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Abstract
The local instabilities of a nonlinear dynamical system can be characterized
by the leading singular vectors of its linearized operator. The leading singular
vectors are perturbations with the greatest linear growth and are therefore
key in assessing the system’s predictability. In this paper, the analysis of
singular vectors for the predictability of weather and climate and ensemble
forecasting is discussed. An overview of the role of singular vectors in
informing about the error growth rate in numerical models of the atmosphere
is given. This is followed by their use in the initialization of ensemble weather
forecasts. Singular vectors for the ocean and coupled ocean–atmosphere
system in order to understand the predictability of climate phenomena such as
ENSO and meridional overturning circulation are reviewed and their potential
use to initialize seasonal and decadal forecasts is considered. As stochastic
parameterizations are being implemented, some speculations are made about
the future of singular vectors for the predictability of weather and climate for
theoretical applications and at the operational level.

This article is part of a special issue of Journal of Physics A: Mathematical and
Theoretical devoted to ‘Lyapunov analysis: from dynamical systems theory to
applications’.

PACS numbers: 92.05.Df, 92.10.am, 92.60.Bh, 92.60.Ry, 92.60.Wc, 92.70.Gt,
92.70.Np

(Some figures may appear in colour only in the online journal)

1. Introduction

The leading singular vectors of a nonlinear dynamical system’s tangent propagator are
strongly related to the system’s local finite-time instabilities and therefore play a key role in
characterizing and assessing the system’s predictability. As discussed below, the corresponding
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singular values can be much larger than the system’s Lyapunov exponents if, as is often the
case in fluid flow, the tangent propagator is non normal (Trefethen et al 1993, Farrell and
Ioannou 1996). The establishment of singular vectors decomposition and its theory can be
traced back to early work by Beltrami (1873) and Jordan (1874). Pioneering work by Farrell
and coauthors applied these ideas to atmospheric dynamics by analysing singular vectors
and associated transient growth in, for example, Couette flow (Farrell 1982), mid-latitude
cyclogenesis (Farrell 1988, 1989), forecast error growth in atmospheric models (Farrell 1990),
stability of stratified flows (Farrell and Ioannou 1993a, 1993b) and the dynamics of mid-
latitude atmospheric jets (Farrell and Ioannou 1995). The initial conditions leading to the
largest amplification at a given time are often referred to as optimal initial conditions and
correspond to the leading singular vectors (Farrell and Ioannou 1996). The links between
singular vectors and a system’s predictability (including error growth and sensitivity) are
discussed in more detail below (see section 2).

Over the last 20 years or so, there has been a revolution in the way in which weather
forecasts are made: whereas earlier such forecasts were essentially deterministic, nowadays a
prediction system is run in ensemble mode to produce probabilistic predictions. Each ensemble
member samples an initial state consistent with estimates of uncertainty in the initial state.

From the earliest days of ensemble weather prediction, it was realized that naive estimates
of initial uncertainty e.g. formed by randomly perturbing the weather observations and
running the data assimilation system with such perturbed observations, led to underdispersive
ensembles. This was a serious problem because whilst in the past a user was aware that
deterministic forecasts should be taken with ‘a pinch of salt’, there was an expectation that a
probabilistic forecast, where forecast probabilities were close to 100% should be believed. It
was realized that the reason for such underdispersion lay in multiple unrepresented sources of
forecast uncertainty. For these reasons, discussed in more detail below (see section 3), singular
vectors became a useful tool for initializing ensemble weather forecasts (e.g., Errico 1991,
Hartmann et al 1995, Buizza and Palmer 1995).

Since then, singular vector has been extended from the atmosphere only, to the ocean
and to the coupled ocean–atmosphere system. In turn, singular vectors have also been used
to understand the predictability of the coupled system, and to initialize ensemble forecasts on
the seasonal and decadal timescales (section 3).

On the other hand, as the assimilation schemes which ingest raw observations to determine
initial states in numerical weather prediction become more sophisticated, the nature of the
unrepresented sources of forecast uncertainty are beginning to be better understood. Most
important of these is model uncertainty. As new stochastic methods to represent model
uncertainty start to be developed, the role of singular vectors to initialize ensemble forecasts
needs to be re-evaluated against more straightforward Monte Carlo methods. The role of
singular vectors as a key tool to understand the dynamical instabilities and theoretical
predictability of the climate system will remain. However, as a tool in practical ensemble
forecasting, will singular vectors become redundant one day?

2. Singular vectors and the predictability of nonlinear dynamical systems

Start by considering a trajectory T in state space defined by the nonlinear evolution equation

Ẋ = F[X] (1)

and initial state X0. A small perturbation δx to X0 evolves on T according to

δẋ = Jδx (2)
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where the Jacobian operator J is defined as

J = dF/dX. (3)

Since F[X] is at least quadratic in X , then J is at least linearly dependent on X , indicating
that the growth of small perturbations varies both along T and with respect to X0.

If (1) is taken as the basis of weather and climate prediction, then whilst equation (1) is
formally deterministic, inevitable uncertainties in X0 (associated with the raw observations,
with the method used to assimilate observations into model variables X , and in the model
equations themselves) means that predictions should be considered as probabilistic rather than
deterministic.

