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Machine learning (ML) and artificial intelligence (AI) algorithms are transforming and empower-
ing the characterization and control of dynamic systems in the engineering, physical, and biological
sciences. These emerging modeling paradigms require comparative metrics to evaluate a diverse
set of scientific objectives, including forecasting, state reconstruction, generalization, and control,
while also considering limited data scenarios and noisy measurements. We introduce a common
task framework (CTF) for science and engineering, which features a growing collection of challenge
data sets with a diverse set of practical and common objectives. The CTF is a critically enabling
technology that has contributed to the rapid advance of ML/AI algorithms in traditional applica-
tions such as speech recognition, language processing, and computer vision. There is a critical need
for the objective metrics of a CTF to compare the diverse algorithms being rapidly developed and
deployed in practice today across science and engineering.

Data-science, especially machine learning (ML) and
artificial intelligence (AI), is transforming almost every
aspect of the engineering, physical, social, and biological
sciences. This transformation is driven by the confluence
of a number of emerging technologies, including com-
putational hardware (storage and computing), optimiza-
tion algorithms, open source software, and data collec-
tion (sensors). Powered by Moore’s law, the capabilities
of modern scientific computing architectures has engen-
dered new scientific exploration paradigms that are read-
ily accessible to a broad range or practitioners. Within
the ML/AI communities, the growing diversity of com-
putational solutions has necessitated the common task
framework (CTF) to provide a critical role in evaluating
methodological advancements. Donoho [1] has argued
that the successful application of CTFs is a primary fac-
tor for the success of data science and machine learning.
Indeed, the fields of speech recognition, natural language
processing, and computer vision have developed mature
CTF platforms that are progressively updated with more
challenging data in order to drive progress and innova-
tion. For instance, the industry-leading computer vision

and pattern recognition (CVPR) conference offers more
than 30 challenge problems per year for participants to
score and benchmark their ML/AI algorithms against.
More broadly, classic fields of machine learning have ben-
efited from extensive benchmark environments and com-
mon task frameworks, including ImageNet [2, 3], Go and
chess [4], video games such as Atari [5] and Starcraft [6],
the OpenAI Gym [7, 8], among other environments for
more realistic control [9, 10]. While these fields in par-
ticular have adopted the CTF broadly, many scientific
disciplines have yet to integrate the CTF into their core
infrastructure [11]. This compromises the true compar-
ative metrics between methods, algorithms, and results,
and it limits the potential of ML in these areas.

The CTF for science and engineering is primarily fo-
cused on evaluating machine learning and AI models for
dynamic systems, or those systems whose underlying evo-
lution is determined by physical or biophysical principles
or governing equations. The CTF will provide training
data sets with clear and concise goals related to forecast-
ing and reconstruction under various challenging scenar-
ios, such as noisy measurements, limited data, or varying
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system parameters. The user is required to produce ap-
proximations for hidden test data. For ease of use, the
training and test sets are simple NumPy arrays [12]. The
approximations to the test set are evaluated and scored
by a referee, with the diverse metrics evaluated and scores
posted on a leaderboard.

Importantly, our goal is to provide fair evaluation met-
rics, not disqualify papers from consideration for publi-
cation. In traditional fields of machine learning, state-
of-the-art (SOTA) performance has been perhaps over-
emphasized, with algorithms being discounted because of
fractions of a percentage point difference in raw predic-
tion score. In scientific machine learning, algorithm eval-
uation is more nuanced: algorithms typically have vari-
ous strengths and weaknesses, and one goal of the CTF
is to provide a diversity of scores to better understand
these tradeoffs. We wish to promote diverse method-
ological development, but with rational assessments of
performance, something which has yet to be standard-
ized in science and engineering [11]. A higher-or-lower
score should not be the ultimate goal, rather innovation
of methods. After all, it is difficult for a new concept
and algorithm to compete immediately with one which
has been developed and deployed over two decades.

