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Abstract

Subgrid parameterizations of mesoscale eddies continue to be in demand for cli-
mate simulations. These subgrid parameterizations can be powerfully designed using
physics and/or data-driven methods, with uncertainty quantification. For example,
Guillaumin and Zanna (2021) proposed a Machine Learning (ML) model that predicts
subgrid forcing and its local uncertainty. The major assumption and potential draw-
back of this model is the statistical independence of stochastic residuals between grid
points. Here, we aim to improve the simulation of stochastic forcing with generative
models of ML, such as Generative adversarial network (GAN) and Variational autoen-
coder (VAE). Generative models learn the distribution of subgrid forcing conditioned
on the resolved flow directly from data and they can produce new samples from this
distribution. Generative models can potentially capture not only the spatial correla-
tion but any statistically significant property of subgrid forcing. We test the proposed
stochastic parameterizations offline and online in an idealized ocean model. We show
that generative models are able to predict subgrid forcing and its uncertainty with
spatially correlated stochastic forcing. Online simulations for a range of resolutions
demonstrated that generative models are superior to the baseline ML model at the
coarsest resolution.

Plain Language Summary

The climate system includes physical phenomena on a wide range of scales from
millimeter scale in the boundary layer to planetary scale. Numerical models used for
climate projections can directly simulate only the largest spatiotemporal scales of the
flow, while the missing physics due to unresolved (or subgrid) flows must be param-
eterized. The prediction of the missing term given only the information about the
resolved flow is a difficult task, given in part the uncertainty associated with the state
of the unresolved eddies which were discarded. Generative machine learning models
have demonstrated exceptional ability to create realistic images obeying complex dis-
tributions learned directly from data. In this work, we leverage the generative machine
learning approach to build a stochastic parameterization of the subgrid eddies which
is able to sample many possible realizations of the missing physics forcing. The new
stochastic models have shown excellent performance in predicting the missing physics
term and have the promise to improve the simulation of turbulence when implemented
online in the idealized ocean model.

1 Introduction

Mesoscale eddies, with a horizontal scale roughly equal to the Rossby deformation
radius, play a crucial role in ocean circulation. Mesoscale eddies carry most of the
kinetic energy in the ocean and account for a substantial part of the transport of
momentum, heat, and salt (Vallis, 2017). The dynamics of mesoscale eddies involve a
variety of complex physical processes: potential to kinetic energy conversion, upscale
energy transfer, upgradient fluxes, sharpening of jet currents, along-isopycnal mixing
and bolus advection. Primitive equations can potentially capture all these processes if
all the relevant spatial scales of motion are directly resolved on the computational grid.
However, direct simulation of mesoscale eddies remains computationally expensive,
especially in high latitudes where the deformation radius decreases (Hewitt et al.,
2020).

Modern global ocean models have an eddy-permitting resolution (around 1/4o,
Haarsma et al. (2016)), such that the largest mesoscale eddies are resolved but smaller
ones are not; therefore the effect of these smaller unresolved (subgrid) mesoscale eddies
is missing and needs to be parameterized. A range of grid resolutions where a phys-
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ical process is partially (but not fully) resolved is often referred to as the gray zone
(Berner et al., 2017; Christensen & Zanna, 2022). Traditional methods to parameter-
ize mesoscale eddies (Redi, 1982; Gent & Mcwilliams, 1990) were designed to describe
their mean effect on the large-scale flow. These parameterizations are suitable for
ocean models with a very coarse horizontal resolution, where there is an approximate
scale separation between the grid step and the size of mesoscale eddies, but not for
the gray zone.

The ”Large eddy simulation” approach (LES, Fox-Kemper and Menemenlis (2008);
Sagaut (2006)) is a technique to build a mesoscale eddy parameterization in the gray
zone. The LES framework introduces a spatial filtering (and coarse-graining) operator
which splits the flow into resolved and subgrid components. The filter mimics the effect
of finite resolution and its width is proportional to the grid step of the coarse model.
The effect of subgrid eddies on the resolved flow is referred to as a subgrid forcing and
is diagnosed from the output of the high-resolution model by applying the spatial filter
to the governing equations. A subgrid model or parameterization is a model which
relates the subgrid forcing to the resolved flow. In recent years many new mesoscale
eddy parameterizations were proposed to better capture the effects of mesoscale eddies
in the gray zone using some heuristic (or empirical) physical arguments (Thuburn et
al., 2014; Jansen & Held, 2014; Mana & Zanna, 2014; Zanna et al., 2017; Bachman et
al., 2017; Pearson et al., 2017; Bachman et al., 2018; Jansen et al., 2019; Bachman,
2019; Grooms et al., 2015; Berloff, 2018; Juricke et al., 2020).

Machine Learning (ML) methods have recently gained traction as a new direction
for developing subgrid eddy parameterizations in geophysics and turbulence (Rasp et
al., 2018; Bolton & Zanna, 2019; Maulik et al., 2019; Beck et al., 2019; Yuval &
O’Gorman, 2020; Guan, Chattopadhyay, et al., 2022; Beucler et al., 2021; Shamekh
et al., 2022; Wang et al., 2022). ML parameterizations capture the effect of subgrid
eddies on the resolved flow by training a model in a data-driven fashion. The most
popular approach to train ML subgrid models is to minimize the mean squared error
(MSE) between their output and a subgrid forcing obtained by reducing the resolution
of a high-resolution model via filtering and coarse-graining (Bolton & Zanna, 2019).
Such models typically have excellent offline performance: they are able to accurately
predict the subgrid forcing. However, the ultimate goal of subgrid parameterizations is
to improve online performance, once the parameterization is included into the coarse
ocean model and the model is integrated for a long time. The coarse parameterized
model should then reproduce the statistical properties of the coarse-grained high-
resolution model (Sagaut, 2006). Recent work has shown that the offline and online
performance of subgrid parameterizations correlate poorly (Ross et al., 2023): models
trained with the offline MSE loss may be unstable when applied online (Beck et al.,
2019; Maulik et al., 2019) and physically-based parameterizations have very low offline
MSE but perform reasonably well online (Ross et al., 2023). Several approaches have
been proposed to improve ML parameterizations. Kochkov et al. (2021) and Frezat
et al. (2022) proposed an online training procedure that improves numerical stability
properties but requires a differential model and has a considerable computational cost.
Guan, Chattopadhyay, et al. (2022) suggested gradually enlarging the training dataset
until the rare events in subgrid forcing are well captured. In Guan, Subel, et al.
(2022) the MSE loss function was modified with an additional constraint involving
energy exchange. Frezat et al. (2021); Guan, Subel, et al. (2022); Pawar et al. (2022)
proposed to account for physical invariances of subgrid forcing.

Conventional subgrid parameterizations are deterministic and predict a single
subgrid forcing for a given input (Berner et al., 2017), which represents the mean or
most likely prediction given the resolved flow. However, many possible states of the
subgrid eddies are typically consistent with a given resolved flow, so there is inherent
uncertainty in the subgrid fluxes (Gerard, 2007; Berner et al., 2017; Christensen &
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Zanna, 2022). Quantifying this uncertainty requires characterizing the distribution of
the subgrid forcing, conditioned on the resolved variables. The stochastic ML model
of Guillaumin and Zanna (2021) performs uncertainty quantification by estimating the
pointwise conditional mean and conditional variance of the subgrid forcing, but does
not take into account spatial correlations.

Subgrid models incorporating uncertainty quantification (UQ) can be used to
build stochastic parameterizations, where the subgrid forcing is random. Stochastic
parameterizations are widely used in climate models and have been shown to improve
the mean state and variability (Palmer, 2000; Berner et al., 2012, 2017; Christensen
et al., 2017; Juricke et al., 2017). The two simplest stochastic parameterizations
are Stochastically perturbed parameterization tendency (SPPT, Buizza et al. (1999);
Andrejczuk et al. (2016); Subramanian et al. (2019)) which multiplies a determin-
istic subgrid model by a random number with unit mean and non-zero spread and
Stochastic kinetic energy backscatter scheme (SKEBS, Berner et al. (2009); Storto
and Andriopoulos (2021)) which introduces additive stochastic forcing. The effect of
stochastic parameterizations on online performance depends in a complex way on the
associated UQ model. There is sensitivity to spatial (Grooms et al., 2015) and tempo-
ral (Wilks, 2005; Arnold et al., 2013; Schumann, 1995; Berner et al., 2009) correlations
of stochastic forcing, its non-Gaussian distribution (Mana & Zanna, 2014; Zanna et
al., 2017) and its dependence on the resolved flow (multiplicative noise, Sura et al.
(2005); Arnold et al. (2013); Zacharuk et al. (2018)).

