
Stochastic Subgrid-Scale Ocean Mixing: Impacts on Low-Frequency Variability

STEPHAN JURICKE, TIM N. PALMER, AND LAURE ZANNA

Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Oxford, United Kingdom

(Manuscript received 22 July 2016, in final form 1 March 2017)

ABSTRACT

In global oceanmodels, the representation of small-scale, high-frequency processes considerably influences

the large-scale oceanic circulation and its low-frequency variability. This study investigates the impact of

stochastic perturbation schemes based on three different subgrid-scale parameterizations in multidecadal

ocean-only simulations with the ocean model NEMO at 18 resolution. The three parameterizations are an

enhanced vertical diffusion scheme for unstable stratification, the Gent–McWilliams (GM) scheme, and a

turbulent kinetic energymixing scheme, all commonly used in state-of-the-art oceanmodels. The focus here is

on changes in interannual variability caused by the comparatively high-frequency stochastic perturbations

with subseasonal decorrelation time scales. These perturbations lead to significant improvements in the

representation of low-frequency variability in the ocean, with the stochastic GM scheme showing the

strongest impact. Interannual variability of the Southern Ocean eddy and Eulerian streamfunctions is in-

creased by an order of magnitude and by 20%, respectively. Interannual sea surface height variability is

increased by about 20%–25% as well, especially in the SouthernOcean and in theKuroshio region, consistent

with a strong underestimation of interannual variability in the model when compared to reanalysis and al-

timetry observations. These results suggest that enhancing subgrid-scale variability in ocean models can

improve model variability and potentially its response to forcing on much longer time scales, while also

providing an estimate of model uncertainty.

1. Introduction

One of the big challenges in ocean modeling is the

development of parameterizations that can accurately

represent the impact of the unresolved subgrid-scale

processes on resolved scales. An inadequate representa-

tion of such processes can have an impact on the simulated

climaticmean state and variability (see, e.g., Kirtman et al.

2012) as well as the models’ climatic response to forcing

(e.g., Griffies et al. 2015). The ocean varies on long time

scales and exhibitsmesoscale eddies that aremuch smaller

than those found in the atmosphere. Consequently it is

very difficult and computationally expensive to integrate

the governing equations with an ocean model resolution

that adequately resolves mesoscale or submesoscale pro-

cesses on time scales from years to decades. This is re-

flected in the rather coarse ocean resolutions in the last

coupled model intercomparison project (CMIP5; see

Flato et al. 2013).

However, high-resolution model simulations have

been carried out, analyzed (e.g., Bishop et al. 2016), and

compared with lower-resolution simulations, revealing

significant differences between simulations with the

same model but differing grid resolution (e.g., Seo et al.

2006; Kirtman et al. 2012; Griffies et al. 2015). Addi-

tionally, idealized high-resolution ocean models have

been used in conjunction with theoretical considerations

to gain further insight into mesoscale and submesoscale

processes and to investigate new parameterization

frameworks (e.g., Marshall et al. 2012). Such simulations

have guided developments in so-called scale-aware

parameterizations (e.g., Fox-Kemper et al. 2014; PortaSupplemental information related to this paper is avail-
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Mana and Zanna 2014), which scale with the model

resolution as more and more of the parameterized pro-

cesses become explicitly resolved with finer grids. In

addition, global satellite and in situ observational data

can be used to calibrate and develop parameterizations,

as well as to validate full climate models. Ocean obser-

vations of the subsurface are still rather sparse, even if

the advent of satellite measurements allows for large-

scale coverage of high-resolution surface properties

[e.g., the Archiving, Validation and Interpretation of

Satellite Oceanographic (AVISO) data; http://www.

aviso.altimetry.fr]. However, even when constrained

by high-resolution model simulations and observational

estimates, uncertainties in ocean models remain large.

This is reflected in the inaccuracies of seasonal forecasts

(Kim et al. 2012) as well as climate model biases

(Richter 2015) and the large spread in ocean reanalysis

products (Balmaseda et al. 2015; Karspeck et al. 2017).

In the atmospheric modeling community, especially in

weather forecasting, it has become common standard to

account for uncertainties in forecasts by running en-

semble simulations (e.g., Molteni et al. 1996). At first,

such ensembles only perturbed initial conditions. But in

the past two decades there has also been an increasing

effort to develop and implement schemes and methods

that account for the uncertainties of the models them-

selves. This may be tackled by running multimodel en-

sembles on climate time scales, as is done in CMIP5 and

has been used for climate projection purposes by the

Intergovernmental Panel on Climate Change (IPCC;

Flato et al. 2013), which also account for uncertainties in

the boundary conditions such as future anthropogenic

greenhouse gas and aerosol forcings. To account for un-

certainties in the parameterized processes, or in the choice

of specific model parameters, multiparameterization (also

called multiphysics; e.g., Berner et al. 2011) or perturbed

parameter ensembles (e.g., Murphy et al. 2004) have been

carried out. Finally, another approach to account for

model uncertainty originating from the imperfect repre-

sentation of the subgrid scales is stochastic parameteri-

zations. These have been successfully used in atmospheric

models to increase ensemble spread and therefore model

reliability (e.g., Palmer et al. 2005) by providing a better

estimate of the forecast error and uncertainty. It has been

shown that stochastic parameterizations can reduce

forecast errors as well as climate biases (e.g., Weisheimer

et al. 2014) by better representing the variability of the

unresolved scales.

For ocean models, similar developments have been

made in recent years, ranging from stochastic param-

eterizations in simplified setups (e.g., Pasquero and

Tziperman 2007; Kitsios et al. 2013; Grooms and

Majda 2013; Grooms 2016) and theoretical frameworks

(e.g., Berloff and McWilliams 2002) to implementations

in global uncoupled (Brankart 2013; Brankart et al. 2015)

and coupled general circulation models (GCMs)

(Williams 2012; Andrejczuk et al. 2016; Williams et al.

2016). These studies assume that the unresolved vari-

ability in the subgrid scales and the related error may

have an impact on the resolved flow variability and its

mean state. This becomes especially important when a

general assumption of deterministic parameterizations—

each model grid box contains a sufficiently large

number of events of a given subgrid-scale process—

breaks down, so that averaging may not be an accurate

representation of the cumulative effect of subgrid-scale

processes anymore [for an expanded discussion, see

Palmer (2012)].

In this study we investigate whether and how adding

stochastic subgrid-scale variability in mixing and eddy

parameterizations of a global non-eddy-resolving ocean

model affects the model integrations, especially with

regards to low-frequency variability (i.e., interannual

and longer time scale variability).We follow an approach

that largely keeps the formulation of the models param-

eterizations untouched, but identifies important and im-

perfectly constrained parameters or tendencies in these

parameterizations and adds stochastic variability. There-

fore, the deterministic averaging used to parameterize

effects of the unresolved process is not altered, but un-

resolved variability is reintroduced to the parameteriza-

tion. Instead of developing and implementing a new

parameterization, we will specifically focus on adding

unresolved variability of eddy and convective time scales

in the already existing parameterization formulations.

This approach also provides a quantification of model

uncertainty arising from the imperfect representation of

the respective parameterized subgrid-scale process.

The paper is organized as follows. In section 2 we

briefly describe the general model setup of the ocean

model known as NEMO. Section 3 introduces the sto-

chastic perturbation approach and its application to

three different parameterization schemes used in

NEMO. The results are presented in section 4 and

summarized in section 5, in which we discuss the impli-

cations of the results and future perspectives.