Although there are currently various benchmarks avail-
able to the community (See Fig. 1), they are typically
structured as self-reporting tools. The benchmark en-
vironments for dynamic systems, for instance, include
those for ordinary differential equations [16–19] and par-
tial differential equations [20–24], as well as cyberphys-
ical and interactive environments [13–15, 25–28]. These
benchmarks build on the increasing trend to publish
static, though extensive, datasets to test methods, e.g., in
fluid mechanics [29, 30]. However all of these benchmarks
involve self testing of algorithms on a known test data set,
making it difficult or impossible to have a truly objec-
tive comparison. Moreover, the testing itself is often not
consistent with the principle of a withheld test set [11].
We argue here that self-reporting is, in general, a flawed
premise. For instance, neural networks upon retraining
are typically initialized with random weight assignment.
Although the errors achieved on the training data set are
comparable from run to run, the errors on the test set can
be significantly different. This can lead to p-hacking, or
judicious picking of results, when reporting scores on test
data sets, i.e. simply re-train the model until a desired
and good result is achieved for self-reporting. Only with
a true, withheld test set is a comparison among meth-
ods possible. To be precise, consider the simple example
of training a feed-forward neural network to fit a simple
curve f(x) = A cosBx+Cx+D where noise is added to
the data to make it more challenging. The training data
is extracted from x ∈ [20, 40] and the model is tested in
the domain x ∈ [0, 50]. Thus, the network is required to
extrapolate outside of the training regime, which is a typ-
ical task in science and engineering. Each training run
provides a high-quality fit (with very little variance from
run-to-run) on the training data. However, when com-

puting the fit on the entire domain, where extrapolation
is required, the performance has a large distribution of
errors over the various runs as shown in Fig. 2. Select-
ing the best result from the various training runs may
be highly misleading and misrepresentative of the model
as a whole. This would be equivalent to p-hacking your
results.

Extrapolation versus interpolation

Comparatively speaking, interpolation is easy, extrap-
olation is hard. This is for the most part an obvious
statement, yet it is often unacknowledged in data sci-
ence. The significant successes of machine learning, such
as speech recognition, computer vision and autonomy are
built upon interpolative data. Richard Sutton’s blog on
the The Bitter Lesson [31] highlights an important theme
in machine learning and AI: simply collect more data for
improved models. In the parlance of curve fitting, collect
enough data in order to turn your problem into an in-
terpolation. Max Welling [32] responded to this blog by
highlighting that “The trouble starts when we need to ex-
trapolate.” Indeed, in the sciences, the over-arching goal
is often aimed at building extrapolatory models capable
of building not only understanding, but new technologies.
Extrapolation and interpolation are critical in thinking
about scientific models. It suggests that in addition to
improving models, we may simply improve by collect-
ing better data. Both are viable pathways for greater
understanding. However, many science and engineering
systems can be difficult to make into interpolation prob-
lems, in part because data is often limited. For instance,
in celestial mechanics, once we learn the laws of gravi-
tation, we are capable of envisioning (extrapolating) a
moon landing. Thus for a given data set, one must
first determine whether extrapolation, interpolation, or
a combination is required. The answer to this question
will often determine the choice of solution techniques.
Generally speaking, deductive techniques of ML/AI

are often overfit and do not extrapolate well. In contrast,
inductive techniques are often constructed for exactly the
purpose of extrapolation and generalization. As an ex-
ample, one can consider the theoretical foundations of
electromagnetism and quantum mechanics. With these
two models established in the late 1800s and early 1900s,
we were able over decades to extrapolate our way to cre-
ating technologies such as smart phones, which are foun-
dationally based upon these two theoretical concepts.
Thus, in physics-based CTFs, generalization is a criti-
cal part of the evaluation metric. The goal is to incor-
porate domain knowledge into data-driven algorithms, or
imbue machine learning with physics knowledge and con-
straints, so that significant and accelerated innovations
can be achieved which will allow for testable generaliza-
tion capabilities. Testing for extrapolation also ensures
that achieving strong CTF scores, unlike the accuracies
achieved in speech and vision, will remain difficult.
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FIG. 1. Illustration of classic CTF benchmark problems and modern CTF benchmark problems in dynamical systems. There
is a progression of complexity, from static data, to interactive data where it is possible to run control experiments, to living
cyberphysical systems. Top row: (left) Imagenet dataset [2]; (middle) Atari video game environment in Gymnasium [7, 8];
(right) pendulum on a cart used for PILCO learner [9] Bottom row: (left) Fluid flow past a cylinder and lava lamp; (middle)
HydroGym cavity flow environment [13]; (right) Double pendulum [14] and Quanser Aero 2 platform [15].

FIG. 2. Distribution of errors for fitting the data from 1000
random initial starts of the neural network. Note that for this
application where the test set is in an extrapolation regime,
the error distribution is significant, ranging from a minimal
RMSE of approximately 29 to a value of 185. The average
error is about 67. This highlights an important aspect of
neural network training: the performance on a true withheld
test set can have very high variance.