In this work, we propose to leverage two powerful uncertainty-quantification ML
frameworks to data-driven subgrid parameterization of mesoscale eddies: variational
autoencoder (VAEs, Kingma and Welling (2013)) and generative adversarial networks
(GANs, Goodfellow et al. (2014)). These frameworks provide a data-driven character-
ization of the conditional distribution of the subgrid forcing given the resolved flow.
The resulting ML models are generative, meaning that they allow us to sample from
the conditional distribution, and can be therefore directly deployed as stochastic pa-
rameterizations. Our proposed ML models do not contain a-priori assumptions about
the structure of the statistical model. These ML models can therefore potentially
capture any statistically significant properties of the subgrid forcing such as the spa-
tial correlation of stochastic residuals, dependence on the resolved flow, or probability
distribution (Adler & Öktem, 2018; Gagne et al., 2020; Alcala & Timofeyev, 2021;
B. T. Nadiga et al., 2022). In addition, generative models can be trained and tested
using the same datasets, as MSE-based ML models.

We implement our generative models in an idealized ocean simulation and evalu-
ate them both offline and online. Our offline analysis shows that the generative models
provide a flow-dependent prediction of uncertainty. The resulting stochastic residuals
are correlated in space and reproduce stochastic backscatter (Leslie & Quarini, 1979;
Chasnov, 1991; Frederiksen & Davies, 1997) in the correct band of scales. Additionally,
generative models accurately simulate large-scale kinetic energy backscatter (Thuburn
et al., 2014; Jansen & Held, 2014) and properly energize the flow. Our online analysis
shows that the generative models have better numerical stability and metrics than the
baseline ML model in Guillaumin and Zanna (2021) at coarse resolutions.

2 Idealized ocean model and subgrid eddy forcing

In this section, we describe an idealized numerical ocean model based on quasi-
geostrophic (QG) equations of layered fluid written in Python (pyqg, Abernathey et
al. (2022)), see Figure 1. The configuration of the QG model and the corresponding
definition of subgrid forcing are similar to those in Ross et al. (2023). We use this
model to perform offline and online evaluation of the proposed methodology to build
subgrid parameterization for a range of resolutions.
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Figure 1. Reference simulations at four different resolutions: (a) kinetic energy (Eq. (3)) as

a function of time, (b) snapshot of the potential vorticity in the model with the finest resolution,

(c) the spectral density of kinetic energy normalized as E =
∫
E(κ)dκ, (d) total energy transfer

from nonlinear advection (see Eq. (E3)) normalized as ∂
∂t
E =

∫
∂tE(κ)dκ. Coarse models fail to

reproduce the energy cycle when their resolution is insufficient to resolve the deformation radius

κ = r−1
d (see arrow). Black dotted lines in panel (d) show the dissipation model (ssd), which

causes a spurious forward energy cascade (spikes in energy transfer).
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2.1 Governing equations

We solve numerically the QG equations for potential vorticity (PV) anomalies
relative to the mean flow given by a prescribed vertical shear that plays the role of
external forcing driving turbulence.

The two-layer QG equations in Cartesian coordinates (x is zonal, y is meridional)
are:

∂tqm +∇ · (umqm) + βm∂xψm + Um∂xqm = −δm,2rek∇2ψm + ssd ◦ qm, (1)

qm = ∇2ψm + (−1)m
f2

0

g′Hm
(ψ1 − ψ2), m ∈ {1, 2} (2)

where m is the index of the fluid layer (1 for the upper layer and 2 for the lower layer);
qm is the potential vorticity (PV) which is conserved on Lagrangian trajectories in
absence of forcing and dissipation; ψm is the streamfunction, related to velocity as
um = (um, vm) = (−∂yψm, ∂xψm); Um is the prescribed mean zonal flow (in the x

direction); βm = β + (−1)m+1 f2
0

g′Hm
(U1 − U2) is the meridional gradient of potential

vorticity due to differential rotation (in β-plane approximation) and prescribed mean
flow; rek is the bottom drag coefficient; δm,2 is a Kroneker delta which indicates that
drag is applied only to the lower layer; f0 is the reference Coriolis frequency; g′ is the
reduced gravity and Hm is the fluid layer thickness, H = H1 +H2 is the total depth;
∇ = (∂x, ∂y) is a horizontal Nabla operator, where ∂x, ∂y are partial derivatives w.r.t.
x, y. The numerical schemes and how the small-scale dissipation (ssd) is applied to
the governing equations are described in Appendix A. The kinetic and total energy
per unit mass are respectively given by:

E =
1

2H

2∑
m=1

Hm〈|um|2〉 (3)

E = − 1

2H

2∑
m=1

Hm〈ψmqm〉 (4)

where 〈·〉 is 2D spatial averaging. The QG system, described by Eq. (1) and (2) is ini-
tially perturbed from rest with random noise in the upper PV field, with a subsequent
evolution over the next 2–5 years exhibiting a transition to turbulence. The initial
random perturbations are limited to the range of scales of the coarsest model, and it
allows to simulate similar energy growth in the transition from laminar to turbulent
regimes at different grid resolutions, see Figure 1(a). Model parameters are given in
Table 1 and correspond to the ”eddy” configuration in Ross et al. (2023).

Mesoscale eddies emerge on a spatial scale determined by the deformation ra-
dius rd = g′

f2
0

H1H2

H (Salmon, 1980; Vallis, 2017), denoted by the arrow in Figure 1.

We choose the resolution of the reference simulation (2562) in order to accurately
reproduce the spectral energy transfer. Coarse-resolution models do not resolve the
deformation radius properly and fail to reproduce various statistical characteristics
(Hallberg, 2013; Hewitt et al., 2020), including kinetic energy (KE), spectrum of KE
and energy transfer. In this work, we aim to improve the simulation of turbulence in
coarse models by incorporating a subgrid parameterization model, which compensates
for the missing physics.

2.2 Filtered equations

In this section, we derive the governing equations for the coarse model which fol-
lows the trajectory of the filtered and coarsegrained high-resolution simulation. These
equations contain a new term that describes the interaction with unresolved eddies,
the term that is not available at the coarse resolution and needs to be parameterized.
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Table 1. Parameters of the quasi-geostrophic model in online simulations (eddy configuration

from Ross et al. (2023)).

Common parameters

Integration time 20 years
Ensemble size 10 runs
Domain size (L×W ) 1000km × 1000km
Boundary conditions periodic
Ocean depth (H = H1 +H2) 2500m
Upper layer thickness (H1) 500m
Bottom drag (rek) 5.787 · 10−7s−1

Differential rotation (β) 1.5 · 10−11(m s)−1

Deformation radius (rd = g′

f2
0

H1H2

H ) 15km

Mean flow (U1, U2) (0.025m/s, 0m/s)

Velocity scale (
√

2E) ≈ 0.035m/s

Grid parameters resolution grid step (∆x) time step (∆t)

High resolution 256× 256 3.9km 1hour

Coarse models 96× 96 10.4km 2hour
64× 64 15.6km 4hour
48× 48 20.8km 1,2,4,8 hour

We follow the Large eddy simulation (LES, Sagaut (2006)) approach to split the
prognostic variables (φ) into resolved (φ) and subgrid (φ′) components by applying a
spatial convolutional filter with kernel G(y) such that

φ = φ+ φ′, (5)

φ(x) =

∫
G(y − x)φ(y)dy with

∫
G(y)dy = 1. (6)

We use two spectral filters from Ross et al. (2023): one filter is a combination of a cut-
off and a model filter (”Sharp”), the other is a combination of a cut-off and a Gaussian
filter (we denote it as ”Gaussian”). Precise definitions are provided in Appendix B.