As such, a more relevant prognostic variable is the probability density function ρ(X, t)
defined as follows: given some volume V in state space then

∫
V ρ(X, t) dV is the probability

that the true initial state X at time t lies in V .
It turns out (Ehrendorfer 1994a, 1994b) that formal solution of the Liouville equation

∂ρ

∂t
+ ∂(Ẋρ)

∂X
= 0 (4)

which evolves ρ(X, t0), can be written

ρ(X, t) = ρ(X ′, t0)/ exp
{∫ t

t0
tr[J(t ′)] dt ′

}
(5)

Using the identity det exp A = exp tr A then

ρ(X, t) = ρ(X ′, t0)/ det M(t, t0) (6)

where

M(t, t0) = exp
∫ t

t0
J(t ′) dt ′ (7)

is the so-called forward tangent propagator, mapping a perturbation δx(t0) along T to

δx(t) = M(t, t0)δx(t0). (8)

Interestingly, and perhaps surprisingly at first sight, the Liouville equation can be solved
exactly knowing the initial value ρ(X ′, t0) and the tangent propagator M. This relates to the
fact that the Liouville equation is linear in ρ even though equation (1) is nonlinear. In practice,
however, ρ(X ′, t0) is not well known, and equation (6) is very difficult to solve directly.

The propagator M determines the local flow-dependent instabilities of the system. First,
consider a Euclidean inner product ⟨. . . , . . .⟩ so that for any perturbation vectors δx, δy

⟨δx, δy⟩ = δx · δy (9)

where · is the standard Euclidean dot product acting on the vectors δx, δy.
In terms of this, the adjoint tangent propagator M∗ is defined by

δy(t ′) = M∗(t ′, t)δy(t) (10)

where

⟨δy, Mδx⟩ = ⟨M∗δy, δx⟩. (11)

The inner product ⟨. . . , . . .⟩ defines a norm. The perturbation which satisfies

max
δx(t0 )

⟨δx(t), δx(t)⟩
⟨δx(t0), δx(t0)⟩

(12)

is the leading eigenvector of

M∗Mδx(t0) = λ2δx(t0). (13)
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Figure 1. This diagram illustrates schematically the crucial difference between eigenvector and
singular vector growth. Reprinted with permission from Buizza R and Palmer T N 1995 J. Atmos.
Sci. 52 1434–56. © American Meteorological Society.

The eigenvectors of M∗M are known as the left or initial singular vectors of M, and the
corresponding eigenvectors of MM∗ are known as the right or evolved singular vectors of M.
As is easily shown, the initial singular vectors are mapped to the evolved singular vectors
by the tangent propagator M. The associated eigenvalues of M∗M are known as singular
values of M. In general, M is not a normal operator, i.e. M∗M ̸= MM∗ implying that the
eigenvectors of M do not form an orthogonal set (trivially, the singular vectors of M do).
As a result, the singular values of M can far exceed its eigenvalues—an explicit example is
discussed below. The dominant left singular vectors of M (i.e. with largest singular value)
provide a locally unstable subspace in the tangent space at t0. This definition does not agree
with definitions based Lyapunov vectors however it a consistent definition and one proven
useful for predictability studies.

Because of this singular vector growth can be substantially greater than that associated
with the asymptotic growth rate of small perturbations giving by the system’s leading Lyapunov
exponent. A dynamical system’s Lyapunov exponents can be defined as

λ̄i = lim
t→∞

lim
di(0)→0

1
t

ln
di(t)
di(0)

(14)

where di is the eigenvalue of the ith eigenvector of the operator

lim
t→∞

1
t

[MMT ]1/2t . (15)

These eigenvectors correspond to realizations of evolved singular vectors, for asymptotically
long optimization times, i.e. for trajectories that, for all practical purposes, cover the entire
attractor.

Figure 1 illustrates schematically the crucial difference between Lyapunov and singular
vector growth in a two-dimensional non-self adjoint system in a stationary system (Palmer
2000). Here ξ1 and ξ2 are non-orthogonal eigenvectors of J. It will be assumed that the real part
of these eigenvalues is negative. Hence the amplitude of a perturbation µ(t) which projects
onto either ξ1 or ξ2 will decay with time. η1 and η2 denote adjoint eigenvectors: η1 is normal
to ξ2 and η2 is normal to ξ1. A perturbation ν(t) which projects onto η1 will grow over a finite
time interval, even though both eigenvalues are negative. On the other hand, after this initial
transient the perturbation ν(t) will increasingly project onto the leading eigenvector ξ1 and
will asymptotically decay at a rate given by the real part of the negative eigenvalue of ξ1. The
amount ν can grow over a finite time interval is linked to the angle between ξ1 and ξ2, i.e.
the degree of non-self adjointness of the dynamical operator. The value of this parameter is
independent of the value of the eigenvalues.
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It can be shown (Ehrendorfer 1994a, 1994b) that the determinant of M, a key element
in the solution of the Liouville equation (see equation (6)) is determined by the product of
all the corresponding singular values. Hence, the singular vectors of a nonlinear system are
intimately related to the system’s predictability.