Permanent CTF Collection

The permanent CTF collection includes example toy
models of dynamic systems (See Fig. 3) that are com-
monly used today in the literature for the evaluation and
development of machine learning methods in science and
engineering. These lightweight models are often used due
to their simplicity, yet difficulty in producing robust fore-

FIG. 3. Environments in the AI Institute CTF for dynam-
ical systems permanent collection. Included in the perma-
nent challenge sets are three dynamical systems (Lorenz,
Rössler, double-pendulum) and three spatio-temporal sys-
tems (Kuramoto-Sivashinsky, Lorenz96, Burgers). The user
is provided with 10 training data sets, with the requirement
of generating 9 test set approximations. A diversity of met-
rics are measured, including those related to forecasting and
reconstruction with noisy measurements and limited data.

casts and reconstructions with noisy measurements and
limited data. The permanent collection is critical as a
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testbed for method development and fair comparisons. It
is often the case today that vague and misleading state-
ments are made about the success of one method and
the failures of another without any fair and comparative
testing. The permanent CTF helps to bring transparency
and rigor to emerging methods, helping suppress mislead-
ing claims and level the playing field for all. The primary
goal of the permanent CTF collection is to become an
essential part of any manuscript: providing a rigorous
evaluation of a given method’s capabilities across a di-
versity of objectives. This would be critical for fostering
the trust and credibility of an algorithm. With the rapid
increase of machine learning methods development for
science and engineering, it is important that leading ap-
proaches be benchmarked on diverse metrics, including
such prominent methods as physics informed neural net-
works (PINNs) [33, 34], operator networks [35–37], sparse
model discovery [38, 39] and symbolic regression [40],
Hamiltonian [41] and Lagrangian [42] neural networks,
graph neural networks [43, 44], reservoir computing [45],
long-short-term memory networks [46], linear dynamic
mode decomposition (DMD) [47–49] and Koopman the-
ory [50–52], and operator inference [53], to name only a
few.

Rotating CTF Collection

In addition to a testing platform for method devel-
opment and evaluation, the CTF will feature a rotat-
ing collection of challenging real-world data sets selected
broadly from across science and engineering disciplines.
These will be in disciplines as diverse as smart build-
ings, robotics, brain-machine interfaces, flow control, etc.
Data sets and appropriate domain goals and metrics will
be solicited that best fit with the CTF framework. By
providing data and clear goals, a broad group of partic-
ipants can then play a role in attempting to develop al-
gorithms for accomplishing the tasks assigned. For each
data set chosen, a one-page summary of the data set will
be given by its curators. The summary will outline the
importance of the problem and the aspects of the prob-
lem that make it unique and challenging. This allows
broad participation since one does not have to be a do-
main expert or collect data in order to try to advance a
given field. Moreover, the evolution of the CTF will aim
to incorporate full cyber-physical systems into the CTF
infrastructure in order to test methods on real systems
for data-driven control and estimation. Such an effort
can greatly help accelerate the advancement of methods
for implementation in real design systems.

The Referee: Sage Bionetworks

Sage Bionetworks (sagebionetworks.org) has emerged
as a leading platform for enabling the rapid accelera-
tion in biomedical discoveries and the transformation of

medicine. The Sage Bionetworks platform is a flexible
framework ideally suited for the sciences and engineering
needs of the CTF. Specifically, Sage Bionetworks offers
an easy-to-use framework whereby solutions of the CTF
can be uploaded and tested against the withheld test set.
They are the only ones with access to the test set in or-
der to ensure fair comparisons and rigorous evaluations.
A scoreboard is kept for the various tasks assigned for
each challenge. Each team competing will be required to
share a GitHub link for reproducing the results on the
scoreboard. This is in keeping with the highly successful
strategies used in vision, speech and language processing.

HISTORICAL CONTEXT

The computational linguist Liberman coined the no-
tion of the CTF as the set of publicly available data,
an agreed-upon scoring function that judges the perfor-
mance, and competing methods that are being evaluated
on the data set based on the scoring function. Donoho
outlines these critical components: (i) a publicly avail-
able training dataset involving, for each observation, a
list of (possibly many) feature measurements, and a class
label for that observation, (ii) a set of enrolled competi-
tors whose common task is to infer a class prediction
rule from the training data, and (iii) a scoring referee,
to which competitors can submit their prediction rule.
Importantly, the referee runs the prediction rule against
a sequestered testing dataset which is not accessible ex-
cept by the evaluation algorithm. The referee objectively
and automatically reports the score (prediction accuracy)
achieved by the submitted rule. Thus competitors share
the common task of training a prediction rule which they
hope will achieve a good score. The $1M Netflix Chal-
lenge [54, 55], where the common task was to predict
Netflix user movie selections, is perhaps the earliest and
most famous of the CTFs. Kaggle, for instance, has
built upon this CTF framework and now offers more than
500,000 public data-sets and 400,000 open source note-
books which users can download and explore winning so-
lutions. Within such a diversity of data and solutions,
it is expected that many new data sets can be explored
with previously vetted algorithmic techniques. It should
be noted that CTFs are tools to judge empirical rigor but
are, by design, incapable of judging mathematical rigor.
Thus, a CTF can only paint an incomplete picture of a
methods merit.
Given the long-standing computational sophistication