2. Model setup

The ocean model used for this study is the Nucleus for

European Modelling of the Ocean (NEMO), version

3.3.1 (Madec 2008). This specific version is used in the

coupled climate model EC-EARTH, version 3.1 (see

www.ec-earth.org; Hazeleger et al. 2012). NEMO is a

primitive equation GCMof the ocean. The model grid is

the ORCA1L46 with the horizontal discretization
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carried out on the approximately 18 tripolar grid and

with 46 levels in the vertical, using partial step z co-

ordinates. The horizontal grid has a meridional re-

finement from 18 to 1/38 near the equator (Madec and

Imbard 1996). The model time step is 1 h. Different

parameterizations can be chosen to account for un-

resolved processes, some of which will be described in

more detail in the next section. For a detailed discussion

of the model discretization, boundary conditions, and

the parameterization schemes available for NEMO, we

refer the reader to Madec (2008). The ocean model is

coupled to the Louvain-la-Neuve Sea IceModel, version

3 (LIM3; Vancoppenolle et al. 2009). The atmospheric

forcing applied to drive the ocean model is the Drakkar

Forcing Set, version 4.3 (DFS4.3; Brodeau et al. 2010),

making use of the Co-ordinated Ocean–Ice Reference

Experiments (CORE) bulk formulation (Griffies et al.

2009). The model uses surface salinity restoring and also

sets the global mean freshwater budget (evaporation

minus precipitation minus runoff) to zero at each time

step to ensure that there is no continuous drift in sea

surface height (SSH).

The default model setup is integrated for 30 yr starting

from 1 January 1960 where the temperature and salinity

are taken from the January climatology of the World

Ocean Atlas 2009 (Locarnini et al. 2010; Antonov et al.

2010). To test the stochastic perturbation schemes,

multiple simulations were carried out after this initial

spinup. They are described in the respective sections

below. Most diagnostics presented here—as also stated

in the respective figure captions—are based on the 5-day

averaged output from these model simulations. A mean

state comparison of the model simulations (described in

section 4b) with two reanalysis datasets is presented in

appendix A.

3. Stochastic perturbation schemes

a. General perturbation approach

Here we discuss the inclusion of subgrid-scale vari-

ability and uncertainty estimation in some of the de-

terministic parameterizations of the ocean model. The

general approach we follow in this study is to take a

deterministic parameter or a tendency and perturb it by

multiplying it with a random number, that is,

P sto(i, j)5 [11 j(i, j)]Pref(i, j), (1)

where i is the time step, j is the grid node index, Pref is

the deterministic parameter or tendency thatmay depend

on time and location, j is a random number sampled

from a symmetric distribution with zero mean, and

Psto is the resulting stochastically perturbed parameter or

tendency. The multiplication with the random number

j takes place at every time step and at every grid node.

This general approach has been used in previous studies

by, for example, Juricke et al. (2013) for sea ice mod-

eling and Ollinaho et al. (2016) for atmospheric

modeling.

There are a few properties of the random number that

need to be defined, namely temporal and spatial corre-

lations, and the shape of the distribution. The temporal

correlation is given by a first-order autoregressive

process:

~j(i, j)5 (12Dt/t)~j(i2 1, j)1h5a~j(i2 1, j)1h , (2)

where Dt is the model time step and h is a random

number with a Gaussian distribution of zero mean and

standard deviation sDt, with s being a tunable noise

amplitude parameter. The temporal decorrelation time

is given by t, with a5 (12Dt/t). Finally, ~j is a Gaussian

random number with variance

s2
max 5 (sDt)2/(12a2) , (3)

for i / ‘. The spatial correlation is introduced to the

system by h. There are no variations in the random

numbers in the vertical (i.e., at a specific horizontal lo-

cation the same random number is used for the full

vertical column). The horizontal spatial correlation of

h is then defined by a correlation matrix C with entries

c
nm

5 exp(2r
nm
/Dr) , (4)

where n and m are horizontal indices of a coarse-

resolution grid, rnm is the distance between the two

points n and m, and Dr is a spatial decorrelation length

scale. The coarse-resolution grid in this study is a regular

68 3 68 grid, to reduce the computational burden of

calculating the spatial correlations. After the spatial

correlation matrix is generated at the beginning of the

simulation, a Cholesky decomposition of the matrix is

carried out. After that a matrix–vector multiplication

can generate a vector of spatially correlated random

numbers from a vector of statistically independent

Gaussian random numbers at every time step [see also

Juricke and Jung (2014)]. The spatially correlated ran-

dom numbers of the 68 3 68 grid are then interpolated to

the 18 3 18 NEMO grid by calculating a weighted av-

erage of the three nearest grid nodes of the coarse-

resolution grid. Figure S3 in the supplementary material

illustrates such a spatially correlated pattern.

The spatial correlation generated by Eq. (4) is simu-

lating nonlocal properties of the unresolved subgrid

turbulence. Zidikheri and Frederiksen (2009) derived

and analyzed the vertical and horizontal structure of
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their stochastic subgrid parameterization in a simplified

spectral model with two vertical levels. Aside from

nonlocal effects in the horizontal related to the wave-

number dependence of the subgrid-scale interactions,

vertical variations should be considered as well. How-

ever, as mentioned earlier, in the present study we

neglect a more complex vertical structure of the per-

turbations and assume perfect correlation (i.e., the same

random number throughout the vertical water column).

Using Eq. (2) spatially and temporally correlated

random numbers ~j can be generated. At the beginning

of each simulation Eq. (2) is run a few hundred times to

converge the variance of the process to the one de-

scribed by Eq. (3).

After the ~j values have been generated, they need to

be transformed into a distribution with a limited range

(2a, a), with 0 , a , 1, to avoid 1 1 j(i, j) becoming

negative. For this purpose we apply the transformation

described by Juricke et al. (2013):

j(i, j)52a1 (2a)/f11 exp[2b~j(i, j)]g, (5)

where b is a regularization factor to ensure a Gaussian-

like shape of the distribution of j(i, j), which is set to be

1.2/smax [see appendix A of Juricke et al. (2013) for

more details].

Therefore the crucial parameters of the perturbation

scheme that need to be defined are temporal decorre-

lation time scale t, spatial decorrelation length scale Dr,
and perturbation amplitude a. Note that the noise am-

plitude s does not have an impact on the actual size of

the perturbations j since the regularization factor

b takes the value of s into account through smax,

thereby making the amplitude of the perturbations

solely dependent on a.

Following this explanation of the general approach,

the ways in which we perturbed the specific parame-

terizations are discussed in the following subsections.

The dependence of the parameters on (i, j) are no longer

included even though the equations should always be

viewed in the discretized framework.

b. Stochastic perturbations to Gent–McWilliams
parameterization amplitude

The Gent–McWilliams parameterized bolus or

eddy-induced velocity is implemented in NEMO as an

additional advective term in the prognostic tracer

equations for salinity and temperature. The im-

plementation inNEMOis based onGent andMcWilliams

(1990, hereafter GM) with a spatially and temporally

varying coefficient (Treguier et al. 1997). The bolus ve-

locity represents a tracer advection contribution origi-

nating from unresolved mesoscale eddies. The tracer

equations for temperature T and salinity S read, in sim-

plified form,

›X

›t
52= � (XU1XU

GM
)1M

X
1F

X
, (6)

where X is either salinity or temperature, t is time, U 5
(u, y, w) is the three-dimensional ocean velocity vector,

UGM 5 (uGM, yGM, wGM) is the three-dimensional GM

bolus velocity, MX is the sum of all contributions from

subgrid-scale parameterizations of three-dimensional

mixing and diffusion, and FX are the remaining forc-

ings. In these equations the GM parameterization adds

another advective term with an advective bolus velocity

UGM. The bolus or eddy-induced velocity is described by

u
GM

52
›

›z
(A

GM
S
x
) , (7)

y
GM

52
›

›z
(A

GM
S
y
), and (8)

w
GM

51
›

›x
(A

GM
S
x
)1

›

›y
(A

GM
S
y
) , (9)

where (x, y, z) is the three-dimensional Cartesian co-

ordinate vector, and Sx and Sy are the horizontal iso-

neutral slopes in the x and y direction, respectively. The

GM eddy-induced velocity is nondivergent and its am-

plitude is defined by the parameterization coefficient

AGM, which in turn is (for the specific configuration of

NEMO used in this study) two-dimensional and tempo-

rally varying [adapted from Treguier et al. (1997)], while

constant throughout the same vertical column, and ap-

proximated by

A
GM

5 l2L21 , (10)

with l being the local Rossby radius of deformation and

L the time scale of baroclinic eddies. The coefficient is

tapered near the boundaries and additional adjustments

are applied in the tropics, where the coefficient is re-

duced. Additionally, the steepness of the slopes is

bounded everywhere in the ocean. We refer the reader

to Madec (2008) and the NEMO documentation within

the NEMO source code for a more detailed description

of the actual implementation.