This relation can be made more explicit through the choice of inner product. In the theory
of data assimilation (e.g. 4DVAR; Talagrand and Courtier 1987, Thépaut and Courtier 1991),
statistical uncertainty in the initial state is represented by a Gaussian PDF with covariance
matrix A. The norm of the singular vectors can easily be made consistent with A. Hence, a
vector which instead of equation (12), satisfies

max
δx(t0 )

⟨δx(t), δx(t)⟩
⟨δx(t0), A−1δx(t0)⟩

, (16)

i.e. with unit initial amplitude defined with respect to the metric A can be shown to be the
leading eigenvector of the generalized eigenvector equation

M∗Mδx(t0) = λAA−1δx(t0) (17)

which can be solved using a generalized Davidson algorithm (Barkmeijer et al 1998). In
practice, the energy norm provides a reasonable approximation to the more complex analysis
error covariance norm for singular vector computations (Lawrence et al 2009, Palmer et al
1998). A key property of energy norm singular vectors (mimicking those from more accurate
A norm singular vectors, is upscale growth. An example of an energy metric singular vector
for the atmosphere is shown in figure 2 (from Buizza and Palmer (1995)).

The singular vector analysis described above is also relevant in describing the system’s
response to some imposed forcing (which, in the current context, is presumed to represent
model error). If we modify equation (2) so that

δ̇x = Jδx + f (18)

then, using the tangent propagator M, the solution to this equation over the finite time interval
[t0, t] can be written

δx = M(t, t0)δx(t0) +
∫ t

t0
M(t, t ′) f (t ′) dt ′. (19)

If f is time-independent over [t0, t], then, setting δx(t0) = 0,

δx(t) = M(t, t0) f (20)

where

M(t, t0) =
∫ t

t0
M(t, t ′) dt ′. (21)

Singular vectors of M represent optimal forcing structures. In principle they could have
value in representing model error. In practice the estimation of such singular vectors is
computationally demanding.

3. SVs and ensemble forecasting for weather and climate

3.1. Numerical weather prediction

Traditionally, numerical weather prediction has been considered a deterministic initial value
problem (Bjerknes 1904). However, the realization of the chaotic nature of atmospheric
dynamics (Lorenz 1963, 1969) made it clear that deterministic forecasts would be unreliable
due to the amplification of inevitable uncertainties in forecast initial conditions.
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Figure 2. Streamfunction of the dominant singular vector of the atmospheric tangent propagator M,
calculated using a primitive equation numerical weather prediction model for a three day trajectory
portion made from initial conditions of 9 January 1993 at: (a), (d) 200 hPa; (b), (e) 700 hPa;
(c), ( f ) 850 hPa. The quantities (a)–(c) are at initial time, in (d)–( f ) at final time. The contour
interval at optimization time. The contour interval at optimization time is 20 times larger than
at initial time. Reprinted with permission from Buizza R and Palmer T N 1995 J. Atmos. Sci.
52 1434–56. © American Meteorological Society.

Of course a simple way of making a deterministic forecast reliable would be to ‘dress’ it
a posteriori using a probability distribution of forecast error constructed from a large sample
of previous forecast errors. However, the utility of such a probabilistic system would be rather
limited. Since the underpinning dynamical equations are nonlinear, then the Jacobian of the
linearized equations must vary according to position on the attractor. For forecasts in the part
of the attractor where the leading singular values are relatively small, this ‘climatological’ pdf
of forecast error provides a pessimistic estimate of the likely error of a deterministic prediction,
whilst for deterministic forecasts in the part of the attractor where the leading singular values are
large, the ‘climatological’ pdf provides an optimistic estimate of deterministic forecast error.
This variation in predictability with position on the attractor is well known to meteorologists.
During a spell of settled anticyclonic weather, small uncertainties in the initial conditions of a
weather forecast are likely to make little difference to the forecast of continued settled weather.
By contrast, as a small scale cyclonic disturbance develops over the ocean, a small change to
initial conditions can make a substantial difference to the subsequent intensity and path of the
resulting storm.
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For this reason, it is better to start out with the objective of estimating flow-dependent
probability distributions of future weather by dynamical methods. This can be achieved by
ensemble prediction methods. With such methods, it is hoped to be able to reliably discriminate
between predictable and unpredictable flows. Hence in a situation where a weather event is
forecast with probability close to 100%, a forecast user should really be able to rely on the
forecast. By contrast in a situation where a weather event is forecast with probability close to
the climatological frequency of the event, the forecast user will know that the event has no
predictability in this particular situation.

In theory, ensemble prediction should be straightforward. Sample randomly the pdf of
initial error. Repeat N times. Integrate the resulting N initial states in time and produce a
frequentist estimate of forecast probability for any variable or event of interest (probability
of rain, probability that temperature is below freezing, probability of wind exceeding
the climatological 99% percentile. This is essentially Monte Carlo weather forecasting.
Historically, this method has failed to produce useful results.

To understand this, it should be recalled that the climate system is effectively an infinite
dimensional system, describing planetary-scale Rossby waves on the one hand, to small scale
turbulent motion e.g. associated with individual clouds, on the other. The energy associated
with these various scales, has a power law structure, shallowing from a ‘−3’ slope for large
rotationally constrained scales to ‘−5/3’ for scales whose structure is more three dimensional
(Nastrom and Gage 1985). Simulating this ‘−5/3’ spectrum is a challenging problem. Not
least it implies that simulations, even of the large-scale rotationally dominated aspects of the
flow can be sensitive to smaller scale motions, as envisaged in Lorenz (1969)’s paradigm. In
practice this means that weather forecasts can be sensitive to the parametrized processes in the
model, perhaps most importantly to the parametrization of deep convection.