Applying the filter G(y) to the governing equations (1), (2), we obtain a set of
governing equations for the filtered solution:

∂tqm +∇ · (umqm) + βm∂xψm + Um∂xqm = −δm,2rek∇2ψm + S + ssd ◦ qm, (7)

qm = ∇2ψm + (−1)m
f2

0

g′Hm
(ψ1 − ψ2), m ∈ {1, 2}. (8)

S is the additional subgrid forcing produced by the unresolved eddies on the resolved
scales,

S = ∇ · (u q − uq), (9)

which needs to be parameterized. We will omit the index m for the subgrid forcing
and related variables to simplify notation. The dissipation term ssd on a coarse grid
in Eq. (7) is added a-posteriori to ensure the numerical stability of the simulations.
In deriving Eq. (7), we used commutativity between derivatives and spatial filtering,
which holds for spectral numerical schemes and spectral filters (Ghosal, 1996). Both
subgrid forcing and numerical advection scheme are formulated in flux form, so we
include numerical approximation errors into the definition of subgrid forcing (Ghosal,
1996; Chow & Moin, 2003; Gullbrand & Chow, 2003).
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Figure 2. Subgrid forcing (S, Eq. (9)) at different resolutions diagnosed using a Sharp fil-

ter (top row), or a Gaussian filter (bottom row). Left: power spectrum of S for the upper fluid

layer (solid lines) and lower fluid layer (dashed lines). Colors: 482 (blue), 642 (orange), 962 (red).

Vertical lines show grid cut-off for coarse mesh κmax = π/∆x. Right: Snapshots of S at three

different resolutions for the upper layer.

2.3 Subgrid forcing dataset

The solution to the governing equations (1), (2) for the high-resolution model is
denoted by q. The filtered quantities (q) are defined on a coarse mesh.

The dataset to train ML subgrid parameterization models is obtained as follows.
We integrate the governing equations in time for 10 years at high resolution (2562)
with time step 1 hour and save snapshots every 1000 hours, for a total of 86 snapshots.
The training dataset consists of 250 runs, each corresponding to a different random
initial condition, for a total of 21500 snapshots. The validation and testing datasets
consist of 25 runs each. For each coarse resolution (482, 642, 962), we compute a
filtered solution represented on a coarse mesh (q, u) and subgrid forcing (Eq. (9))
using Sharp or Gaussian filters. The spectral content of the resulting subgrid forcing
greatly depends on the scale selectivity of the filter, see Figure 2.

3 Data-driven stochastic subgrid models

In this section, we introduce a probabilistic approach for the prediction of subgrid
forcing, which can be used to build data-driven stochastic parameterizations.

Conventional subgrid parameterizations establish a functional relationship be-
tween the subgrid forcing (S, Eq. (9)) and the resolved flow (q) in the form of S ≈ S̃(q).
Such parameterizations are typically deterministic; they produce a single prediction
for a given input. However, there is inherent uncertainty in the prediction of subgrid
forcing, because many possible states of the subgrid eddies are consistent with a given
resolved flow. Therefore, we propose to instead generate a probabilistic prediction, by
attempting to sample from the conditional distribution of the subgrid forcing given
the coarse-grained flow (S ∼ ρ(S|q)).
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Figure 3. Schematic of three stochastic subgrid models attempting to sample from condi-

tional distribution ρ(S|q): (a) GZ model, (b) GAN model and (c) VAE model. GZ model pre-

dicts uncorrelated stochastic residuals, but generative models (GAN and VAE) transform white

noise using a mapping learned directly from data (gray-shaded box). Discriminator and Encoder

are supplementary networks that allow training of the mapping but are not required for subgrid

forcing prediction.

In order to generate a probabilistic prediction of the subgrid forcing, we pro-
pose to apply a generative ML framework, where samples from a desired distribu-
tion are obtained by transforming white noise using a mapping learned directly from
data (Kingma & Welling, 2013; Goodfellow et al., 2014). We design and compare
three different approaches, depicted in Figure 3, to learn this transformation: (a) A
model based on Guillaumin and Zanna (2021), which predicts the pointwise mean and
pointwise standard deviation of the conditional distribution of the subgrid forcing.
(b) A generative adversarial network (GAN), consisting of a generator that generates
subgrid-forcing samples by trying to fool a discriminator, trained to distinguish be-
tween these samples and the true high-resolution data. (c) A variational autoencoder
(VAE) consisting of an encoder, which maps the input signal to a latent space, and a
decoder, which decodes the latent variables to produce subgrid-forcing samples. The
remainder of this section provides a more detailed description of each approach.

3.1 Guillaumin and Zanna model (GZ)

Guillaumin and Zanna (2021) presented a probabilistic ML parameterization,
where the mean and variance of the subgrid forcing are estimated at every grid point
using a neural network. The original formulation in (Guillaumin & Zanna, 2021)
minimizes an i.i.d. Gaussian likelihood cost function to optimize the parameters of
the network. Here, we propose an alternative training procedure, which we have found
to be more efficient. Following the approach of Adler and Öktem (2018), we estimate
the pointwise means and variances sequentially.

First, we estimate the conditional mean at each grid point by minimizing the
MSE loss function:

LMSE =
1

2n2
||S − S̃mean

θ (q)||22, (10)
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where S̃mean
θ (q) is the output of a neural network with parameters denoted by θ, which

receives q as an input. S, S̃mean
θ , q ∈ R2×n×n are tensors representing two layers of fluid,

each layer having n × n points. The norm in the cost function is the `2 norm of the
vectorized tensor, which for the vector of length D is ||x||2 =

√
x2

1 + · · ·+ x2
D. The loss

function is minimized over a training set consisting of samples of the resolved flow q
and the corresponding high-resolution forcing S obtained as described in Section 2.3.
Minimization of LMSE yields an optimal set of parameters θ∗ and a corresponding
model which we denote as S̃mean(q).

Second, we estimate the conditional variance at each grid point, based on the
residual of the conditional-mean estimate r = S− S̃mean(q). To this end, we minimize
the cost function

LVAR =
1

2n2
||r2 − S̃var

φ (q)||22, (11)

where S̃var
φ (q) is the output of a neural network with parameters denoted by φ, which

receives q as an input. The final layer of the network is a softplus activation function
ln(1 + ex) to ensure that the variance estimates are nonnegative. The loss function is
minimized over the training set fixing the residual r. The resulting model is denoted
by S̃var(q). Additional training information is given in Appendix C.

The conditional-mean and conditional-variance models are used to implement a
stochastic parameterization with white noise, as follows (see Figure 3(a)):

S̃(z, q) = S̃mean(q) + (S̃var(q))1/2 · z, (12)

where z ∈ R2×n×n is sampled from a standard normal distribution.

3.2 Generative adversarial network model (GAN)

We propose to leverage the framework of generative adversarial networks (GANs)
to build a probabilistic model (Goodfellow et al., 2014), which generates samples from
the distribution of possible subgrid forcings (S) at a given resolved flow (q) denoted
as ρ(S|q), where both variables are considered as 3D fields, S, q ∈ R2×n×n. The
mentioned distribution is defined implicitly by the dataset of pairs of S and q. The
GAN framework consists of two networks, generator and discriminator, playing an
adversarial game: the generator attempts to fool the discriminator, which is trained
to discriminate between the output of the generator and actual data sampled from a
desired distribution.

Sampling from the conditional distribution is possible with the conditional GAN
model (cGAN, Mirza and Osindero (2014)), which informs both networks with the
conditional variable. Specifically, the generator transforms the latent noise variable z
and PV field to the subgrid forcing, see Figure 3(b):

S̃ = G(z, q). (13)

The discriminator returns a score given a pair of subgrid forcing and PV field denoted
as D(S, q). There are many options to define the adversarial loss function (Lucic et
al., 2018). We leverage a popular approach of Wasserstein GAN (WGAN, Arjovsky et
al. (2017)) with the following optimization problem:

min
G

max
D

E
[
D(S, q)−D(G(z, q), q)

]
, (14)

where E is the mathematical expectation over the training samples. The discriminator
D is optimized to estimate the Wasserstein-1 distance between the distributions ρ(S|q)
and ρ(S̃|q), while the generator learns the true distribution by minimizing this distance.