In summary, the parameterization represents the im-

pact of the subgrid mesoscale eddies on the mixing of

salinity and temperature in a non-eddy-resolving model.

Given a certain mean background state in temperature,

velocity, and salinity, the parameterization provides a

deterministic mean eddy-induced transport, designed to

reduce mean potential energy. As a representation of

the mean effect of baroclinic instability, it converts

available potential energy into kinetic energy. While
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Eq. (10) provides an estimate of the order of magnitude

of the GM coefficient, it is largely based on an empirical

choice with many attempts to find best fits (Ferreira and

Marshall 2006; Bachman et al. 2017, and references

therein). Bachman et al. (2017) as well as others show

that there is a large scatter in the GM coefficient over an

order of magnitude and more. Furthermore, the GM

parameterization is only representing the aforemen-

tioned mean effect of eddy induced transport.

Consequently, the stochastic perturbation schemes

described in the previous subsection can be used to in-

corporate two effects into the ocean simulations,

namely, the subgrid-scale variability and uncertainty of

the GM coefficient as well as a dynamically evolving

state-dependent uncertainty estimation of the parame-

terization as a whole. In the case of the GM parame-

terization, we choose the deterministic coefficient Aref
GM

[see Eq. (10) and remarks above] to be perturbed as

Asto
GM 5 (11 j

GM
)Aref

GM , (11)

following Eq. (1). The generation of the random number

jGM is described by Eqs. (2) and (5).

Effectively the perturbation to the GM coefficient is

designed to simulate variations and uncertainties in the

strength of the GM parameterization. More specifically,

in the parameterization of the GM coefficient used in

this study [i.e., Eq. (10)] the perturbations enhance

variations in the time scale of baroclinic eddies L, which
is calculated as

L5 (
ffiffiffiffiffiffiffiffiffi
N2S

p
)21 , (12)

with N as the local Brunt–Väisälä frequency. Here the

overbar denotes the vertical average for N2 and

S5 S2
x 1 S2

y over all vertical levels. Because of this av-

eraging process and the related uncertainties in the

calculation of the mean slope and the mean buoyancy

frequency over each grid box, the resulting time scale is

smoothed in its temporal and spatial variation, espe-

cially in regions of strong local variability in these

properties. Previous studies of eddy statistics (e.g.,

Cheng et al. 2014; Samelson et al. 2016) have shown that

statistics of eddy lifetime and amplitude are highly non-

Gaussian and skewed with long tails for high values.

Applying a Gaussian-like perturbation to Aref
GM corre-

sponds to a skewed perturbation to L, as Aref
GM is in-

versely proportional to L (see Fig. B1). Following this

approach, we keep the perturbations toAref
GM symmetric,

reducing potential mean drifts in the stochastic setup

compared to the deterministic setup, while still

simulating a skewed perturbation to the eddy time

scales. The assumption here is that especially the long

tail in the eddy statistics is crucially underestimated in

the 18 ocean model. (See also appendix B for further

discussion.) The effective symmetric perturbation am-

plitude also agrees with the estimates of GM coefficient

uncertainty from aforementioned studies (e.g., Ferreira

and Marshall 2006; Bachman et al. 2017). Applying

perturbations to the eddy time scale in the calculation of

theGM coefficientmight be tied to this specific choice of

parameterizing the GM coefficient. The general result-

ing amplitude of the coefficient perturbation, however,

can be easily extended to other setups where the co-

efficient is estimated differently.

A similar perturbation strategy as well as an alter-

native approach based on products of Gaussian vari-

ables to perturb GM has concurrently been developed

and tested by Grooms (2016) in an idealized box

ocean model configuration. Furthermore, Jansen

(2017) suggested as a reply and extension to the study

by Grooms (2016) that a stochastic mixing length

model should be used to compute eddy fluxes. For the

mean buoyancy fluxes such a model reduces to the

GM scheme.

Perturbations of the GM coefficient are only simu-

lating some of the variability and uncertainty in the very

specific eddy process that is parameterized by GM. We

are not simulating other eddy effects on low-frequency

ocean variability such as those generated by eddy in-

teraction with baroclinic Rossby waves. The aim of the

present approach is to use the current parameterization

setup and enhance subgrid-scale parameter variability

rather than to develop a new parameterization. How-

ever, these aspects are certainly worth further

investigation.

c. Stochastic perturbations to the turbulent kinetic
energy vertical mixing scheme

The NEMO configuration of this study uses a prog-

nostic equation of turbulent kinetic energy (TKE) to

estimate the amplitude of the vertical diffusion and

viscosity coefficients for the diffusion of tracers and

momentum, respectively (Bougeault and Lacarrere

1989; Gaspar et al. 1990; Blanke and Delecluse 1993;

Madec et al. 1998). The TKE is evolved through

›e

›t
5A

vm

"�
›u

›z

�2

1

�
›y

›z

�2
#
2A

vT
N2

1
›

›z

�
A

vm

›e

›z

�
2 c

«

e3/2

l
«

, (13)

where e is the mean turbulent kinetic energy, Avm and

AvT are the vertical eddy viscosity and diffusivity co-

efficients for the momentum and tracer equations,
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respectively, l« is the turbulent dissipation length scale,

and c« 5 0.7 is a constant coefficient. The first term on

the right-hand side corresponds to the production of

TKE by vertical shear, the second term is a TKE de-

struction term through stratification, the third term is

viscosity, and the last term corresponds to Kolmogorov

dissipation (Kolmogorov 1942).

The coefficients Avm and AvT are then calculated by

A
vm

5 c
k
l
k

ffiffiffi
e

p
and A

vT
5A

vm
/P

rt
, (14)

with ck 5 0.1 a constant, lk the turbulent mixing length

scale, and Prt the Prandtl number (see also Madec

et al. 1998).

There are several other parts to this turbulent closure,

such as minimum background vertical diffusion and

viscosity coefficients, different options to parameterize

the vertical turbulent length scales, and additional pa-

rameterizations for surface wave breaking at the upper

boundary and the effects of Langmuir cells (see Madec

2008). However, since these additions to the TKE

scheme do not directly affect the stochastic perturbation

scheme introduced in the next paragraph, we refer the

reader to Madec (2008).