of the engineering and physical sciences, especially in
regards to high-performance computing (HPC) simula-
tions of complex, multi-scale and multi-physics systems,
it is somewhat surprising that the scientific community
has not adopted, or perhaps even initially proposed, the
CTF architecture. In part, we venture to suggest that
the slow adoption in the natural sciences of the CTF is
largely due to the predominance of the inductive rea-
soning in this community. Specifically, physics-based
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models traditionally are posited from empirical observa-
tions and first-principles derivations, which include the
consequences of conservation laws, physical constraints,
self-consistent qualitative models, and expert knowledge.
Thus interpretable governing equations are the starting
point for computationally-oriented scientific studies. In
fact, one does not compute until a reasonable set of gov-
erning equations are developed. Validation of these mod-
els with data is often a painstaking and time consuming
process, yet provides a critical assessment of the inductive
reasoning process. In contrast, the CTF is a manifesta-
tion of the deductive reasoning process. Fundamentally,
a CTF creates a rigorous and fair framework to evalu-
ate and compare theories or methods from a predomi-
nately deductive perspective. Note that unlike inductive
approaches that usually try to assign a Boolean truth
value that indicates whether or not the conclusion can
be derived from the axioms, CTFs mostly assign a soft
(or fuzzy) real-valued score to a method. Liberman ar-
gues that improvements to this score often happen at
a steady percentage rate until an asymptote is reached
which depends on the data quality. In modern times,
induction and deduction reasoning paradigms are both
highly successful (see Fig. 4), driving innovations in au-
tonomy technologies such as robotics (primarily induc-
tive, physics-based) and self-driving cars (primarily de-
ductive, sensor-based).

Much like computer vision and speech recognition from
a decade ago, the natural sciences are on the brink of a
revolution that will be driven by the emergence of high-
quality data sets across disciplines that are amenable to
the CTF architecture. Importantly, the CTFs will al-
low for true comparatives between computing and model-
ing strategies for diverse scientific efforts, something that
has been severely lacking in most fields of application
today. Accountability is critical in this emerging data-
driven space, as methods are being developed at an ex-
ceptionally rapid pace without proper evaluation [11]. In
this paper, we aim to provide a platform for researchers
in the natural sciences to propose CTFs and compare
their methods across a diverse set of scientific tasks such
as forecasting, state reconstruction, and control. In the
next section, we further the argument for more deductive
rigor in the natural sciences, and in section 3, we discuss
the requirements of such a platform and what constitutes
‘good’ CTFs. We then introduce example common task
frameworks that we believe to have a positive and mean-
ingful impact.

PHYSICS-BASED MODELS: INDUCTION
VERSUS DEDUCTION

Since antiquity, there has been a debate about the na-
ture of scientific discovery. While Aristotle argued that
scientific discovery should emerge from observation, his
mentor Plato was of the opinion that observation is inher-
ently imperfect and that reason should be the foundation

(a) (b)

(c) (d)

FIG. 4. (a) From the 2nd century AD until the beginning of
the scientific revolution (circa 1600), the deductive Ptolemaic
system of the solar system was used to describe the motion of
the planets as circles on circles. One can consider this as the
precursor to the Fourier transform. (b) The inevitable push to
a heliocentric coordinate system by Copernicus, Kepler and
Galileo allowed Newton to develop an inductive theory of the
solar system: F = ma. In modern data-driven science, deep
learning can be framed towards (c) inductive models using
autoencoder strategies to reduce dynamics to their intrinsic
dimensions, or (d) deductive models which project to higher
dimensional spaces and aim for accuracy and flexibility. Mod-
ern autonomy leverages sensors to build data-driven models
which are physics-based inductive models for robotics (e) and
which are non-physics based, deductive statistical models for
self-driving cars.