A weather forecast model is not only used to integrate the state of the atmosphere from
t = 0 to some forecast time t = T > 0, it also plays a key role in determining the state
at t = 0, given observations of the atmosphere at t ! 0. For example, in variational data
assimilation (e.g. Courtier et al 1994, 1998) a cost function is minimized which combines
current observations with an recent earlier estimate of an initial state, propagated forward
in time using the tangent propagator. An ensemble of data assimilations can be created by
randomly perturbing the input observations according to their known error characteristics (an
in situ thermometer has known accuracy, so too a satellite radiometer). However, this leads
to very underdispersive forecast ensembles (Buizza et al 1999), i.e. to ensembles in which
the spread of the ensemble is substantially smaller than the (ensemble-mean) forecast error.
The reason for this is that there are many unrepresented sources of uncertainty not explicitly
represented in a Monte Carlo forecast. Perhaps the most important of these is the uncertainty
in the weather forecast model used to assimilate the observations and produce the forecast
itself. Because of the potential for rapid upscale propagation of error from the parametrized
to the large scales, errors in the weather forecast model contribute significantly to the initial
error.

It was always possible to inflate artificially estimates of observation uncertainty to ensure
that the ensemble spread at some target forecast time (e.g. t = 5 days) was about right (i.e.
was balanced against a typical ensemble-mean forecast error, but this meant that the forecast
ensemble was very overdispersive in the early forecast range, and moreover did not discriminate
between predictable and unpredictable flows very effectively. Such inflated ensemble systems
were therefore not very useful in practice.

The first operational ensemble prediction systems (for the medium and extended range)
used such artificially inflated initial perturbations in the mid 1980s (Murphy and Palmer 1986).
However, in producing a more discriminating ensemble forecast system for the European
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Centre for Medium Range Weather Forecasts in the late 1980s, a method based on singular
vectors was developed (Buizza and Palmer 1995, Mureau et al 1993).

A key motivation for the development of this method arose from a study of the large-scale
flows associated with large and small medium range forecast error (Palmer 1988). Flows
with a positive component of the Pacific North American (PNA) teleconnection pattern were
shown to be associated with relatively small medium range forecast error, whilst those with a
negative component of this teleconnection pattern were shown to be associated with relatively
large medium range forecast errors. In collaboration with Zuojun Zhang and Brian Hoskins
at Reading University, it was shown that the reason errors were amplifying was not because
the dominant barotropic eigenvectors of the positive PNA flows had smaller eigenvalues (and
therefore were more asymptotically stable—in fact the opposite was true) but because the
leading eigenvectors associated with the positive PNA flow were more orthogonal (i.e. the
dynamical barotropic operator of the linear perturbation system was more self adjoint) than
the leading eigenvectors of the negative PNA flow. The study of predictability during spells of
positive and negative PNA, illustrated the relevance of the schematic figure 1.

This analysis showed that so-called normal mode instability was an inadequate and
inappropriate methodology to analyse the predictability of atmospheric flows. This was
completely consistent with the pioneering work of Farrell and his co-workers (e.g., Farrell and
Ioannou 1996, Farrell 1985) who concluded that normal mode instability was an inadequate
and inappropriate method to analyse the dynamical instability of atmospheric flows.

In the early days of ensemble weather prediction, there were no techniques to estimate
the role of model error, not only during the forecast integration period, but also during the
data assimilation cycle. As an alternative strategy, the use of the leading singular vectors of
the forward tangent propagator M to generate initial ensemble perturbations was considered
and found successful (Mureau et al 1993). The existence of an adjoint propagator M∗, needed
for 4DVAR, made singular vector computations possible from a primitive equation model,
using a Lanczos algorithm. In principle it is possible to supplement the singular vectors of
M with singular vectors of M, the latter defining optimal model error forcing structures (see
equation (21)). However, in practice the computation of the latter proved too computationally
burdensome in an operational environment.

Providing these singular vectors were estimated with respect to the analysis error
covariance metric A then at optimization time, these singular vectors would correspond to
the leading eigenvectors of the forecast error covariance matrix, and in some sense would
bound possible error growth. However, estimating A−1 is computationally complex and hence
surrogate analysis error covariance matrices were sought. Of these the so-called energy metric
proved most relevant (Palmer et al 1998). With respect to the energy metric, the singular vectors
evolved from sub-synoptic to synoptic scales. Such an upscale evolution is exactly what one
would expect of the evolution of analysis errors—a reasonably observational network would
constrain well scales which are much larger than the network scale, and poorly constrain scales
either close to or below the network scale. As these small scale errors grow, they propagate
upscale and affect the key baroclinic modes of the atmosphere.

The ECMWF EPS became operational in 1992 with initial perturbations which combined
initial singular vectors from t = 0 and evolved singular vectors from t − 2 days (Molteni
et al 1996). In 1999 this method was supplemented by a stochastic parametrization of sub-grid
processes to represent model error (Buizza et al 1999).