The stochastic perturbations to the TKE scheme are

applied to the tendencies of the vertical shear and strati-

fication separately, in a similar fashion as the perturba-

tions to the GM coefficient in the last subsection, that is,

Psto
tend 5 (11 j

ProdTKE
)Pref

tend

5 (11 j
ProdTKE

)

(
A

vm

"�
›u

›z

�2

1

�
›y

›z

�2
#)

and

(15)

Dsto
tend5 (11 j

DestTKE
)Dref

tend5(11 j
DestTKE

)A
vT
N2, (16)

with Psto
tend and Pref

tend being the perturbed und unper-

turbed TKE production tendencies through shear,Dsto
tend

and Dref
tend the perturbed und unperturbed TKE destruc-

tion tendencies through stratification, and jProdTKE and

jDestTKE the respective locally and temporally varying

random numbers for both terms, whose evolution is de-

scribed by Eqs. (2) and (5). The perturbations simulate

unresolved subgrid-scale variability and uncertainty in

the production and destruction terms of TKE. These

contributions to theTKEbudget have been studied based

on local measurements by, for example, Goodman et al.

(2006) for two locations along the northeast coast of the

United States. Observed along-track estimates of the

two tendencies show large variations on scales of

hundreds of meters [see Figs. 9 and 15 in Goodman

et al. (2006)]. This study motivates our choice of the

perturbations and associated amplitudes of up to 80% to

both tendencies. Also, since these terms are both solved

with an explicit forward scheme, implementing the per-

turbations is straightforward.

d. Stochastic perturbations to the enhanced vertical
diffusion scheme

The third parameterization scheme that was stochas-

tically perturbed was the enhanced vertical diffusion

(EVD) scheme in situations of unstable stratification. If

the local Brunt–Väisälä frequency is negative (i.e., in the
case of instability), the vertical tracer diffusivity co-

efficient AvT is increased strongly, but not the vertical

momentum diffusivity coefficient. Here the value for

tracer diffusivity is set to ArefMAX
vT 5 50m2 s21 in those

situations.

The perturbation scheme is then applied to ArefMAX
vT :

AstoMAX
vT 5 (11 j

EVD
)ArefMAX

vT , (17)

where jEVD is the locally and temporally varying ran-

dom number for the EVD scheme, and AstoMAX
vT is the

perturbed diffusivity coefficient. The perturbations can

be seen as a representation of subgrid-scale variability in

the time scale of vertical adjustment to unstable strati-

fication. Note that ArefMAX
vT is proportional to Dz2/LvT

with Dz as the vertical scale of the instability and LvT as

the time scale of vertical mixing. Therefore, perturbing

ArefMAX
vT by a bounded, positive randomnumber 11 jEVD

that is symmetric and has a Gaussian-like distribution

function is equivalent to perturbing the time scale LvT

using a skewed random number with a long tail for

large values (similar to the explanation in section 3b).

The motivation for doing so is based on 1) the as-

sumption that the convective events should be skewed

toward long time scales and 2) observations discussed

by, among others, Lavender et al. (2002). Lavender

et al. (2002) analyzed deep convection in the Labrador

Sea and looked at the vertical water parcel displace-

ment over time at 400-m depth (see their Fig. 7). These

displacements show a wide variety of time scales for a

similar displacement length scale (e.g., 1000m), with

some very fast events, a majority of medium time

scales, and a few very long time scales. Perturbing LvT

by a skewed random number will simulate the skewed

variations of the deep convection time scales that are

not resolved by a constantArefMAX
vT . However, it will still

result in a symmetric perturbation to ArefMAX
vT itself.

Furthermore, by choosing the amplitude of the pertur-

bations as discussed in the next section and in appendix C,

we specifically target convective events that have a

vertical extent of 250m and beyond (i.e., deep con-

vection of a specific amplitude). For such events the
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perturbations lead to actual differences in the vertical

mixing profile between stochastic and deterministic sim-

ulations when a model time step of 1h is used. Events

with a smaller vertical extent will mix within one time

step regardless of the random perturbation (see Fig. C1).

In the following section we will discuss the impacts of

the three schemes introduced here, in a generalized way

for short sensitivity studies and in amore comprehensive

discussion of long multidecadal simulations.

4. Results

a. Sensitivity studies

For this section a set of short sensitivity simulations

has been carried out to investigate the impact of each of

the perturbation schemes as well as the impact of the

parameter choices. Readers solely interested in the

final setup of the perturbation schemes and its impact on

low-frequency variability can skip this part and move

straight to section 4b.

There are a number of parameters that need to be set

for the stochastic perturbation schemes. Those are the

bounds a of the bounded distribution (i.e., the amplitude

of the perturbations), the temporal decorrelation t, and

the spatial decorrelation Dr, as well as the shape of the

distribution function controlled by b in Eq. (5). The

latter value is fixed to 1.4/smax where smax is calculated

by Eq. (3).

In the first set of sensitivity simulations each scheme

was applied separately, with the other schemes switched

off, and simulations were carried out for 15 yr after the

spinup. We also carried out an integration where both

perturbations to the TKE scheme were used, and one

were all perturbation schemes were applied (see Table 1).

All schemes used the same set of parameter values for t,

Dr, and a (Table 1) to reduce the parameter space. These

integrations were then analyzed with regards to the

change in annual mean SSH standard deviation in the

stochastic simulations compared to the determinis-

tic reference simulation (REF), shown in Fig. 1. This

provides a computationally cheap first estimate of where

the schemes act and the potential amplitude of the in-

duced changes, specifically focusing on interannual vari-

ability (IV). Following these sensitivity simulations, the

multidecadal simulations discussed in section 4b will

provide more robust diagnostics.

The impact of the perturbations to EVD (section 3d)

in Fig. 1d is rather small (on the order of a few percent

change in IV) and localized mostly in the North Atlantic

region. The reason for this is that even though EVD

perturbations have the potential to alter overturning

through vertical mixing time scales, bounding them to

convective events of an extent of 250m and beyond (i.e.,

vertical diffusion within [10, 90] m2 s21) does not have a

very strong effect in the 18 model. Only in cases of very

strong deep convection the actual stochastic choice of

the vertical mixing coefficient has an impact on the

depth of the mixed layer (not shown). But since these

events are usually very temporally and spatially local-

ized, the system is pulled back to its mean state within a

few days after the event. In the current uncoupled setup

the perturbations also do not seem to have a big impact

on the preconditioning of deep convective events, po-

tentially influencing the stratification of the ocean and

as a consequence the strength, location, and duration of

deep convection. Supported by observational estimates

of, for example, Lavender et al. (2002), it is possible to

also focus on uncertainty in shallower convection by

increasing the amplitude of the perturbations or by re-

ducing the default value for EVD. This would most

likely lead to a more pronounced response in the 18
simulations.

However, in a coupled system the current setup of the

stochastic perturbations might also show an enhanced

impact, since the perturbations might affect the pre-

conditioning of convective events more strongly and

cause changes in the time scales of deep convection.

Both these aspects influence the uptake of heat and

carbon at the interface between the atmosphere and

ocean and are crucially dependent on the coupling with

the atmosphere.

Figures 1a–c show the impact of the perturbations to

the TKEmixing scheme. As for the EVD perturbations,

TABLE 1. The names and configurations of the different sensitivity test cases for the different schemes; see text for details on the

schemes. Yes means the stochastic perturbations are applied; No means they are not applied. Integration length for all simulations was

15 yr, starting from 1 Jan 1990.