of scientific inquiry. Plato and Aristotle laid the ground-
work for the debate about deductive versus inductive rea-
soning. The era of enlightenment saw the first substantial
evolution of these ideas. Rationalists like Descartes be-
lieved in the “rational structure” of reality and that every
sensory experience could be a mere illusion and should
therefore be doubted. Empiricists, typified by Hume and
Locke, argued that scientific knowledge can only be a
posteriori, i.e., every scientific insight comes from expe-
rience and that before experience the human mind is a
blank slate (tabula rasa).
Fundamentally, the debate about inductive and deduc-

tive reasoning is a debate about the value of scientific
discoveries. Deductive and inductive reasoning judge dif-
ferent aspects of a theory. Deductive reasoning tries to
impose empirical rigor, i.e., it primarily judges a scien-
tific theory by how well it can explain reality, whereas
inductive reasoning tries to impose mathematical rigor,
i.e., it primarily judges a scientific theory by how well
it can be explained in terms of axioms of the respective
discipline. More recently, Leo Breiman highlighted much
of the modern and applied differences in inductive versus
deductive reasoning with his analysis of the two cultures
of statistical models [56]. Specifically, he highlighted the
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difference between statistical learning, which roughly is
inductive in nature, and machine learning, which leans
towards deductive reasoning. The former aims to provide
interpretable, potentially parsimonious models, while ac-
curacy and flexibility are the primary goals of the latter.

A case study: celestial mechanics

The legacy of the philosophies of Plato and Aristo-
tle pervades the history of celestial mechanics, one of
the first and greatest grand challenge problems in sci-
ence. The history of celestial mechanics manifests as-
pects of both inductive and deductive scientific reasoning.
The first successful theory for predicting (forecasting)
planetary motion was developed by Claudius Ptolemy
in the 2nd century A.D. in Alexandria, Egypt. Com-
monly known as the doctrine of the perfect circle, the
retrograde motion of planets was described as the evo-
lution of circles on circles, as shown in Fig. 4(a). This
can be thought of as essentially the earliest version of the
Fourier transform, as planetary motion was constructed
by summing circular orbits of different frequencies and
radii. This was a deductive model powered by hand cal-
culations and the abacus, which lasted nearly a millen-
nia and a half. Not until Copernicus, Kepler and Galileo
did this theoretical construct fall. Specifically, a coor-
dinate change from earth-centric to helio-centric orbits
allowed the construction of a new deductive theory of
planetary motion. Powered by Tycho Brahe’s compre-
hensive, and order-of-magnitude more accurate, data on
planetary motion, Kepler laid the foundation of modern
celestial mechanics by proposing Kepler’s laws and the el-
liptical orbits of the planets. Within one hundred years of
Kepler’s theoretical construct, the first inductive theory,
what we would now call a generative model, of planetary
motion was proposed by Sir Isaac Newton in his Prin-
cipia. Specifically, the relationship between force and ac-
celeration F = ma. As even more accurate data became
available in the 1800s, discrepancies between theory and
astronomical observations were noted. This led directly
to Einstein proposing general relativity in the early part
of the 20th century, which was a revised, inductive theory
of gravitation.

The history of gravitation shows that both inductive
and deductive reasoning played foundational roles in dif-
ferent periods of the development of celestial mechanics.
Before the innovation of calculus, the theoretical con-
structs of Ptolemy and Kepler were limited in their math-
ematical expressibility. This did nothing to diminish the
accuracy of their models. Indeed, despite the success of
Kepler’s models, it took many decades before it relegated
the doctrine of the perfect circle to history. Newton’s
model similarly took a great deal of time to displace Ke-
pler’s perfectly reasonable model, i.e. F = ma did not
substantially improve accuracy for some time. What ul-
timately allowed Newton to revolutionize the world was
the ability of the newly developed calculus and F = ma

to extrapolate. Indeed, such a theory allowed humans the
ability to put astronauts in space and land on the moon.
With the corrections of general relativity, the trajecto-
ries of satellites can be planned for deep space missions
of the modern era. And even more recently, the gravi-
tational waves predicted by Einstein’s inductive theory
were only validated by the LIGO experiment in 2015,
nearly 100 years after they were first proposed. Such sci-
entific predictions represent the highest value of inductive
reasoning.