More recently still a method to produce an ensemble of data assimilations (EDA) has
been developed at ECMWF (Bonavita 2011). The primary motivation for this development
was not in fact for the EPS, but rather to provide flow-dependent background error covariance
matrices for 4DVAR. It was found important to include the stochastic representation of model
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uncertainty in order that the spread of the ensemble of data assimilation correspond well
with the mean analysis increment. With the development of stochastic parametrization as an
explicit tool to estimate model uncertainty (Palmer 2001, 2012), it may be possible to return
to the original Monte Carlo type concept and sample randomly from EDA, thus dropping
altogether the singular vector approach. However, recent studies (Martin Leutbecher, personal
communication 2012) shows this is not entirely possible, and the latest version of ECMWF
EPS initial perturbations combines EDA with singular vectors. Whether this hybrid approach
provides a long-term strategy for medium-range ensemble perturbations, time will tell.

3.2. El Niño and seasonal forecasting

Despite the chaotic nature of the atmosphere, seasonal and interannual fluctuations resulting
from coupled interactions can be predictable due the memory of the ocean and/or land. A
seasonal forecast, similarly to a weather forecast, is an initial value problem and depends
on the initial state. Predictability is lost as initial uncertainties grow in time. An example
of such coupled ocean–atmosphere interaction is the El Niño-Southern Oscillation (ENSO)
phenomenon. ENSO refers to an irregular interannual oscillation of large-scale sea surface
temperature (SST) and associated air pressure in the tropical Pacific. While the large-scale
fluctuations of ENSO are localized to the tropical Pacific, their influence can affect other
regions of the Pacific and other basins via atmospheric teleconnections influencing surface
temperature, rainfall and wind (e.g., Gu and Philander 1997, Lau and Nath 2000). Long-term
variability of ENSO is believed to be only weakly chaotic (e.g., Suarez and Schopf 1988,
Penland and Sardeshmukh 1995, Moore and Kleeman 1999) and exhibits some predictability
up to a year ahead.

Unlike weather forecasts, seasonal prediction systems require integrations of the nonlinear
equations for the oceanic and atmospheric components, both essential to simulate ENSO
variability adequately. The skill of ENSO dynamical prediction is seasonally dependent
(Cane 1986) and affected by several sources of errors including initial conditions, ocean
model parametrizations or the unpredictable high-frequency forcing of the atmosphere (e.g.,
Chen et al 1995, Rosati et al 1997, Latif et al 1998, Moore and Kleeman 1997a). ENSO
dynamics may be highly non-normal such that singular vectors can provide a good measure
for error growth on seasonal timescales (e.g., Moore and Kleeman 1999, Chen et al 1997,
Penland and Sardeshmukh 1995, Thompson and Battisti 2000, 2001). Over the years, studies
of tropical Pacific singular vectors using the observed record, simple models and general
circulation models (GCMs) have highlighted the importance of the ocean initial state for
ENSO predictions. Singular vector analysis has also demonstrated the dependence of the
optimal error growth on the seasonal cycle, ENSO phase and lead time for prediction.

Early studies by Blumenthal (1991) and Xue et al (1994) showed that the SST anomaly
pattern leading to the optimal error growth (equivalent to the leading singular vector) is similar
to the ENSO pattern of idealized models. They found that the largest growth rate occurs in
spring, consistent with suggestions that springtime is favourable for self organization of
perturbations (Philander 1986). Error growth in SST anomalies during the spring appears to
be associated with non-normal energy growth such that initial errors in tropical Pacific SSTs
would have a significant impact on the accuracy of a seasonal forecast of ENSO if the dynamical
prediction begins around springtime. In coupled models of intermediate-complexity, Moore
and Kleeman 1996, 1997a, 1997b examined the dynamics of error growth and predictability
finding that the conditions for error growth are favourable in the central Pacific where SSTs are
warm, and where changes in SST are sensitive to anomalies of oceanic thermocline. Overall,
seasonal forecasts beginning in spring tend to be less skillful than other forecasts.
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The analysis of the singular vectors for ENSO prediction is clearly valuable however
their computational cost becomes expensive for coupled GCMs (CGCMs) as those used in
seasonal forecasting. Besides their computational cost, the value of singular vectors in CGCMs
is limited as the fastest growing modes are due to weather instabilities which are irrelevant for
the coupled instabilities of the ENSO system. The weather instabilities will grow at a faster
rate than any other instability in the coupled model and will dominate the singular vector
spectrum. Kleeman et al (2003) proposed a methodology to average out the atmospheric
noise by running a large ensemble of integrations with a coupled GCM for specific initial
states and calculate only the relevant part of the singular vector spectrum for the coupled
response. The main motivation of the technique lies in the fact that the ensemble-mean
propagator of a linear stochastic differential equation with additive stochastic forcing (in this
case the atmospheric noise) is equal to the propagator of the system without stochastic forcing
(the coupled ENSO variability). If the atmospheric stochastic forcing can be removed, the
‘ensemble-mean’ response would provide the appropriate response for the non-stochastically
forced system. In Tang et al (2006), this technique was applied to a fully coupled GCM to
investigate the error growth associated with ENSO forecasts. Similarly to other studies, Tang
et al (2006) found that the error growth of prediction is strongly influenced by the phase of the
ENSO cycle. In general, the large growth rates of the fastest-growing singular vectors occur
during the onset and the peak of El Niño. On the other hand, relatively small growth rates
occurs during the onset and the peak of La Niña. Their results suggest that El Niño maybe
be less predictable than La Niña. However, unlike other studies, the authors show that initial
information in SST plays a more significant role than subsurface temperatures information for
predicting the tropical Pacific SST. This result contradicts work pointing out the importance of
subsurface information for ENSO prediction (e.g., Latif and Graham 1992, Neelin et al 1998).
There are several possible explanations for the discrepancies. One of them is that the behaviour
of the interannual ENSO cycles is model dependent. Some models exhibit strong subsurface
feedbacks associated with the delay-oscillator mechanism while others show strong surface
layer feedback associated with SST zonal advection. Yet, theory and most models seem to
suggest an important role of the oceanic initial state in ENSO forecasts.