Name Asto
GM Psto

tend Dsto
tend AstoMAX

vT t (days) Dr (km) a

STO_TKE_D No No Yes No 60 3000 0.8

STO_TKE_P No Yes No No 60 3000 0.8

STO_TKE No Yes Yes No 60 3000 0.8

STO_EVD No No No Yes 60 3000 0.8

STO_GM Yes No No No 60 3000 0.8

STO Yes Yes Yes Yes 60 3000 0.8
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the perturbations for TKE were bounded by a 5 0.8

based on spatial subgrid variations of the TKE tenden-

cies estimated by Goodman et al. (2006). The pertur-

bations mostly act in regions of strong surface mixing

induced by buoyancy or shear forcing. This is the case in

the tropics, the North Atlantic, and some parts of the

Southern Ocean. The effect is much stronger for the

perturbations to the shear tendency (about 5%–10%

change in IV; Fig. 1b) then it is for the buoyancy per-

turbations (a few percent change in IV; Fig. 1a), espe-

cially in the tropics. Switching both perturbations on

(Fig. 1c) slightly reduces the impact in the tropical Pa-

cific when compared to the case where perturbations are

only applied to the shear tendency but increases the

impact in most other regions. It is likely that the induced

variabilities due to each scheme may counteract each

other in some locations, while amplifying each other in

other regions. The counteracting effect could also be a

sampling issue, since sensitivity studies were carried out

for only 15 yr.

Finally, the perturbations to the GM parameteriza-

tion in Fig. 1e show by far the largest impact (about

50%–70% change in IV), but predominantly in the

Southern Ocean, and, to a lesser degree, in the western

boundary currents (about 30% change in IV). These are

the regions where the GM parameterization is active.

However, although the other schemes by themselves

have a rather small impact, especially in the Southern

Ocean, combined with the perturbations to the GM

parameterization (STO; Fig. 1f) the effects seem to be

strongly enhanced (more than 100% change in IV).

Therefore we concentrate our analysis with all param-

eterizations turned on simultaneously to investigate

their combined impact on low-frequency variability.

In a separate set of sensitivity studies we performed

simulations with all schemes used at the same time but

with different parameter choices for t, Dr, and a. A

subset of these simulations is presented in Fig. 2, with

the values for t and Dr shown and a 5 0.8. The simula-

tions were carried out for 5 yr after the spinup to allow us

to investigate a larger parameter space without using too

large amounts of computing time. Figure 2 shows the

annual mean difference or anomaly of the last year of

integration for SSH between the stochastic simulations

and the deterministic reference simulation REF. These

diagnostics provide only an indication of the efficiency

with which the stochastic schemes generate low-

frequency variability. They do not provide any infor-

mation on the robustness of these anomalies. However,

it allows for a rather straightforward comparison of the

effect of the different parameter choices in terms of

spatial distribution and strength of anomalies. A similar

strategy was used by Juricke et al. (2013) to investigate

the impact of spatial and temporal correlations of per-

turbations to the sea ice strength parameterization in a

sea ice model.

FIG. 1. Relative change in variance of linearly detrended annual mean SSH between the different stochastic schemes and REF (nor-

malized by the variance of REF). (a) Stochastic perturbations to the kinetic energy destruction tendency due to stratification.

(b) Stochastic perturbations to the kinetic energy production tendency due to shear. (c) Stochastic perturbations to both kinetic energy

destruction and production tendencies. (d) Stochastic perturbations to the EVD. (e) Stochastic perturbations to the Gent–McWilliams

coefficient. (f) All stochastic perturbations mentioned before. Note the nonlinear color bars.
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FIG. 2. Annual mean difference in SSH (m) between REF and the stochastic sensitivity simulations for the fifth

year of each integration. Parameter values for the temporal and spatial correlations t and Dr are shown.

(h) Differences between REF and the default setup for STO.
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The impact of the stochastic reference simulation

(STO) used for the multidecadal simulations in section

4b is shown in Fig. 2h. Reducing the temporal correla-

tion strongly, as is done in Figs. 2a,b, reduces the am-

plitude of the stochastic schemes. However, comparing

Figs. 2c and 2h shows that increasing temporal correla-

tions beyond a certain threshold does not change the

effect of the perturbations much. The same is true for

the spatial correlation when comparing Figs. 2d–f. The

size of the perturbations has a direct impact on the size

of the anomalies created. However, the amplitude of the

perturbations is not affected much. Comparing Figs. 2e

and 2h shows that the spatial correlation might not even

matter much at all if chosen within a specific range. Fi-

nally Fig. 2g shows that the impact of the perturbations

can be further enhanced if both spatial and temporal

correlations are increased. We have also run additional

simulations where we investigated the impact of the

perturbation amplitude a (not shown). Values tested

were in the range of [0.6, 1]. The amplitude has a direct

impact on the strength of the generated anomalies.

The final values chosen for the reference stochastic

parameterization of the next section are to some extent

an ad hoc decision based on a reasonable impact of the

scheme, but also on the physically plausible choice of

each parameter as discussed in the previous section and

in appendixes B and C. All schemes were given the same

parameters. The parameter choices are similar to what

was used by Andrejczuk et al. (2016). Length scales of

the schemes are quite large, but it should be kept inmind

that the effective resolution of the model is much

coarser than 18. The perturbation statistics are not sup-

posed to reflect eddy time and length scales, since eddies

are not resolved outside the tropics. Instead, the per-

turbation statistics are connected with unresolved large-

scale anomalies in the water mass properties and the

forcing. An analysis of the Estimating the Circulation

and Climate of the Ocean, phase 2 (ECCO2), ocean

state estimate data (Menemenlis et al. 2008) has shown

that length and time scales of the leading EOFs of the

NorthAtlantic are of the same order ofmagnitude as the

values chosen for the perturbations in this study. How-

ever, we acknowledge that in the current setup the pa-

rameter choices are also made as part of a tuning

decision and can be optimized in the future, making use

of better observational estimates and high-resolution

model studies. We will briefly discuss steps needed to

better constrain these parameters in the last section.

b. Multidecadal integrations

As mentioned in the last subsection, after the sensi-

tivity studies had been carried out a certain set of pa-

rameters for the stochastic schemes was decided upon to

run a multidecadal simulation. These parameter values

are t 5 60 days, Dr 5 3000km, and a 5 0.8 for an ex-

periment henceforth named STO. All perturbation

schemes were used simultaneously, with the same pa-

rameters but different sequences of random numbers.

The simulation was carried out for 105 yr (15 1 45 1
45 yr), forced by 1990–2004 atmospheric forcing, and

two repeated cycles of 1959–2004 atmospheric forcing,

where the year 1959 was neglected to reduce the initial

shock created by the change in the atmospheric forcing.

A deterministic reference simulation REF of the same

length was also carried out.

1) GENERAL COMPARISON BETWEEN REF AND

STO

In this section we will focus on the differences in in-

terannual variability between the deterministic refer-

ence simulationREF and the stochastic simulation STO.

Figures 3a,c,e show the zonally averaged streamfunction

for the eddy (i.e., GM) CGM, the Eulerian CEuler, and

the residual (i.e., Eulerian 1 eddy) Cres component of

the flow, for the reference simulation REF and focused

on the Southern Ocean part of the Atlantic basin. Since

the impact of the perturbations to the GM parameteri-

zation proved to be the strongest in the sensitivity

studies, we will mostly focus on the changes in the

Southern Ocean.

There are two maxima in interannual streamfunction

variability in the Atlantic, one between 608 and 408S as

shown in Fig. 3, at the location of the polar fronts, and

another one between 308 and 608N in theNorthAtlantic,

signifying the location of maximum overturning (not

shown). While the Eulerian and residual stream-

functions have the strongest variability in the Southern

Ocean near the surface, mostly due to the interannually

varying wind forcing, the eddy streamfunction varies

mostly in the subsurface as a response to the tilting of the

isopycnals caused by the Eulerian flow field and due to

the fact that GM is tapered near the boundaries. The

additional strong variability ofCGM at the bottom of the

basin is most likely a topographic effect and its realism is

difficult to quantify.

Figures 3b,d,f show the relative changes caused by the

stochastic perturbations in the IV of the respective

streamfunctions. IV for CGM is increased by a factor of

10 andmore in some regions, especially in regions where

the variability was the largest in REF. Therefore IV is

hugely increased by more than an order of magnitude.