The machine learning shift to more deductivism

In some areas there seems to be considerable oppo-
sition to deduction. This is perhaps not surprising,
given our standard undergraduate and graduate disci-
pline training in the sciences which revolves around dom-
inant paradigms of inductive models, including well-
established theories of fluid dynamics (Navier-Stokes
equation), quantum mechanics (Schrödinger equation),
electrodynamics (Maxwell’s equations), mechanics (F =
ma), etc. Some disciplines consider deductive approaches
not to be ‘real science’ because they often do not result
in a formal description of a set of phenomena, i.e. gov-
erning equations. There is also concern about how far
a radical deductivism approach can advance science [57].
This opinion is held in spite of a series of negative results
in formal systems in the early 20th century. Gödels in-
completeness theorem showed that there are true but un-
provable statements in formal systems describing arith-
metic on natural numbers. This was followed by Tarskis
indefinability theorem which postulates that formal sys-
tems are incapable of representing their own semantics.
These results are connected to other negative results in
computer science such as Hilbert’s Entscheidungsprob-
lem and the Halteproblem and they show that inductive
descriptions of reality are fundamentally limited. The
reason why, despite these results, inductive approaches to
scientific discovery are preferable to some might be that
induction often results in a deeper understanding of the
subject matter, i.e., generalizability and interpretability.
Induction is not only concerned with how but also why
things are the way they are. Answering the why-question
is often significantly more difficult than answering just
how. But do we always need this level of understanding?
Arguably, most native speakers of the English language
have very little inductive knowledge of it. Most native
speakers do not know why a sentence is strung the way
it is but are perfectly able to generate and understand
English language sentences. Thus, for some applications,
a deductive understanding of the subject matter suffices.
In a sense, when the goal is to produce accurate descrip-
tions of the world, induction can be a detour. Induction
relies on a formal description first from which predictions
follow, whereas deductive approaches often allow for im-
mediate predictions.
Furthermore, we believe that overly focusing on math-
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ematical rigor or a logical argument can impede or, when
done in bad faith, even corrupt the scientific process. One
of the most successful and widely used concepts in en-
gineering are Fourier series and the associated Fourier
transform. Arguably, the discovery of Fourier series led
to a revolution in numerous fields. But when Joseph
Fourier introduced the concepts, a panel responded with:
“... the manner in which the author arrives at these
equations is not exempt of difficulties and that his analy-
sis to integrate them still leaves something to be desired
on the score of generality and even rigour.” Further-
more, the authors of [58, 59] discuss what they perceive
as “Troubling Trends in Machine Learning Scholarship.”
One pattern they identify as problematic is what they
call “mathiness.” Specifically, they argue that in order
to overwhelm or impress reviewers, scientists might cre-
ate the illusion of technical depth by including unnec-
essary or “spurious theorems [...] to lend authoritative-
ness.” Thus, inductive reasoning is not free of impurity
and overemphasizing inductive merit can lead to the un-
dervaluing of some and to overvaluing of other scientific
contributions.

Note that we are not arguing that induction is fun-
damentally inferior to deduction. As described earlier,
we believe that inductive and deductive reasoning judge
different aspects of a scientific contribution. They are
complementary and ideally every scientific contribution
is mathematically sound and empirically accurate. What
can be measured by a CTF is fundamentally limited. By
design, a CTF is incapable of judging inductive rigor. A
CTF can only paint an incomplete picture of a meth-
ods merit. On top of that, when we call for a shift to
greater empirical rigor in the natural sciences, we are
not arguing that the insights gained from the current
period of ‘normal science’ should be forgotten. On the
contrary, we believe that incorporating domain knowl-
edge into data-driven algorithms should improve their
performance. We conjecture that fields in which domain-
knowledge can easily be incorporated into data-driven al-
gorithms will outpace fields for which this is harder. Said
another way, dovetailing inductive approaches into de-
ductive approaches, i.e., imbuing machine learning with
physics knowledge and contraints, can lead to significant
innovations.

REQUIREMENTS OF CTF PLATFORMS

Fundamentally, CTFs are a tool to measure empirical
progress of a research community in the broad under-
standing of a specific problem. Considering that im-
provements to this score seem to happen at a steady
percentage rate, CTFs at some point “get solved.” To
give an example of this, in the past, the MNIST dataset
was considered a standard benchmark for image classifi-
cation algorithms. However, because even fairly simple
algorithms exhibit superhuman performance on MNIST,
more challenging datasets such as Imagenet and COCO

soon emerged. Thus, CTFs are fundamentally tempo-
rary and reflect the current challenges researchers in a
field face. Because of this, we not only aim to provide
high quality datasets and metrics but also a platform for
CTFs to live on, evolve and eventually get cataloged be-
cause they are considered solved.

The common task framework (CTF) for dynamic sys-
tems aims to evaluate algorithms and methods on a vari-
ety of tasks that are common for engineering and science.
The goals include forecasting and reconstruction of time-
series and spatio-temporal data under the challenges of
limited data, noise and parametric dependence.

What will be provided to challengers is a compressed
file which includes 11 matrices

Xj ∈ Rnj×mj j = 1, 2, · · · , 11 (1)

where

nj = dimension of dynamical system

mj = number of time points

j = parameter regime for the jth matrix.

Thus, the rows represent the dimension of the system
under consideration and the columns are the sequential
temporal sampling of the dynamics.