The derived singular vector patterns from Tang et al (2006) could help the initialization
of ensemble seasonal forecast as it avoids weather instabilities and does not require an adjoint
or a tangent linear model. However the methodology remains computationally expensive
to implement in operational forecast systems as it requires to run large ensembles of
coupled climate models. Additional empirical methods have been developed for CGCMs
(see Tziperman et al (2008) discussed below) and applied to ensemble seasonal forecasting
using coupled hybrid models (e.g., Kug et al 2010) but none of these techniques has yet been
implemented in coupled GCMs or tested against current operational seasonal forecast.

Currently, the operational seasonal forecast system at ECMWF (System 4) consist of
ensembles of integrations of coupled ocean–atmosphere GCMs. It uses perturbed atmospheric
stochastic physics to account for model uncertainties, and uses for initial conditions a
combination atmospheric singular vectors and an ensemble of ocean reanalysis (NEMOVAR).
A five-member ensemble of NEMOVAR is created using perturbed wind forcing and the ocean
reanalyses are further perturbed by adding estimates of the SST uncertainty. At this stage there
is no implementation of ocean or coupled singular vectors to account for uncertainties in the
ocean state. It is difficult to predict if the use of such singular vectors or stochastic physics in
the ocean component of the model would result in a more accurate spread and more reliable
seasonal forecasts than the current ECMWF system, however work in this direction is currently
in progress. It is clear that whilst singular vectors for predictability study can still help our
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understanding of the climate system, their use in operational forecasts on long timescales has
not yet been explored.

3.3. The thermohaline circulation and decadal forecasting

Griffies and Bryan (1997) showed that the internal variability of North Atlantic ocean
temperature and meridional overturning circulation (MOC or often referred to as the
thermohaline circulation) in a coupled ocean–atmosphere GCM is potentially predictable
up to a couple of decades ahead. Subsequently, a vast number of studies devoted to the
decadal predictability of ocean variability in the Atlantic sector have emerged (e.g., Sutton
and Allen 1997, Boer 2000, Pohlmann et al 2004, Sutton and Hodson 2005, Collins et al 2006).
Many of these studies are performed by constructing ensembles of coupled ocean–atmosphere
numerical simulations in which each run corresponds to a randomly perturbed atmospheric
state while leaving the ocean state unchanged. The spread of the individual model trajectories
gives a measure of potential predictability. Since the ocean initial conditions are not perturbed,
such results are considered an upper limit on the predictability. Not surprisingly, different
studies show large discrepancies in the potential predictability of the Atlantic ocean variability.
Moreover, while models indicate some degree of potential predictability of the ocean in the
Atlantic sector, it is unclear how much of this predictability is imparted to the atmosphere.

Decadal prediction is a relatively new field compared to seasonal forecasting and numerical
weather prediction (Goddard 2012) and many issues still need to be considered. In addition to
the disparities between models, the verification of decadal forecasts is rather limited and our
understanding of sources of error is poor. The development of initialized decadal prediction
systems assimilating ocean observations has been the focus of many groups over the past
several years and some improvement in this area has been made (Smith et al 2007, Keenlyside
et al 2008). However, the studies often disagree on the magnitude and sign of regional
changes, especially in the North Atlantic. The difference could involve model drift due to the
initialization shock (Doblas-Reyes et al 2011), uncertainty in ocean observations and model
error.

Given that the predictability arises from the dynamics of the large-scale ocean circulation,
one therefore wonders how errors in ocean initial conditions or in ocean model parametrizations
can affect the predictability in the North Atlantic region. Our understanding of the processes
governing the error growth of anomalies is still incomplete, yet recent results suggest that
the ocean initial state remains important in the North Atlantic even on decadal times before
the predictability arising from the boundary conditions (external forcing) becomes dominant
(Branstator and Teng 2010, Branstator et al 2012). In those studies, the predictability in the
North Atlantic in various coupled GCMs is estimated using relative entropy from information
theory. Yet, growth of anomalies calculated using singular vectors can provide valuable
information regarding the predictability of the large-scale ocean circulation, upper ocean heat
content before nonlinearities and forcing become important. Over the past decade, singular
vectors studies have been exploring the dynamics of error growth in the Atlantic and providing
a potential framework for initializing decadal predictions.

Using 2D idealized models, early studies showed the value of studying singular vectors in
relation to the predictability of the North Atlantic circulation and its predictability associated
error growth in the initial state (Lohmann and Schneider 1999, Tziperman and Ioannou 2002,
Zanna and Tziperman 2005, Alexander and Monahan 2009). Such studies showed that errors
in ocean circulation can grow substantially on decadal timescales due to the non normality
of the dynamical operator. Such simple models can describe the basics properties of the
ocean circulation and are useful as proof of concept, allowing for an extensive analysis of the
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dynamics of error growth. However they can violate basic assumptions such as geostrophy.
As mentioned earlier, the computation of singular vectors in complex coupled climate models
solving the full primitive equation is extremely difficult. We will summarize two different
approaches to calculate the ocean singular vectors of primitive equation models for decadal
forecast.