We remind the reader that the time scale of the per-

turbations applied is defined by t. Therefore the per-

turbations are applied on a seasonal time scale with a

decorrelation of 60 days and the effect seen in CGM on

interannual time scales is the consequence of the slow
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dynamic response of the system to the comparatively

high-frequency perturbations.

The strong increase in parameterized eddy variability

impacts on IV of bothCEuler andCres. While the relative

impact for CEuler is strongest just to the north of the

previousmaximum in IV of REF (between 308 and 408S),
the relative changes for Cres are dominated by the direct

impact of the increased IV of CGM (between 608 and

408S). The increase in IV for CGM is around 20%–30%,

which corresponds to a relatively low significance level of

0.1–0.2 given the one-tailed F test. The northern part of

the changes, around 308–408S, is strongest mostly because

the effect of the normalization by the reference IV is

smaller here. In general the IV for CEuler is increased

throughout most parts of the Southern Ocean, also near

the surface where the reference IV is strongest at around

608S. This is a consistent response to the increased IV in

CGM. ForCres the relative IV increase is about 60% and

FIG. 3. Standard deviation of linearly detrended annual mean zonally averaged stream-

function (Sv; 1 Sv [ 106m3 s21) and relative changes in variance due to the stochastic per-

turbations in the Atlantic basin. (a),(c),(e) Standard deviation of the reference simulation

REF, and (b),(d),(f) the relative change in variance between STO and REF (normalized by

the variance of REF), for the (top) eddy-induced streamfunction CGM, (middle) Eulerian

streamfunction CEuler, and (bottom) residual streamfunction Cres. Data are calculated from

the 5-daily averaged values of the velocity fields. Values above around 0.2 in (b),(d),(f) are

significant at the 0.18 level, and values above around 0.3 at the 0.09 level according to the one-

tailed F test. Note the nonlinear color bars.
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more, which is highly significant using the one-tailed

F test.

Not shown here is the impact of the perturbations to

EVD and TKE on the near-surface variability (upper

one hundred meters) in the tropics and in the regions of

deep convection in the North Atlantic. Variability is

only slightly increased by a few percent in the deep

North Atlantic, but more strongly by around 20% near

the surface at the equator. There are also (spurious) in-

creases of variability along the bottom topography

throughout the Atlantic basin, in areas where there is al-

ready comparatively high variability in the deterministic

setup—a potentially spurious effect of parameterization

schemes such as GM (Marshall et al. 2012).

Figures 4a–d show similar results for CGM and CEuler

in the Pacific. The major difference here is that there is a

much stronger relative signal forCEuler near the surface.

To analyze whether these changes are only on the in-

terannual time scale we have chosen two points in the

Pacific forCGM and another forCEuler andCres, marked

in Figs. 4b,d, to look at the power spectrum, shown in

Figs. 4e–g. Figures 4e,f show thatCGM has higher energy

for STO than REF throughout the entire frequency

range, on weekly up to decadal time scales, by about an

order of magnitude. This is more pronounced for the

point in the deep ocean than the one near the surface

where the relative impact of the perturbations is weaker,

but still significant in the low-frequency range (i.e., start-

ing with the interannual time scale). We again note that

the decorrelation time scale of the perturbations is only

60 days. The strong increase in IV and low-frequency

variability is caused by the dynamic response of the system

to the increased variability on the seasonal time scale.

For CEuler and Cres the relative impact on IV in the

Pacific is specifically strong in the upper ocean near 508S.
The power spectrum at a location there shows that low-

frequency variability is enhanced for CEuler (Fig. 4f),

with a basically indistinguishable spectrum for Cres. The

impact is not as large as it is for CGM, but it consistently

shows an increase in variability on the interannual time

scale and beyond, reflecting the dynamic response to the

increased high-frequency variability of the eddy-induced

advection.

Similar responses to the stochastic perturbations as

the one described so far for the Atlantic and the Pacific

can be observed in the Indian Ocean as well, and also

appear in the globally averaged streamfunction, even

though the amplitudes forCEuler andCres are somewhat

reduced by the global averaging.

We also analyzed the impact of the stochastic per-

turbation schemes on zonally averaged temperature and

salinity (not shown). The relative changes in IV are of

FIG. 4. Changes in standard deviation of linearly detrended annual mean zonally averaged streamfunction (Sv) for the Pacific basin and

changes in the power spectrum. Interannual variability ofCGM in (a) REF and (c) STO, and the relative change in variance between STO

andREF (normalized by the variance of REF) for (b)CGM and (d)CEuler, calculated from the 5-daily averaged values of the velocity field.

Also shown are power spectra (Sv2 day) at three different locations in the Pacific basin for (red) REF and (blue) STO and for (e),(f)CGM

and (g) CEuler. White dots in (b) and (d) mark the locations to which the spectra correspond. Spectra are plotted in a log–log scale,

calculated from the 5-daily averaged values of the velocity fields. The climatological seasonal cycle is removed. The spectra are smoothed

by a running mean with window size 13 (65 days). Note the nonlinear color bars for (a)–(d).
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similar amplitude than is the case for CEuler and occur

over large areas, but they are less coherent. We see an

increase in IV in the deep Southern Ocean of most ba-

sins for both temperature and salinity up to about 30%.

Some additional increase in IV can be observed in the

upper ocean along the equator, as well as in a sub-

surface region at the Kuroshio and the Gulf Stream,

especially strong for the former. Figure 5 shows the

relative difference in ocean temperature IV between

STO and REF at different depth levels for the Kuroshio

region. While the relative difference is around 20% near

the surface, it increases to more than 60% at a depth

of 534m. Similar results can be observed in the

Southern Ocean.

For the zonally averaged temperature and salinity

some slightly increased variability can also be observed

in the North Atlantic, as well as some more spurious

variability increase near topography (not shown).

In some areas, especially close to regions where vari-

ability is increased, IV is reduced for both salinity and

temperature. This reduction is not as strong as the in-

crease, but on the order of 10%. It could potentially

be due to shifting variability patterns, or suppressed

variability induced by an increased variability in a

bordering region.

2) COMPARISON TO REANALYSIS AND

OBSERVATIONAL DATA

After analyzing the effects of the stochastic pertur-

bations on the low-frequency variability in the stream-

functions, it is of interest to see whether these effects

improve the model when compared to available obser-

vations and reanalysis products.

To this end we compare the simulated Pacific’sCEuler

and global SSH IV with two different reanalysis prod-

ucts, the Ocean Reanalysis Pilot 5 (ORAP5; see Zuo

et al. 2017) and Ocean Reanalysis System 4 (ORAS4;

see Mogensen et al. 2012; Balmaseda et al. 2013), in

Figs. 6 and 7. Both reanalysis products are issued by

the European Centre for Medium-Range Weather

FIG. 5. Relative change in variance of linearly detrended annual mean temperature between STO and REF

(normalized by the variance ofREF), at different depths: (a)23, (b)2160, and (c)2534m. Interpolated to a 18 3 18
grid. Note the nonlinear color bars.
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Forecasts (ECMWF) and assimilate SST and SSH [see

Zuo et al. (2017) for more details on the differences

between the two products]. A major difference between

the two products is the resolution of the ocean model,

which is also NEMO. For ORAP5 the ocean grid used is

ORCA025, with a nominal resolution of about 1/48 and
73 vertical layers, while ORAS4 uses the same ORCA1

grid as the simulations carried out in this study, but with

only 42 vertical layers. ORAS4 and REF compare

generally quite well in terms of IV ofCEuler (Fig. 6e). In

ORAP5, however, the CEuler and SSH IV in the

Southern Ocean is for most parts much stronger than in

the other two simulations (cf. Figs. 6d and 6e and

Figs. 7d and 7e). REF underestimates the IV of ORAP5

in some regions of the Southern Ocean by more than an

order of magnitude (Figs. 6d and 7d). Similarly, ORAS4

has a strongly reduced IV in the same regions when

compared with ORAP5. A recent reanalysis in-

tercomparison study by Karspeck et al. (2017) for the

North Atlantic has shown that the representation of IV

between different reanalysis products varies strongly.