Solving the optimization problem (14) may lead to the mode collapse phenomenon
when the generator ignores the latent variable z: for every coarse field q the model
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may produce a single fixed subgrid forcing (Isola et al., 2017; Ohayon et al., 2021;
Mao et al., 2019; Yang et al., 2019). To overcome mode collapse, we apply a technique
proposed by Adler and Öktem (2018): feeding multiple generator outputs S̃ to the
discriminator for a given input q. Identical outputs are readily detected and penalized
by the discriminator. We provide additional details in Appendix C.

Once trained, the GAN generator (13) can be used as a stochastic parameteriza-
tion by sampling the latent variable z ∈ R2×n×n from a standard normal distribution.

3.3 Variational autoencoder model (VAE)

As an alternative to the GAN framework, we propose leveraging the variational
autoencoder (VAE, Kingma and Welling (2013)) to sample from the conditional dis-
tribution ρ(S|q). The VAE framework consists of two networks: the encoder and the
decoder. The encoder produces a latent representation and the decoder reconstructs
the subgrid forcing from this representation. A regularization term constrains the
latent vector to be close to a simple distribution, chosen a priori.

The conditional VAE (cVAE) is obtained by feeding a conditional variable to the
encoder and decoder (Sohn et al., 2015; Doersch, 2016; Zhang et al., 2016; Mishra et
al., 2018; Pagnoni et al., 2018): the decoder maps the latent noise and conditional
variable q to the subgrid forcing, see Figure 3(c):

S̃ ∼ ρθ(S̃|z, q), (15)

where free parameters are denoted as θ and we emphasize that the mapping is proba-
bilistic. The probabilistic encoder with free parameters φ is denoted as z ∼ qφ(z|S, q).
The encoder and decoder are trained jointly to maximize the lower bound of the like-
lihood of observing the training sample (also known as evidence lower bound, ELBO):

ln ρθ(S|q) ≥ Eqφ(z|S,q) ln ρθ(S|z, q)︸ ︷︷ ︸
reconstruction

−DKL (qφ(z|S, q)||ρ(z))︸ ︷︷ ︸
regularization

= −LVAE, (16)

where DKL(p(x), q(x)) = Ep(x) ln p(x)
q(x) is Kullback–Leibler divergence, a measure of the

difference between two distributions. The reconstruction term encourages the encoder
to seek an accurate latent representation of the subgrid forcing and encourages the
decoder to assign a high probability to the training samples. The regularization term
constrains the encoder to be close to the prior distribution ρ(z). We parameterize all
probabilities with Gaussian distributions and replace the mathematical expectation
with one sample from the encoder (reparameterization trick, Kingma and Welling
(2013)). The resulting loss function is equivalent to a regularized MSE as explained
in more detail in Appendix C.

The mean channel of the Gaussian decoder (15) can be used as a stochastic
parameterization by sampling the latent variable z ∈ R2×n×n from a standard normal
distribution.

4 Offline analysis of stochastic subgrid models

In this section, we perform an offline evaluation of the stochastic subgrid models
described in Section 3 using the dataset described in Section 2.3. We show spatial maps
and spectra of the predicted subgrid forcing. We propose metrics for the evaluation of
the predicted subgrid forcing and stochastic residuals and compare them for a range
of resolutions.

For every combination of filter (Sharp and Gaussian) and resolution of coarse
mesh (482, 642, 962), we train three machine learning models: GZ, GAN and VAE, for
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Figure 4. Prediction of subgrid forcing (S) by stochastic models at a fixed conditional vari-

able q on the testing dataset: GZ in upper row, GAN in middle row and VAE in lower row.

”Model mean” is the deterministic prediction, and ”Simulated residual” is the stochastic part of

the model, which should be similar to ”True residual”. ”Model std” is the standard deviation of

the subgrid forcing prediction. The root mean square (rms) value of each field is shown in the

box.
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a total of 18 different models of subgrid forcing. The baseline deterministic subgrid
model is trained with the MSE loss function and it is referred to as ”MSE” (we simply
take the mean channel of GZ model). Following Kochkov et al. (2021), every model
was trained five times with different random seeds. Three training instances failed and
were excluded from the subsequent analysis: 2 realizations of VAE models at resolution
642 experienced the posterior collapse problem (zero spread, Dai et al. (2020)), and
one realization of GZ model at resolution 482 had a large generalization error. In this
section, we show results for Sharp filter, and similar plots for Gaussian filter are shown
in Appendix D.

4.1 Analysis of stochastic predictions

In this section, we compare stochastic predictions of subgrid forcing to the true
subgrid forcing. We suggest to split the stochastic prediction into the deterministic
part and the stochastic residual. We define the deterministic part as a mean prediction
of subgrid forcing at a fixed resolved field q – it is conditional mean denoted as E(S̃|q).
The deterministic part of the GZ model is given by the mean channel S̃mean(q), and for
GAN and VAE models we estimate it by sampling 1000 realizations of the latent vector
(Adler & Öktem, 2018). The predicted stochastic residuals (r̃ = S̃−E(S̃|q)) should be
compared to the true residuals (r = S−E(S̃|q)), and for an accurate stochastic model
they should be statistically similar, see Wilks (2005); Arnold et al. (2013); Agarwal et
al. (2021); Berner et al. (2009); Mana and Zanna (2014); Shutts and Palmer (2007);
Guillaumin and Zanna (2021); Gagne et al. (2020).

In Figure 4 we show predictions of the stochastic subgrid models. The deter-
ministic part (E(S̃|q)) is similar for three stochastic models. The predicted stochastic
residual (rightmost column) for GZ model looks like uncorrelated spatial white noise in
contrast to the true residual. The predicted residuals for the other two models (GAN
and VAE) are more visually similar to the true one. The pointwise standard deviation
is a measure of the local uncertainty in the deterministic prediction and can be related
to the second moment of residuals as:

Std(S̃|q) =

√
E

((
S̃ − E(S̃|q)

)2 ∣∣∣q) =
√

E(r̃2|q).

It is directly accessible for the GZ model, and for GAN and VAE models it can be
estimated similarly to the conditional mean. The standard deviation fields have similar
spatial structure for all three stochastic models.

We use the spatial power spectrum to analyze the spatial correlation. In Figure
5(a) we show the power spectrum of stochastic residuals. The true residuals are con-
centrated near the grid cut-off (Nyquist frequency, κmax = π/∆x) and near the spatial
frequency of ssd filter (κ = 0.65π/∆x). The GZ model does not reproduce the two-
hill shape of the power spectrum of residuals. The GAN model accurately reproduces
the power spectrum of residuals and improves the power spectrum of subgrid forcing
(Figure 5(b)) compared to the deterministic and stochastic baselines (MSE, GZ). Note
that accurate prediction of the power spectrum of subgrid forcing is a challenging task
for deterministic models (Guan, Subel, et al., 2022) because optimization of the mean
squared error leads to the loss of details in small scales (Isola et al., 2017). The VAE
model predicts the correct shape of the spectrum of residuals, but the total variance
of residuals is underestimated. The power spectrum of subgrid forcing for the VAE
model is also lower compared to the other models. We explain it by the well-known
issue of VAE architecture to predict oversmoothed images (Takida et al., 2022).

An important property of subgrid forcing in QG turbulence is an ability to en-
ergize turbulence on a coarse grid, i.e. kinetic energy backscatter (Jansen & Held,
2014). There are two popular approaches to simulate backscatter: stochastic residuals
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Figure 5. Offline analysis of stochastic subgrid models (GZ, GAN, VAE): (a) power spec-

trum of stochastic residuals and (b) subgrid forcing; (c) energy transfer (see Eq. (E4)) and (d)

marginal PDF of subgrid forcing. MSE is the deterministic subgrid model given by the mean

channel of GZ model.

near the grid scale (Leslie & Quarini, 1979; Chasnov, 1991; Schumann, 1995; Fred-
eriksen & Davies, 1997; Grooms et al., 2015) and mean energy injection in large scales
(Kraichnan, 1976; Frederiksen et al., 2003; Graham & Ringler, 2013; Thuburn et al.,
2014; Jansen & Held, 2014; Juricke et al., 2020). These two types of backscatter result
from physical processes of a very different nature: stochastic backscatter simulates
the loss of information about unresolved degrees of freedom but energy injection in
large scales compensates for the unresolved inverse energy cascade. All the stochastic
models are accurate in predicting large-scale energy injection (Figure 5(c)), and GAN
model is the best in predicting stochastic residuals near the grid scale.