Tziperman et al (2008) and Hawkins and Sutton (2009) used the linear inverse modelling
approach (Penland and Sardeshmukh 1995) to approximate the error growth associated with
the MOC and explore its predictability in two different state-of-the-art CGCMs. A few steps
are required to approximate the three-dimensional ocean singular vectors of such coupled
climate models, given that the tangent linear and adjoint operators are not available. First, a
reduced space based on empirical orthogonal functions (EOFs) of temperature and salinity
anomaly fields in the Atlantic from the output of a control run is constructed. Second, under
the assumption that the dynamics of this reduced space is linear, the propagator of the system
is evaluated and the singular vectors of domain integrated energy and MOC are computed.
Using the GFDL CM2.1 (Delworth et al 2006), Tziperman et al (2008) studied in details the
growth of ocean temperature, salinity and MOC anomalies using singular vectors for lead
times of 1 to 50 years. The singular vectors can grow significantly over a period of 5 to
10 yr, providing an estimate of the initial value predictability of the North Atlantic ocean
circulation in this model. It is important to remember that severe truncation of the EOF-
space can potentially lead to an underestimate of the error growth. The spatial structure of the
leading singular vectors in this model indicates a large sensitivity to anomalies at high latitudes
especially at the boundary between the subtropical and subpolar gyres and in the subpolar
gyre, therefore those regions should be properly initialized in any decadal prediction system.
The study of Hawkins and Sutton (2009) using HadCM3 yields to similar results regarding
the spatial patterns of the singular vectors however their results exhibit strong amplification
in the Mediterranean sea and longer predictability times of temperature and energy. The
methodology presented in Tziperman et al (2008) and Hawkins and Sutton (2009) may be
used to produce initial perturbations to the ocean state that may result in a stricter estimate
of ocean predictability and ensemble spread than the common procedure of initialization
with perturbed atmospheric state and an identical ocean state (with or without assimilation
of ocean observations). Recently, using HadCM3, the UK Met Office in an idealized perfect
model set of predictability experiments showed that the spread and skill of the MOC increases
when the ensemble is initialized with the singular vectors as opposed to simply perturbing
the atmospheric states and accounting for ocean observational errors (Ed Hawkins, personal
communication).

The analysis of the dynamics of error growth associated with the ocean state for
decadal predictions remains extremely difficult in coupled GCMs. One can turn to GCMs in
idealized configurations for such purposes. Zanna et al (2011, 2012) investigate the limits of
predictability of the MOC and upper ocean temperatures due to errors in ocean initial conditions
and model parametrizations in an idealized configuration of the ocean MIT general circulation
model (MITgcm; Marshall et al 1997). The singular vector spectrum for different initial and
final norms is computed explicitly using traditional tools: adjoint and tangent linear models and
Lanczos algorithms. The three-dimensional spatial structures of the leading singular vectors on
decadal timescales is characterized by high-latitude deep density perturbations in the northern
part of the basin (figure 3). The maximum growth rate of the perturbations occurring after
7.5 years is a result of a conversion of mean available potential energy into potential and
kinetic energy of the perturbations, reminiscent of baroclinic instability. The time scale of
growth of MOC anomalies can be understood by examining the time evolution of deep zonal
density gradients, which are related to the MOC via the thermal wind relation. The velocity

12



J. Phys. A: Math. Theor. 46 (2013) 254018 Review

 

 

60W 35W 10W
10N
20N
30N
40N
50N
60N

0

 

 

60W 35W 10W

4km

3km

2km

1km

0

Figure 3. Spatial pattern of leading singular vector. Left: longitude-depth cross section of density
at 60 N; right: longitude–latitude cross section of density at 3 km depth. Reprinted with permission
from Zanna L, Heimbach P, Moore A M and Tziperman E 2011 J. Clim. 24 413–27. © American
Meteorological Society.
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Figure 4. Maximum amplification curves: leading singular value as function of lead time when
maximizing MOC error growth by constraining the singular vectors to the upper ocean (cyan curve)
and when allowing the initial perturbations at all depths (black curve). Reprinted with permission
from Zanna L, Heimbach P, Moore A M and Tziperman E 2012 Q. J. R. Meteoral. Soc. 138 500–13.
© 2011 Royal Meteorological Society.

of propagation of the density anomalies, found to depend on the horizontal component of the
mean flow velocity and the mean density gradient, determines the growth time scale of the
MOC anomalies and therefore provides an upper bound on the MOC predictability time due to
the initial state. If the singular vectors are constrained to the upper ocean, the maximum growth
is found at about 18.5 years (figure 4). This timescale of 18.5 years is longer than the 7.5 years
obtained when the perturbations are allowed over the entire ocean depth. This result implies that
the predictability timescales of 10 to 20 years obtained when only atmospheric perturbations
are used to initialize ensemble experiments (e.g., Griffies and Bryan 1997, Pohlmann et al
2004) may be overestimates as uncertainty in the ocean initial state is important. In addition
to the difference in growth timescales, the MOC anomaly appears to be less sensitive to upper
ocean perturbations than to deeper ones, at least in this model. While the ocean model is
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idealized in its configuration, it solves the primitive equations and one could use the singular
vectors of this idealized GCM to initialize ensemble decadal predictions as done in numerical
weather predictions.