One reason for this is that the subsurface state of the

ocean is badly constrained in ocean reanalysis because

of missing observational data. Nevertheless, we gener-

ally assume that an increased resolution reanalysis

product should have an increased ability to represent

even the subsurface state of the ocean.

Comparing STO with REF in Fig. 6f—which is

similar to Fig. 4d—and Fig. 7f reveals an increase in IV

for STOwhere REF is missing IV when compared with

ORAP5. Therefore STO increases IV in the right lo-

cations if we assume that ORAP5 has a better repre-

sentation of the overturning and SSH in the Southern

Ocean compared to ORAS4. However, the increase in

IV in STO is only about 20%–30%, while REF is

missing IV on the order of more than 1000% when

compared with ORAP5.

To compare the changes caused by the stochastic

perturbations to better constrained observational esti-

mates, Fig. 7a shows the IV in SSH for the AVISO SSH

altimetry observational dataset.1 SSH includes

information about integrated vertical salinity and

FIG. 6. Standard deviation of linearly detrended annual mean zonally averaged streamfunction (Sv) for CEuler in the Pacific basin for

(a) ORAP5 (1979–2004), (b) ORAS4 (1960–2004), and (c) REF (105 yr). Relative change in variance of annual mean zonally averaged

streamfunction between REF and (d) ORAP5, (e) ORAS4, and (f) STO (normalized by the variance of REF). Data are calculated from

monthly mean values of the velocity fields and interpolated to the grid of REF. Note the nonlinear color bars.

1 See Ssalto/Duacs altimeter products at http://www.aviso.

altimetry.fr.
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temperature profiles through its steric component as

well as circulation properties but can still be measured

at the surface. It therefore provides more integrated

information about the ocean state than, for example,

SST.

In addition to the Southern Ocean, SSH IV in REF is

strongly underestimated by an order of magnitude in

other eddy-active regions such as the Gulf Stream and

Kuroshio (see Figs. 7a,b,e), which is at least partly due to

the fact that REF at a 18 resolution does not resolve

eddies in those latitudes. Note that ORAP5 is much

better in representing IV than ORAS4 when compared

to AVISO, with ORAS4 generally showing much less

IV. The improved representation of IV of ORAP5

compared to ORAS4 is probably at least in parts due to

the increased resolution in ORAP5. This might be seen

FIG. 7. Standard deviation of linearly detrended annual mean SSH (m) for (a) the AVISO observations (1993–

2013) and (b) REF (105 yr), and relative change in variance of annual mean SSH between REF and (c) AVISO,

(d) ORAP5, (e) ORAS4, and (f) STO (normalized by the variance of REF). Interpolated to a 18 3 18 grid. Note the

nonlinear color bars for (c)–(f).
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as a reason to trust the ORAP5 representation ofCEuler

IV in Fig. 6 more than the IV produced by ORAS4.

However, it should be noted that even ORAP5 is still

underestimating SSH IV in most regions even though

the underestimation is considerably reduced especially

in regions of strong eddy activity.

Similar to the improvement in the Southern

Ocean, SSH IV in the Kuroshio region is better

represented in STO, with a comparable increase in

variability of about 20%–30%. But again this in-

crease is much less than the actually missing IV

compared to AVISO.

Extending the low-frequency analysis to variability of

5- and 10-yr averages of SSH showed that variability on

those time scales is increased by the stochastic schemes

in very similar regions, but with a reduced amplitude

(not shown). This is consistent with the spectral analysis

in Fig. 4.

Finally we investigated the impact of the stochastic

schemes on IV in heat content (300 and 700m) and SST

(not shown). In both cases variability is increased in

similar regions as for SSH and similar relative ampli-

tude, somewhat less for SST. Since SST is strongly

coupled to the atmospheric forcing, SST variability is

largely driven by the atmospheric coupling, a conclusion

also drawn by Andrejczuk et al. (2016). However,

comparing SST IV between REF and the National

Oceanic and Atmospheric Administration (NOAA)

high-resolution SST data (Reynolds et al. 2007) showed

that the underestimation of IV in REF is not nearly as

strong as it is for SSH (not shown). While there is still an

underestimation of variability in the Southern Ocean

and parts of the western boundary currents, REF actu-

ally simulates far too much variability in the North At-

lantic. STO generally improves SST IV in the regions

mentioned previously when discussing SSH IV. In a

smaller fraction of areas the increase of SST IV in STO,

however, actually leads to a small overestimation of IV.

But this might also be due to the fact that the climato-

logical mean SST field shows biases between REF and

the NOAA data, which might lead to an increase in

variability in STO in the wrong regions. Additionally, as

mentioned above, the atmospheric forcing largely con-

trols SST variability. While the surface variability is

strongly controlled by the atmospheric forcing, internal

dynamics become more important when looking at

depth-integrated quantities or variables at layers farther

removed from the surface (see Fig. 5).

5. Discussion and conclusions

In this study we have introduced stochastic pertur-

bation schemes to three commonly used subgrid-scale

mixing parameterizations in the global 18 ocean model,

NEMO, and investigated their impact on low-frequency

(i.e., interannual and longer time scale) ocean variabil-

ity. We showed that the stochastic schemes lead to a

considerable improvement of interannual variability in

the model.

The perturbations are applied to the turbulent ki-

netic energy scheme used to calculate vertical mixing

coefficients, the enhanced vertical diffusion scheme

used to calculate the vertical diffusion coefficient

in cases of unstable stratification, and the Gent–

McWilliams parameterization (GM) used to calculate

an eddy advection term in the tracer equations. The

stochastic perturbations were symmetric and corre-

lated in time—with a subseasonal decorrelation time

scale—and in space. They were applied to investigate

the impact of unresolved (missing) subgrid-scale

variability and mixing time scale variations on low-

frequency variability in NEMO. Stochastic symmetric

perturbations to the vertical diffusion and GM co-

efficients correspond to skewed perturbations to

the related vertical mixing and eddy time scales,

respectively.

Applying the comparatively high-frequency per-

turbations especially to the GM scheme increased

zonally averaged eddy streamfunction variability in

the Southern Ocean considerably by about a factor of

10, throughout all temporal frequencies. The pertur-

bations also increased low-frequency variability for

the Eulerian and residual streamfunction in the

Southern Ocean, by up to 30% and 70% on the in-

terannual time scale, respectively. Moreover, in-

terannual sea surface height variability was increased

in the Southern Ocean and the Kuroshio region by

20%–25%, improving the representation of low-

frequency variability in those regions when com-

pared to a high-resolution, 1/48 reanalysis product,

ORAP5, and the AVISO altimetry data. Even though

this increase is not sufficient to compensate for the

missing interannual variability in these regions, it

shows that stochastic, high-frequency perturbations

applied in a physically consistent way can help to

represent and improve missing low-frequency vari-

ability modes in the ocean. This is especially note-

worthy since the 18 ocean model does not resolve

crucial eddy processes. In this context it is worth re-

ferring to the results of Kitsios et al. (2013), who de-

veloped both deterministic and stochastic oceanic

subgrid parameterizations. They investigated the im-

pact of the schemes on the kinetic energy spectra in a

simplified model of the Antarctic Circumpolar Cur-

rent [see Fig. 12 in Kitsios et al. (2013)]. Kitsios et al.

