480 784 782

Note. Theoretically, we expect that the runtime for MSE, GAN, and VAE models should be the same, and for GZ is twice 
as large. Runtime for the GZ model can be reduced if aggregate mean and variance channels into one CNN network, as it is 
done in Guillaumin and Zanna (2021).

Table B1 
Runtime on One CPU Core for Unparameterized Model (“–”) and ML-Based Parameterizations to Integrate QG Model in 
Time for 20 Years
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