Marginal PDF of subgrid forcing is often used to evaluate subgrid models (Pawar
et al., 2020; Maulik & San, 2017). Both GZ and GAN models improve this PDF in
the high-probability region and in the tails compared to the baseline MSE model, see
Figure 5(d). The VAE model is similar to the baseline MSE in this characteristic.

4.2 Quantitative offline analysis and metrics

Above we presented a qualitative analysis of the stochastic subgrid models, and
here we propose metrics for their quantitative evaluation. We consider three classes
of metrics, which demonstrate: the quality of the subgrid forcing, its deterministic
part and stochastic residuals, see Table 2. We include spectral metrics for the subgrid
forcing and residuals (LS and Lr) in order to evaluate to what extent the models
capture the corresponding spatial structure.

In Figure 6 we report the evaluation of the offline metrics for the different models.
The upper row provides metrics on the test dataset with the same turbulence regime
as the training set. We observe that the generative models (GAN and VAE) have
slightly greater deterministic error (Lrmse) compared to the model optimizing this
metric directly (GZ and MSE). The GAN and GZ models correctly predict spread of
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Metric Lrmse LS Lr σ2
spread

Expression ||S−E(S̃|q)||2
||S||2

||sp(S)−sp(S̃)||2
||sp(S)||2

||sp(r)−sp(r̃)||2
||sp(r)||2

||r̃||22
||r||22

Optimal value 0 0 0 1
Unparameterized model 1 1 1 0
Quality of deterministic part full forcing residuals residuals

Table 2. Metrics for offline analysis of stochastic subgrid model S̃: RMSE of deterministic

part (Lrmse), RMSE in spectrum of the full subgrid forcing (LS), RMSE in spectrum of stochas-

tic residuals (Lr) and spread of the samples of conditional distribution (σ2
spread). We denote

computaiton of isotropic power spectrum as sp(·).
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Figure 6. Offline metrics from Table 2 on testing dataset in the upper row and generalization

to configuration with jets (Ross et al., 2023) in the lower row. Optimal values are given with

arrows. Each model is trained 5 times with different random seeds. The shading area shows

min-max values among training realizations, markers show median value.

stochastic residuals σ2
spread ≈ 1, but the VAE model underestimates spread σ2

spread ≈
0.35. The GAN model clearly outperforms the rest in predicting the spectra of the
subgrid forcing LS and the residuals Lr. The VAE model on the contrary has high
errors LS and Lr because it predicts oversmoothed samples with reduced diversity.

In the lower row of Figure 6, we evaluate the generalization ability of the models
by computing the offline metrics on dataset corresponding to a different turbulence
regime, where flow is dominated by meandering jets, and which is therefore system-
atically different from the training data (see Ross et al. (2023) for description). GZ
model considerably overestimates the spread of the residuals (2 < σ2

spread < 10), and it
deteriorates the spectral metrics (LS and Lr). Although the VAE model had various
suboptimal metrics on the eddy turbulence configuration, it demonstrates the best
generalization capabilities to the jet configuration: VAE model has reasonable spread
σ2

spread ≈ 0.8, and outperforms other models in the error of the deterministic predic-
tion Lrmse, the quality of the subgrid forcing LS and residuals Lr. The GAN model
generalizes better than GZ for most of the metrics, without reaching the performance
of the VAE model. We observe similar results for the Gaussian filter, see Appendix D.
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During the first few years of simulation, QG model undergoes a transition from
a laminar to a turbulent flow regime. Generalization to the transitional regime is
a difficult test for subgrid models (Frezat et al., 2021) because the subgrid forcing
is a few orders of magnitude smaller compared to the developed turbulence regime.
Although we include the transitional regime in the training set, the relative importance
of these samples is small due to their small norm. As a result, all subgrid models have
large errors compared to the norm of the subgrid forcing during the first few years
of simulation (t < 2 years), see Figure 7. The generative models (GAN and VAE)
demonstrate the best performance in the transitional regime: error is one order of
magnitude smaller compared to GZ. In the next section, we show that generative
models are also superior to the baseline in the online simulation of transitional flow.

5 Online simulations with subgrid models

In the previous section, we demonstrated the encouraging ability of generative
models GAN and VAE to simulate various statistical characteristics of subgrid forc-
ing. In this section, we evaluate the performance of trained subgrid models in online
simulations. In more detail, we use the output of the subgrid model S̃ to replace
the true subgrid forcing S in the governing equation for the coarsegrained dynamics
(7), and perform numerical time integration. Our goal is to study how the subgrid
parameterizations impact the dynamics of mesoscale eddies in a statistical equilibrium
regime.

Our online experiments are summarized in Table 1. Compared to the generation
of the training data, we run experiments for twice as long (20 years). Before passing
the subgrid forcing prediction into governing equation we subtract the spatial mean
in each fluid layer to ensure the conservation of PV. Recall that we train 5 different
models (differing only in the initialization of the weights) for every combination of
resolution, filter and type of subgrid model. Each of these models is evaluated in an
ensemble of 10 online runs, with different random initial conditions. The total number
of runs is approximately 1200. The statistical characteristics of the turbulence are
averaged over the 10 ensemble members (and the last 15 years if applicable). We
provide the confidence bounds for every averaged statistic defined by the minimum,
maximum and median values over 5 realizations of the training algorithm.
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Among mentioned experiments, there were a few unstable simulations at reso-
lution 962: one run of the VAE model for Sharp filter, and 3 GAN models out of
5 training realizations for Gaussian filter. We exclude mentioned experiments from
the analysis. In these experiments, an eddy emerges which is constantly amplified
by the parameterization, and in a spectral space it corresponds to the overestimated
energy injection on the largest scale. This effect is possible because we do not control
the amplitude of the parameterization as it is usually done in energetically-consistent
physical parameterizations of backscatter (Jansen & Held, 2014).

5.1 Metrics for online analysis

We compare the solution of the coarse parameterized model to the filtered and
coarse-grained fields of the high-resolution model similarly to B. Nadiga and Livescu
(2007); Beck et al. (2019); Frezat et al. (2022); Guan, Chattopadhyay, et al. (2022);
Guan, Subel, et al. (2022).

Following Ross et al. (2023), we consider an error in PDFs of the turbulence fields.
Define the Wasserstein distance between distributions as W1(F1, F2) =

∫
|F1(ξ) −

F2(ξ)|dξ, where F1 and F2 are cumulative distribution functions (CDF) of some vari-
able ξ. In computing CDF, we aggregate spatial directions, 15 years of simulation,
and 10 ensemble members. We consider 5 variables in place of ξ: potential vor-
ticity (qm), velocity (um and vm), kinetic energy ( 1

2 |um|
2) and relative enstrophy

( 1
2 |curl(um)|2), and each fluid layer is accounted independently. The online distri-

butional metric between the coarse-grid model (Fmodel) and the filtered and coarse-
grained high-resolution simulation (Fhires) is given by the average of normalized errors:

W(model,hires) =
1

10

2∑
m=1

∑
ξ∈Varsm

W1

(
Fmodel(ξ), Fhires(ξ)

)√∫
ξ2dFhires

, (17)

where Varsm = {qm, um, vm, 1
2 |um|

2, 1
2 |curl(um)|2} and the normalization constant is

the square root of the uncentered second moment.

An additional metric based on spectral characteristics is reported in Appendix
E.

5.2 Sensitivity to the correlation time of latent variable

In order to leverage the proposed subgrid-forcing models in a stochastic param-
eterization, we sample the latent variable z independently at every time step (discrete
white noise) similar to Zanna et al. (2017) and Guillaumin and Zanna (2021).

Following (Gagne et al., 2020), we also tested the sensitivity of the online sim-
ulation results to the correlation time of the latent variable. The time correlation is
introduced with the autoregressive model of order one (AR1), which has covariance
function E(z(t)z(t + n∆t)) = (1 − ∆t/τ)n (Schumann, 1995), where n denotes the
number of time layers between two time moments, τ ≥ ∆t is correlation time, and at
τ = ∆t we restore the discrete white noise process. The online distributional metric
(17) as a function of correlation time is reported in Figure 8. The optimal online
metric corresponds to τ = ∆t, which justifies our method of sampling (white noise).