Twelve tasks and evaluations are assigned to the chal-
lengers, with a matrix produced for each one. Each ma-
trix will be of the following form

X̂Jtest ∈ RnJ×mJ J = 1, 2, · · · , 12 (2)

where nJ (dimension or dynamics) and mJ (number
of time points) will be specified for each of the 12
evaluations. The users approximation to the test set will
be XJtest so that XJtruth and XJtest will be compared
in the evaluation metrics.

SCORING

Scoring will be on a scale, with 100 being a perfect score
and a score of zero corresponding to a guess of zeros for
XJtest. Negative scores will show that the model is worse
than guessing zeros. In summary, we have

SCORE = 100 : Perfect match between model and truth

SCORE = 0 : Score for model with zeros

Thus, the mechanics of each challenge, three dynam-
ical systems (Lorenz, Rössler, double-pendulum) and
three spatio-temporal systems (Kuramoto-Sivashinsky,
Lorenz96, Burgers), will provide the user 10 training data
sets, with the requirement of 9 test set approximations
to be returned for evaluation on 12 metrics. These are
detailed in an example using the Kuramoto-Sivashinsky
model.
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FIG. 5. Evaluation of forecasting and reconstruction capabilities of a method with numerically accurate data for both (a) short-
and (b) long-time forecasting, (c) with limited data, (d) with and without noise, and (e) under parametric variability.

EXAMPLE SYSTEM:
KURAMOTO-SIVASHINSKY

The Kuramoto-Sivashinsky (KS) equation is a fourth
order, nonlinear partial differential equation. It is con-
sidered a canonical example of spatio-temporal chaos in a
one-dimensional PDE, and it is therefore commonly used
as a test problem for data-driven algorithms. The KS
equation is a particularly challenging case for fitting al-
gorithms due to its combination of high dimensionality,
nonlinearity, and sensitivity to initial conditions (chaotic
behavior):

ut + uux + uxx + µuxxxx = 0. (3)

Solutions of the (3) are on a grid [0, 32π] with periodic
boundary conditions. A numerical integrator with un-
known time-step ∆t will be used to evolve the solution
forward m-steps.

A. Test 1: Forecasting (2 scores)

The first test of the method, as illustrated in Fig. 5(a),
involves the approximation of the future state of the sys-
tem. Thus, given a data matrix representing the dynam-
ics from t ∈ [0, T ] (X1 ∈ Rn1×m1), the forecast requested

is from t ∈ [T, 2T ] (X̃1 ∈ Rn1×m1). The forecasting

score is actually composed of two scores evaluating both
the short-time forecast (the “weather forecast”) which is
computed using root-mean square error fitting between
the test set and the users approximation, and the long-
term forecast (the “climate forecast”), which is based
upon the power spectral density. As such, the following
two error scores are computed:

EST =
∥X̂1[:, 1 : k]− X̃1[:, 1 : k]∥

∥X̂1[:, 1 : k]∥
(weather forecast)

(4)
and

ELT=
∥P̂1[k, N−k :N ]−P̃1[k, N−k :N ]∥

∥P̂1[k, N−k : N ]∥
(climate forecast).

(5)
Here, EST is the short-time error evaluated using least-
squares and ELT (See Fig. 5(b)) is the long-time error
which is computed by least-squares fitting of the power
spectrum Pj [:, k] = ln(|FFT(Xj [:, k])|2), where the fft-
shift has been used to model the data in the wavenumber
domain and k = n/2−km : n/2+(km+1) with km = 100.
This then looks at the first 100 wavenumbers in order
to determine the decay rate of the power spectrum. It
is clear that there are many ways to evaluate the long-
range forecasting capabilities. However, we have chosen
a simple metric, fully understanding that more nuanced
scoring could be used.
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FIG. 6. Evaluation of a method’s capabilities across the
twelve evaluation metrics. The radar plot profiles how well a
method does on the various tasks associated with forecasting
and reconstruction with noise, limited data and parametric
dependency.

The first error metric evaluates the overall forecasting
skill for short-time prediction:

E1 = 100(1− EST). (6)

Note that as a baseline a solution guess of zeros X̃1[:, 1 :
k] = 0 gives a score of E1 = 0. The second error metric
evaluates the long-range capabilities of an algorithm for
matching the correct long-term behavior of the system

E2 = 100(1− ELT). (7)

Note that as a baseline a solution guess of zeros
P̃1[k, N − k : N ] = 0 gives a score of E2 = 0. For
the challenge dynamics of interest, sensitivity of initial
conditions is common so that long range forecasting
to match the test set is not a reasonable task given
fundamental mathematical limitations with Lyapunov
times.