While the model results can vary significantly, some results seem robust: basin integrated
energy anomalies in the North Atlantic grow significantly in less than a decade, the singular
vectors are concentrated at high latitudes, and the subpolar gyre, zonal advection and Rossby
wave propagation are involved in the dynamics of error growth of temperature and salinity.
The findings indicate that errors in ocean initial conditions or in model parametrizations
or processes (deep convection, overflows etc...), particularly at high-latitudes and at depth,
may significantly reduce the Atlantic ocean circulation and climate predictability time to less
than a decade. Yet, it remains unclear what the actual skill of MOC prediction is as very
few observations are available. Recently, however, statistical methods to evaluate the actual
forecast skill, as opposed to potential predictability, of North Atlantic SST using the observed
record determined that forecast are skillful only for up to 5 years (Wunsch 2012, Zanna 2012).
These statistical methods could be used as benchmarks to evaluate the skill generated from
initialized ensemble decadal predictions in the current generation of climate models. It is clear
that more work remains to be done by the decadal forecasting community at the theoretical
and implementation levels to assess the sources of errors due to model parametrizations, initial
state and initialization shock. Singular vectors could be proven useful to explore those sources
of errors.

4. Conclusions. SVs and the future of ensemble forecasting

The predictability of weather and climate has been traditionally studied by investigating the
error growth due to initial conditions, more specifically the growth rate of such errors and
the associated state space patterns of maximum growth. The approach, pioneered by Lorenz,
is concerned with the divergence of initially close dynamical trajectories measured by the
Lyapunov exponents and vectors which can in some limits be described by the singular
vectors of the dynamical system.

The maximum error growth associated with the singular vectors can reduce the large
number of degrees of freedom of the high dimensional dynamical system which help the
predictability analysis. Several studies showed that the normal mode instability was inadequate
to analyse the dynamical instability of atmospheric flows (e.g., the PNA) due to the non-
normality of the linearized dynamics and that singular vectors could provide a more accurate
representation of forecast errors. Since the late 1980s, singular vectors have been implemented
in the operational ensemble prediction system (EPS) on the assumption that they span the
important directions of error growth. For the EPS, the singular vectors calculations are made
from a numerical weather prediction model using tangent linear and adjoint models and an
iterative Lanczos algorithm.

In addition to atmospheric variability, the analysis of singular vectors has proven extremely
useful to study the predictability of other problems related to the dynamics of the ocean and
atmosphere on timescales of seasons to decades. Two examples of such climatic phenomena
are presented in the paper: the coupled ocean–atmosphere interannual variability in the tropical
Pacific, El Niño and the Southern Oscillation (ENSO); and the large-scale decadal variability
of the ocean meridional overturning circulation in the North Atlantic. For such problems the
uncertainty in the initial state of the ocean remain important for the predictability of the events.
In the case of ENSO, poor knowledge of surface and subsurface information in the Tropical
Pacific can limit the seasonally dependent predictability the events. In the case of the Atlantic
ocean circulation, the participation at high latitudes of the subpolar gyre and Rossby waves
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seems to determine the predictability of the decadal fluctuations of the circulation. Further
results implied that imperfect knowledge of the ocean initial state at high-latitudes at depth
could be prove detrimental to decadal forecasts. Such regions are often linked to the dynamics
of the large scale flow and the critical processes involved are parametrized.

While the singular vectors remain relevant (as long as the linearity assumption is valid)
for the predictability of seasonal and decadal climate problems, there are several limitations
associated with their computation in numerical models and their implementation at the
operational level. The main problems discussed in the paper include: (1) the growth of
perturbations on fast timescales which are irrelevant on climatic timescales and would dominate
the solutions of singular vectors; (2) the computational cost of the singular vectors as the
dimensions of the problem grow (large domains, additional prognostic variables) including
the availability of adjoint and tangent linear models and (3) computation of an initial norm
consistent with initial condition uncertainty, i.e. an analysis error covariance metric. Several
approaches to tackle those issues and estimate the singular vectors for seasonal and decadal
predictions are discussed however their use to account for initial uncertainties in the ocean
component remains be fully explored and tested. Some work on these topics is in progress.

Our observing system is improving, data is being assimilated into atmospheric and ocean
models, new parametrizations are been implemented including stochastic physics to represent
model uncertainty. Moreover, the use of singular values is not obsolete in operational weather
forecast. The implementation of stochastic parametrizations in the ensemble data assimilation
(EDA) shows that a considerable part of the initial uncertainty in medium rage forecast actually
arises from model uncertainty in the data assimilation suite. The notion that model uncertainty
contributes substantially to initial uncertainty is one of the justification for the use of singular
vectors as a way to perturb initial conditions as part of an ensemble weather forecast. Using
the EDA-based perturbations with the EPS enable a 50% reduction in the amplitude of the
singular vectors operationally but it has not been possible to eliminate them completely. It is
possible that they may not be needed in the future as the stochastic parametrizations improve
and the development of correlated observation error statistics are made. However, even if
singular vectors are dropped operationally in ensemble weather forecasts, they will continue
to play a major diagnostic role for predictability and the development of ensemble prediction
systems for weather and climate.
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