5.3 Results

In Figure 9 we show online simulations with subgrid models at the coarsest res-
olution. The unparameterized model (”lores”) has underestimated kinetic energy (a)
and underestimated KE spectrum in large scales (b). This is due to the poor represen-
tation of the inverse energy cascade on the coarse grid (c). The deterministic subgrid
model (MSE) improves inverse energy cascade and KE spectrum in large scales, but
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Figure 8. Online distributional metric (17) as a function of correlation time τ of latent vari-

able z for three stochastic subgrid models (GZ, GAN and VAE). lores is model on a coarse grid

without parameterization. Shading area shows min-max values among training realizations, and

markers show median value. Time step of the numerical integration ∆t is 4 hours.

small eddies near the grid scale are energized too much, see KE spectrum in small
scales, KE level and tails of PDFs. The GZ model does not prevent overamplification
of the small eddies. In contrast, the generative stochastic models (GAN and VAE)
improve the simulation of the small eddies: see spectral characteristics in small scales,
tails of PDFs and kinetic energy. Note that generative models (GAN and VAE) accu-
rately reproduce kinetic energy growth in transitional flow (panel (a), t < 2 years) in
agreement with the offline analysis.

Snapshots of the velocity modulus are shown in Figure 10. At time step ∆t = 2
hours baseline models (MSE and GZ) have too many small eddies, and at time step
∆t = 1 hour the flow becomes unphysical and overenergized. GAN and VAE models at
both time steps produce physical solutions which look similar to the filtered and coarse-
grained high-resolution simulation (hires). In Figure 11(a) we show distributional
metric as a function of the time step. While baseline models (MSE and GZ) are
very sensitive to the time step, the generative models (GAN and VAE) are relatively
insensitive to the time step and have the smallest errors. This suggests that the
generative stochastic models have better numerical stability properties. See Appendix
E for further discussion on numerical stability.

In Figure 11(b) we show the distributional metric as a function of resolution. At
the coarsest resolution 482, the generative stochastic models (GAN and VAE) have
5–10 times lower error compared to the unparameterized simulation (lores) and 3–5
times lower error compared to the baseline models (GZ and MSE). For intermediate
and higher resolutions (642 and 962) all ML-based models (GZ, MSE, GAN, VAE) im-
prove distributional error compared to the unparameterized model, but the confidence
intervals (shading area) exceed the difference between the median values. So we con-
clude that the effect of stochastic subgrid models (GZ, GAN, VAE), as opposed to the
deterministic one (MSE), at these resolutions is negligible. The discrepancy between
the offline and online analysis may be due to the inclusion of ssd term, time sampling
method of the stochastic parameterization, and time integration scheme. Overall, gen-
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Figure 9. Online simulations with parameterized models (MSE, GZ, GAN and VAE). lores is

a coarse unparameterized model. hires is filtered and coarsegrained high-resolution model. MSE

is a deterministic subgrid model given by the mean channel of the GZ model. Energy transfer on

panel (c) gives a sum of contributions from the resolved advection and subgrid model (see Eq.

(E4)). Shading area shows min-max values among training realizations, and lines show median

value. The time step ∆t is 2 hours.

erative models (GAN and VAE) improve simulation if there are issues with numerical
stability, and perform as well as the baseline deterministic model in other cases. The
spectral-error metric reported in Appendix E yields similar conclusions.

In Figure 12 we show the online results for the subgrid models trained on the
dataset produced using the Gaussian filter. The subgrid models cannot substantially
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Time step Δt = 2 hours Time step Δt = 1 hour

Figure 10. Snapshots of the modulus of velocity. Two columns with ∆t = 2 hours correspond

to Figure 9. The smaller the time step, the smaller the effective eddy viscosity, see Appendix E.

Figure 11. Online distributional metric (Eq. (17)): (a) as a function of time step at the

coarsest spatial resolution and (b) as a function of spatial resolution. The shading area shows

min-max values among training realizations, and markers show median value. The smaller the

time step, the smaller the effective eddy viscosity, see Appendix E.

improve the KE spectrum on large scales with respect to the unparameterized model
(panel (b)), and it results in little or no improvement in the other statistical character-
istics. At higher resolutions (642 and 962) we observe the improvement in reproducing
the KE spectrum on small scales, but not the large ones (not shown). Similar to
Zanna and Bolton (2020), we report in Appendix E how the kinetic energy in online
simulation changes when the subgrid model is multiplied by the adjustable parameter.
This characteristic clearly demonstrates that subgrid models trained for the Gaussian
filter are less efficient in energizing the flow. The same issues for the models trained to
predict the subgrid forcing diagnosed with the Gaussian filter were reported in Ross et

–20–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

0 5 10 15 20
t, years

0.0

2.5

5.0

7.5
E
,m

2
/
s

2
×10 4(a) Kinetic energy

0.00 0.25 0.50 0.75 1.00
1
2
|curl(u1)|2, s−2 ×10 10

107

108

109

1010

1011

P
D

F
 d

en
si

ty

(d) Upper enstrophy

10-5 10-4

wavenumber , m−1

10-1

100

101

E
(

),
m

3
/s

2

(b) KE spectrum

0.0 0.5 1.0 1.5
1
2
|u1|2, m2s−2 ×10 2

100

101

102

103

P
D

F
 d

en
si

ty

(e) Upper KE

10-5 10-4

wavenumber , m−1

1

0

1

tE
(

),
m

3
/s

3

×10 6(c) Energy transfer

0 1 2 3 4
1
2
|u2|2, m2s−2 ×10 4

101

102

103

104

P
D

F
 d

en
si

ty

(f) Lower KE

hires

lores
MSE
GZ

GAN
VAE

482, Gaussian filter

Figure 12. Online simulations with parameterized models. Similar to Figure 9, but for mod-

els trained on the dataset with Gaussian filter.

al. (2023) and these may be caused by the mentioned discrepancies between the offline
and online analysis.

In Appendix E we include additional online results. The online generalization to
the turbulence configuration with jets shows that generative models clearly improve
the simulation of the transitional flow, but at a later time, all the subgrid models
including baselines experience numerical stability issues. Runtime for the generative
models is the same as for the deterministic baseline.
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6 Conclusions and discussion

In this work, we propose to leverage generative machine-learning models (GAN
and VAE) to build stochastic subgrid parameterizations of mesoscale eddies. Gen-
erative models allow to sample from the conditional distribution of subgrid forcing
given resolved variables. We performed offline and online evaluations of the proposed
subgrid models, and compared them against baseline deterministic and stochastic ML
models in an idealized ocean simulation for a range of resolutions.

Our main findings can be summarized as follows:

• Generative models are able to simulate the stochastic residuals of subgrid forcing
with spatial structure similar to the true residuals.

• Generative models accurately represent the energy transfer spectrum and thus
reproduce the large-scale kinetic energy backscatter missing at coarse-resolution.

• The GAN model is superior to others according to the offline metrics for subgrid
forcing; however, the VAE model demonstrates better offline generalization to
the unseen turbulence configuration (meandering jets).

• Both generative models (GAN and VAE) improve the numerical stability prop-
erties and prevent overamplification of the unphysical flows in online simulations
at the coarsest resolution compared to the baseline ML models.

In spite of the different performance of GAN and VAE models in the offline
analysis, their performance is similar in online simulations. Therefore, offline metrics
or loss functions may be bad proxies for the online performance (Frezat et al., 2022;
Ross et al., 2023). The energy transfer spectrum is one of the main properties of
subgrid forcing which is essential to properly energize the flow and could be considered
as an alternative loss function. However, the spatial structure of the subgrid forcing
and stochastic residuals may be important to ensure the development of the physical
solution.