Input: X1train

Output: X1test

Scores: E1, E2

B. Test 2: Noisy Data (4 scores)

The ability to handle noise is critical in all data-driven
applications, as sensors and measurement technologies
are by default embedded with varying levels of noise.
Methods that work with numerically accurate data, for

example data points that are 10−6 accurate, may be use-
ful for model reduction, but they are rarely suitable for
discovery and engineering design from real-world data.
Both strong and weak noise are considered as these rep-
resent realistic challenges to be addressed in practice.

Figures 5(d) demonstrates the challenges to be ad-
dressed. The challenge is very similar to Test 1, but now
with noise added to the data. Specifically, what is given
to the challenger is a data matrix X2train and X3train

representing the evolution over with medium or high
noise. The objective is to first produce a reconstruction
of the data itself, i.e., denoise the data to produce an
estimate of the true state of the dynamics, and the
second objective is to then forecast the future state,
matrices X2test and X3test for X2train and matrices
X4test and X5test for X3train. For the first task, a
least-square fit is used between the approximation of the
denoised data and the truth, which is given by E1 for all
snapshots m. The forecasting score is given by the error
metric E2. Thus, two error scores E3 (reconstruction)
and E4 (forecast) are produced for medium noise, and
two error scores E5 (reconstruction) and E6 (forecast)
are produced for high noise.

Input: X2train, X3train

Output: X2test, X3test, X4test, X5test

Scores: E3, E4, E5, E6

C. Test 3: Limited Data (2 scores)

Data limitations are also present in many systems,
which often change which data-driven architectures are
most successful. The low-data limit is critically impor-
tant in many applications in engineering and science, thus
requiring the evaluation of methods under these condi-
tions.

Figure 5(c) demonstrates the nature of the test. In
this case, only a limited number of snapshots M on
numerically accurate data are given X4test ∈ Rn×M .
From this limited data, a forecast must be made which is
evaluated with the error metrics both E1 and E2 on the
approximated future X6test. The experiment is repeated
with noise on the measurements using the training
matrix X5train for which a forecasting prediction matrix
is produced X7test ∈ R. Two error scores (E1 and E2)
are produced for the noise-free and noisy limited data.
These scores are E7 (short) and E8 (long) for the noise
free case and E9 (short) and E10 (long) for the noisy case.

Input: X4train, X5train

Output: X6test, X7test

Scores: E7, E8, E9, E10
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D. Test 4: Parametric Generalization (4 scores)

Finally, the ability of a model to generalize to different
parameter values is evaluated. For this case, the model’s
ability to interpolate and extrapolate to new parameter
regimes is considered with noise-free data and noisy data
as well. The interpolation and extrapolation are each
their own score. This gives a total of four scores that
evaluate parametric dependence.

Figure 5(e) shows the basic architecture of the test.
For the noise-free case, three training data sets are
provided with three different parameter values X6train,
X7train and X8train. Construction of the dynamics
in parametric regimes that are interpolatory X8test

and extrapolatory X9test are required. for both of the
test regimes, a burn in matrix is given . The error
metric E1 is used to evaluate the reconstructions of the
interpolatory and extrapolatory regimes X9train and
X10train respectively.

Input: X6train, X7train, X8train,
X9train, X10train

Output: X8test, X9test

Scores: E11, E12

Summary Evaluation

To evaluate the overall performance of a method, a
radar plot is developed highlighting the various scores
associated with the challenge. Figure 6 shows how each
method will look overall. It is a profile of the method
rather than a single score. Of course, the average of all
scores can be computed in order to provide a composite
score. But ultimately, different tasks will excel in differ-
ent areas. Some will do well with noise, others will not.
Others might excel in the limited data regime, while be-
ing poor under parametric generalization. Profiles are

important in order to provide a more comprehensive and
well-rounded metric of performance.

OUTLOOK AND DISCUSSION

In summary, it is time for the engineering sciences to
have a stable, robust and rigorous CTF, both for pro-
moting accountability and for accelerating advancement
of machine learning methods. More than just bench-
marking, the CTF aims to provide quantifiable metrics
that are rigorously evaluated across a diverse set of tasks.
It is necessary that the community has a fair assessment
of the multitude of methods being developed. The ad-
vancement of machine learning and AI for science and
engineering will rely heavily on fair evaluations and open-
source code, all of which are directly built in to the CTF
framework.
And the CTF is open to everyone! We are encour-

aging practioners across the sciences and engineering to
participate in the fair assessment of their algorithms in
order to promote a culture of accountability and fairness.
The CTF examples can all be evaluated with laptop level
computing, and as a result does not have a barrier to en-
try. Thus graduate students across institutions can easily
participate in the development of algorithms. This is in-
tentional as many modern machine learning algorithms
now require computational platforms and data resources
well beyond the capabilities of most academic research
groups.
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