Our online simulations are optimal when the time correlation of the latent vari-
able sampling is equal to the model timestep, which is equivalent to a white noise
model and consistent with our offline training methodology. The effect of the parame-
terization can be analyzed by decomposing it into deterministic and stochastic parts.
The determinitic part is defined as the conditional mean; while the stochastic part as
a white noise model. The white noise process model implies that the energy injection
by the stochastic part of the parameterization approaches zero in the limit of the small
time steps (Alvelius, 1999). In addition, the average energy injection is fully described
by the deterministic part of the parameterization (i.e., conditional mean, see Moser
et al. (2021)). One can modify the definition of the subgrid model, for example by
including memory effects, to generate a stochastic model with non-vanishing energy
input (Chorin & Lu, 2015; Gagne et al., 2020; Agarwal et al., 2021; DelSole, 2000;
Berner, 2005; Bhouri & Gentine, 2022).

The important property of the proposed generative models: they do not introduce
new limitations to be trained on the global ocean data compared to our baseline model
(GZ). Moreover, compared to GZ, both generative models do not require an explicit
expression for the likelihood function, and thus slightly more complicated architecture
of the stochastic model can be used, for example, the final divergence layer (Zanna &
Bolton, 2020) which allows building conservative parameterizations. We expect that
the application of generative models for complex flows may greatly improve the quality
of the generated stochastic residuals compared to the traditional methods.
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Appendix A Numerical schemes and small-scale dissipation

Integration in time is performed with third-order Adams-Bashford scheme (Durran,
1991). Equations (1), (2) are approximated in space on a uniform collocated grid with
the use of the pseudo-spectral method, i.e. all derivatives are computed in Fourier
space, but the only nonlinear operation (umqm) is computed in physical space (Fox &
Orszag, 1973).

In our numerical solver, aliasing errors are reduced with the use of ”exponential
cut-off” filter (Canuto et al., 2012) denoted as ssd, which attenuates highest spatial
frequencies and additionally removes enstrophy near the grid scale thus ensuring nu-
merical stability. Application of the filter ssd(·) is equivalent to multiplication by the
following function in Fourier space:

ŝsd(k, l) =

{
1, κ < κc

exp(−23.6(∆x)4(κ− κc)4), otherwise
(A1)

where κ =
√
k2 + l2 is radial wavenumber, k and l are zonal and meridional wavenum-

bers, respectively, ∆x is grid step of the model, κmax = π
∆x is maximum wavenumber,

κc = 0.65κmax. We simplify notation when placing ssd into the right-hand side of
the equation (1). Instead, every time step from layer n to a new layer (qnm → q∗m)
is followed by the application of the filter qn+1

m = ssd(q∗m) (LaCasce, 1996; Arbic &
Flierl, 2003).

We do not add molecular viscosity into governing equations (1), and thus for-
mally have ”infinite” Reynolds number. However, the dissipation is provided by the
term ssd which depends on the grid step (see Eq. (A1)). Grid-dependent small-scale
dissipation is a typical choice in ocean modeling (Griffies & Hallberg, 2000). Dissi-
pation introduced by ssd is relatively small, which is important for the simulation of
quasi-two dimensional turbulence (Thuburn et al., 2014). An example of the undesir-
able effect of the dissipative model is shown in Figure 1(d), where ssd is balanced with
energy transfer, and thus induces spurious forward energy cascade.

Appendix B LES filters

Spatial filter (·) (Eq. (6)) consists of two operations: spectral coarsegraining
which reduces the resolution of the image and spectral smoothing. Because both are
defined as a pointwise function in Fourier space, they commute and can be composed
into a single operator, which we often call a ”filter”.

Filter (·) is applied as multiplication in Fourier space by the following function:

• ”Gaussian”

Ĝ(k, l) =

{
exp(−κ2(2∆x)2/24), otherwise

0, κmax ≤ k or κmax ≤ l
(B1)

Where κmax = π
∆x and ∆x is the grid step of the coarse model. After discarding

the frequencies above κmax, the filtered signal is represented on a coarse mesh
(Ghosal, 1996). According to the definition of filter width given by Lund (1997),
the width of this Gaussian filter is 2∆x, which is twice as large as the grid step
of the coarse model.

• ”Sharp”

Ĝ(k, l) =


1, κ < κc

exp(−23.6(∆x)4(κ− κc)4), otherwise

0, κmax ≤ k or κmax ≤ l
(B2)
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where κc = 0.65κmax. This filter is given by a combination of sharp cut-off
coarsegraining and model filter (Eq. (A1)).

Motivation for using these filters is given in Ross et al. (2023).

Appendix C Training of the Machine Learning Models

C1 GAN loss function

The presented below training algorithm closely resembles paper of Adler and
Öktem (2018), where the discriminator analyzes two generated images.

We generate two images S̃1 = G(z1, q) and S̃2 = G(z2, q) for a given q with two
samples from standard normal distribution z1, z2 ∈ R2×n×n and stack them in layer
dimension:

S1 = (S̃1, S), S2 = (S, S̃2), S̃ = (S̃1, S̃2),

where S1,S2, S̃ ∈ R4×n×n. The WGAN loss (Eq. (14)) for a single data sample
transforms to:

LW =

[
1

2
(D(S1, q) +D(S2, q))−D(S̃, q)

]
.

The discriminator D should be 1-Lipschitz in the first argument, and we enforce it
with the gradient penalty (WGAN-GP, Gulrajani et al. (2017)):

Lgrad =
(
||∇ŜD(Ŝ, q)||2 − 1

)2

,

where Ŝ = εS + (1 − ε)S̃. The random number ε is uniformly distributed on [0, 1]
and chosen uniquely for every training sample. For every batch we choose randomly
S from set {S1,S2}. Note that D(Ŝ, q) ∈ R, ∇ŜD(Ŝ, q) ∈ R4×n×n and norm || · ||2 for
tensor is defined above. Regularization preventing drift of discriminator:

Ldrift = [D(S1, q)]
2
.

We minimize the following loss for the discriminator:

LD = −LW + 10Lgrad + 10−3Ldrift, (C1)

and the loss to be minimized for the generator is:

LG = −D(S̃, q). (C2)

In the original paper LG = LW (Adler & Öktem, 2018), but we follow a typical
approach when only generated samples constitute the generator loss (Dong & Yang,
2019).

Discriminator D is parameterized by DCGAN discriminator (Radford et al.,
2015) with two modifications: we remove the activation function in the final layer
and remove batch normalization because it is necessary for proper use of gradient
penalty (Gulrajani et al., 2017). Following Arjovsky et al. (2017), we optimize the
discriminator loss (Eq. (C1)) for five batches in a row, and then we optimize the
generator loss (Eq. (C2)) for one batch.

C2 VAE loss function

To train the VAE model we parameterize every probability density in the VAE
loss function (Eq. (16)) with Gaussian distributions.
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The distributions for encoder, decoder and prior, respectively:

qφ(z|S, q) = N
(
µφ(S, q),diag(σ2

φ(S, q))
)

(C3)

ρθ(S|z, q) = N (µθ(z, q), γI) (C4)

ρ(z) = N (0, I), (C5)

where I ∈ R2n2×2n2

is identity matrix, γ is free parameter and S, q, z ∈ R2×n×n. The
mappings µφ, ln(σ2

φ) and µθ are deterministic.

The loss function to be minimized (Eq. (16)) for one training sample transforms
to:

LVAE =
1

2γ
||S − µθ(ẑ, q)||22 +

1

2

∑
m,i,j

(
σ2
φ + µ2

φ − 1− ln(σ2
φ)
)
m,i,j

, (C6)

where ẑ is one sample from encoder distribution, i.e. ẑ = µφ + εσφ, ε ∼ N (0, I). Note
that as suggested by Rybkin et al. (2021), we sum values of MSE loss and KL loss
across dimensions. The variance of decoder distribution γ is a parameter regulating the
relative importance of reconstruction and regularization terms. According to Takida
et al. (2022), common problems of VAE such as posterior collapse and smoothness
of generated images may result from the incorrect choice of parameter γ. Following
Rybkin et al. (2021), we estimate the variance of the decoder as a mean squared error:
γ = 1

2n2 ||S−µθ||22. We compute γ uniquely for every batch and do not differentiate it.

C3 Additional training information

All image-to-image mappings (mean and variance prediction in GZ, generator
in GAN, encoder and decoder in VAE) are based on the same convolutional neural
network (CNN) similar to Guillaumin and Zanna (2021); Ross et al. (2023) with pa-
rameters given in Table C1. We follow a common approach with the normalization
of input and output variables before passing them to neural networks. Each channel
representing a different physical quantity or different fluid layer is normalized by a
unique standard deviation computed over the training dataset. Note that the variance
channel of GZ model is normalized by the squared standard deviation of the mean
channel. Normalization constants become part of the model and they are not adjusted
in offline or online tests.

Models are trained in Pytorch (Paszke et al., 2019), batch size is 64, training algo-
rithm is Adam (Kingma & Ba, 2014) with standard parameters (β1, β2) = (0.9, 0.999)
for GZ and VAE, and (β1, β2) = (0.5, 0.999) for GAN (Radford et al., 2015). The
learning rate is lr = 0.001 for GZ and lr = 0.0002 for GAN and VAE. GAN and
VAE models are optimized for 200 epochs, and in GZ model each channel (mean and
variance) is optimized for 50 epochs. Early stopping or any other criteria for choosing
the best epoch was not used. Weight decay was not used. We use the following sched-
uler of the learning rate for GZ and VAE: on every milestone [1/2, 3/4, 7/8] · Nepoch

multiply learning rate by γ = 0.1, for GAN γ = 0.5. Weights of the discriminator and
generator of GAN are initialized with zero mean and standard deviation 0.02 (Radford
et al., 2015). During inference, neural networks are switched to evaluation mode so
that batch normalization layers use parameters accumulated during training.
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Table C1. Configuration of convolutional neural network (CNN) parameterizing image to

image mapping.

Number of input/output images arbitrary (nin, nout)
Resolution of input/output/hidden layers arbitrary, but the same
Number of filters 128, 64, 32, 32, 32, 32, 32, nout
Filter width 5, 5, 3, 3, 3, 3, 3, 3
Boundary conditions periodic (”circular padding”)
Activation function ReLU, in hidden layers
Batch normalization after ReLU, in hidden layers
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Appendix D Additional offline results
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Figure D1. Prediction of subgrid forcing on the testing dataset. Same as Figure 4 but for
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Figure D2. Offline analysis of subgrid models. Same as Figure 5 but for Gaussian filter.
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In Figures D1, D2 and D3 we show the results of offline analysis for the Gaussian
filter. Our main conclusions about the performance of the stochastic models are the
same as for the Sharp filter.
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Appendix E Additional online results
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Figure E1. Here we show that the smaller the time step, the smaller the effective eddy viscos-

ity and the closer the unparameterized coarse model to inviscid simulation, i.e. energy accumu-

lates near the cut-off for a small time step.

Below we show that the time step is connected to the effective eddy viscosity
in our particular numerical scheme, and thus the sensitivity of the online simulation
results to the time step reveals the numerical stability properties. Small-scale dissipa-
tion (ssd) was formulated not as a tendency in RHS of the governing equation, but
as a postprocessing operation following every time step, see Appendix A. Because
ssd does not contain a time step explicitly, the effect of dissipation accumulates over
several time steps (Lund, 2003). An effective filter that we apply to the solution per

unit time interval (if solution is steady) is ŝsd
1/∆t

, which converges at every radial
wavenumber κ to Heaviside step function

(ŝsd(κ))1/∆t → H(0.65κmax − κ) as ∆t→ 0. (E1)

Filtering with this Heaviside step function approximately corresponds to 2/3–dealiasing
scheme (Orszag, 1971), which is the discretization of inviscid equations and conserves
energy and enstrophy. So, we expect that the smaller the time step, the smaller the
effective eddy viscosity produced by the ssd term. By refining the time step, we estab-
lished that unparameterized coarse models behave as inviscid simulation at ∆t → 0,
i.e. energy accumulates near the grid scale, see Figure E1.

Below we derive a spectral metric for the analysis of online simulations. The rate
of change of total energy (Eq. (4)) is defined as

∂tE = − 1

H

2∑
m=1

Hm〈ψm∂tqm〉. (E2)

Applying this formula to the governing equation (1) and using Parseval theorem, the
rate of change of total energy in Fourier space is

∂tE(k, l) = − 1

H

2∑
m=1

HmRe

(
ψ̂∗m∂tq̂m

)
=

1

H

2∑
m=1

HmRe

(
ψ̂∗m

̂∇(umqm)︸ ︷︷ ︸
energy transfer

+ ψ̂∗mUm∂̂xqm︸ ︷︷ ︸
energy source

+ ψ̂∗mδm,2rek∇̂2ψm︸ ︷︷ ︸
energy dissipation

)
.

(E3)
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Here we neglected the contribution from the small-scale dissipation term ssd which
acts on a limited set of wavenumbers. The corresponding energy balance equation for
filtered and coarsegrained system (7) is

∂tE(k, l) = − 1

H

2∑
m=1

HmRe

(
ψ̂
∗
m∂tq̂m

)
=

1

H

2∑
m=1

HmRe

(
ψ̂
∗
m

̂∇(umqm)︸ ︷︷ ︸
energy transfer

+ ψ̂
∗
mUm∂̂xqm︸ ︷︷ ︸

energy source

+ ψ̂
∗
mδm,2rek∇̂2ψm︸ ︷︷ ︸
energy dissipation

)
.

(E4)

In Eq. (E4) the energy transfer is proportional to ∼ umqm and can be split into
the resolved transfer ∼ umqm and unresolved transfer ∼ umqm − umqm which is
parameterized by the subgrid model. Every term in equation (E4) can be obtained
from the corresponding term in the energy balance of high-resolution simulation (Eq.
(E3)) by multiplying twice by the filter transfer function, i.e. by (Ĝ(k, l))2.

We define distance between two isotropic spectra E1, E2 as:

L2(E1, E2) =

√
1

κc

∫ κc

0

(E1(κ)− E2(κ))2dκ, (E5)

where κc is the truncation wavenumber of the exponential filter (Eq. (B2)). And
average normalized distance between model on a coarse grid (”model”) and filtered
and coarsegrained high resolution simulation (”hires”)

L2(Emodel, Ehires)

L2(0, Ehires)
(E6)

over ”energy transfer”, ”energy source” and kinetic energy spectrum in upper and
lower fluid layers. The described spectral error is shown in Figure E2.

Figure E2. Online metric similar to Figure 11, but for spectral error. The shading area shows

min-max values among training realizations, and markers show median values.

Figure E3 shows the sensitivity to the amplitude of the parameterization and
Figure E4 shows the online generalization to the jet dataset. Table E1 shows runtime
of the parameterized models.
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Figure E3. We multiply the subgrid model by a parameter α ∈ [0, 1.5] as S̃ → αS̃ and show

the kinetic energy after spin-up. Subgrid models which efficiently simulate backscatter are able

to energize the flow when the amplitude is increased, see supplemental Figure S9 in Zanna and

Bolton (2020). All models trained for the Sharp filter efficiently energize the flow, but for the

Gaussian filter they mostly do not energize the flow. Time step ∆t is 4 hours.
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Figure E4. Online generalization to turbulence configuration with jets (Ross et al., 2023).

Generative models (GAN and VAE) clearly better reproduce transitional flow (t < 2 years),

however many of the presented models have problems with numerical stability at a larger time.

Improving the generalization capabilities of presented models requires further research. The shad-

ing area shows min-max values among training realizations, lines show median value. The time

step is 2 hours.
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∆t 1 hour 2 hour 4 hour

n× n 256× 256 96× 96 48× 48

Model – – – MSE GZ GAN VAE
Runtime, sec 1300 130 25.4 756 1480 784 782
Table E1. Runtime on one CPU core for unparameterized model (”–”) and ML-based parame-

terizations to integrate QG model in time for 20 years. Theoretically, we expect that the runtime

for MSE, GAN, and VAE models should be the same, and for GZ is twice as large. Runtime for

the GZ model can be reduced if aggregate mean and variance channels into one CNN network, as

it is done in Guillaumin and Zanna (2021).
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Data Availability Statement

Python software used for training and evaluation of the subgrid models is avail-
able via https://github.com/m2lines/pyqg generative (see the archived version
on Zenodo, Perezhogin (2023b)). We provide training and simulation data on Zenodo
(Perezhogin, 2023a).
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