(2013) showed that when baroclinic instability is not
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explicitly resolved, a stochastic backscatter scheme

allowing negative viscosity will improve the results.

However, their results suggest that an additional de-

terministic negative viscosity term is required to re-

produce the missing unresolved variability. But such a

term can lead to numerical model instabilities unless

the viscosity coefficient is constrained by the available

energy (Jansen and Held 2014). Furthermore, there is

certainly a need to include other unresolved or strongly

dampened eddy effects in the 18 model when it comes

to ocean time scales (such as generation of and in-

teraction with baroclinic Rossby waves). GM is de-

signed to only capture the mean effect of baroclinic

instability on the large scale. Consequently, perturba-

tions to GM cannot entirely compensate for the gen-

erally missing unresolved eddy variability and the

extensive damping at 18 when compared with obser-

vations and the 1/48 reanalysis. However, in our scheme,

the perturbed eddy induced velocity field can excite

buoyancy anomalies, especially in regions character-

ized with steep isopycnal slopes. These anomalies can

propagate as baroclinic Rossby waves and further ex-

cite anomalies propagating with a range of time scales,

including interannual time scales.

Nevertheless, the approach followed in this study aims

at applying stochastic perturbations to enhance vari-

ability and provide uncertainty estimates in existing,

already implemented and widely used schemes, which

increases the applicability. Constraints to the empirical

perturbations are provided by previous observational

and modeling studies and could be recalibrated in light

of new theoretical insights (e.g., Jansen 2017) and

observations.

We speculate here that a higher-resolution model

with an eddy-permitting grid of 1/48 will profit even

more from an inclusion of unresolved subgrid-scale

variability. This is because viscosity and diffusion are

much reduced in higher-resolution simulations and

eddy effects are partially resolved. This in turn allows

for an increased nonlinear behavior of the resulting

flow field, which interacts in a more complex way with

symmetric stochastic perturbations. While we saw

only minor, if mostly robust changes to the climatic

mean ocean state caused by the stochastic perturba-

tion schemes in the 18 model, the increased non-

linearities in a higher-resolution model might lead to a

stronger nonlinear rectification effect which has been

observed in atmospheric models (e.g., Weisheimer

et al. 2014). Figure 8 shows the mean change in SSH

between the stochastic simulation and the de-

terministic reference, normalized by the interannual

standard deviation of the reference. While the abso-

lute value of the mean change is comparatively small

(not shown), it occurs largely in regions where the

interannual standard deviation is underestimated by

more than one order of magnitude. Normalization by

the interannual standard deviation in Fig. 8 shows that

the difference between the two simulations can reach

up to 20%–30% of the interannual variability. In a

more variable and nonlinear system these nonlinear

rectification effects are likely to increase. The changes

in the mean are also largely improving the mean state

of the system when compared to observations (not

shown), with increased SSH in the subtropics and

decreased SSH in the high latitudes. The conse-

quences are increased SSH gradients, but the im-

provement is far too small to compensate for the large

systematic errors of the model. These changes, while

small, are encouraging and we expect that for higher-

resolution simulations it will also be of interest to in-

vestigate the mean response, in addition to the

changes in low-frequency variability. This might also

be true for coupled climate simulations, even with a 18
ocean model, since nonlinear feedbacks with the at-

mosphere might respond to the changes in low-

frequency ocean variability.

In addition, while different magnitudes for temporal

and spatial correlations as well as perturbation ampli-

tude were tested in sensitivity experiments in this study,

using high-resolution simulations or observations in

combination with, for example, downscaling methods

(e.g., Porta Mana and Zanna 2014) could in the future

lead to better constraints of the parameters for the sto-

chastic schemes. This might also lead to an improved

impact of the schemes. Extensive observational esti-

mates of convective and eddy time scales would be very

useful, as well as an improved estimation of turbulent

kinetic energy tendencies on larger scales, especially in

the tropics.

FIG. 8. Relative change in mean SSH between STO and REF

(normalized by the linearly detrended interannual standard deviation

of REF). Interpolated to a 18 3 18 grid. Gray areas are not significant

at the 0.05 level according to the two-sided Student’s t test.
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The question remains open whether we can accu-

rately model low-frequency variability in a low-

resolution 18 ocean model that is generally lacking

variability and uses excessive dissipation for reasons

of numerical stability. However, somewhat indepen-

dent of this question, this study shows that there is a

potential benefit in introducing subgrid-scale vari-

ability to the ocean system, which can improve the

variability of the model climate when compared with

observations. This could even lead so far that the ef-

fect of increased resolution can also be simulated by

stochastic parameterizations as discussed, for exam-

ple, by Berner et al. (2011) and Palmer (2012). This in

turn would reduce computational costs, because even

though stochastic parameterizations and their sto-

chastic pattern generators may add additional opera-

tions to the model, increasing resolution is far more

expensive.

When it comes to ensemble simulations and forecasts,

the stochastic schemes not only improve the low-

frequency variability in the ocean model, but also pro-

vide an estimate of ocean model uncertainty. This is

particularly important for seasonal to decadal forecasts,

where it is essential to consider all sources of forecast

uncertainty to provide accurate and reliable probabi-

listic forecasts of the coupled climate system. A similar

FIG. A1. EKE (m2 s22) for (a) ORAP5, (c) ORAS4, and (e) REF, and the relative difference in EKE between

REF and (b) ORAP5, (d) ORAS4, and (f) STO, based on the time period 1980–2004. For REF and STO, one

simulation cycle from 1980 to 2004 is used. Data are calculated from the 5-daily averaged values of the velocity

fields. For ORAS4, REF, and STO, the EKE is calculated from the residual velocities. Note the nonlinear

color bars.
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argument holds for the usefulness of the stochastic

schemes in ensemble data assimilation.

Finally, we note that accurately representing vari-

ability and time scales in a climate model is of great

importance when it comes to analyzing climate sensi-

tivity (see, e.g., Munday et al. 2013), predictability, and

generally signal-to-noise ratios. An insufficient repre-

sentation of the probability density function and the

time scales of the climate system in models will not

allow for meaningful predictions of climate change

impacts. Therefore, both of these aspects need to be

improved in addition to the mean state of the climate.
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APPENDIX A

Model Mean State Performance

To illustrate that both the deterministic and the sto-

chastic model simulations produce a reasonable clima-

tology, Figs. A1 and A2 compare the model simulations

to the two reanalysis products ORAS4 (18 resolution;

FIG. A2. As in Fig. A1, but for MKE.

1 JULY 2017 JUR I CKE ET AL . 5015

Authenticated jg7067@nyu.edu | Downloaded 09/22/25 05:18 PM UTC

http://marine.copernicus.eu/
http://marine.copernicus.eu/


Mogensen et al. 2012; Balmaseda et al. 2013) and

ORAP5 (1/48 resolution; Zuo et al. 2017) for the time

period 1980–2004. The variables under consideration are

eddy kinetic energy (EKE; Fig. A1) and mean kinetic

energy (MKE; Fig. A2). The supplementarymaterial also

provides comparisons for SST and SSH (Figs. S1 and S2,

respectively).

The mean SST and SSH climatologies of both the

stochastic and deterministic model simulations agree

reasonably well with the reanalysis products (Figs. S1

and S2). In line with well-known model biases, errors

are relatively large in the Southern Ocean and the

North Atlantic as well as along the western boundary

currents. These are also regions where horizontal gra-

dients are too small. For EKE and MKE (Figs. A1 and

A2) there are resolution-related biases especially in

the high latitudes due to the missing eddy activity in

the 18 model, but also in the 18 reanalysis when com-

pared with the 1/48 reanalysis (cf. Figs. A1a and A1c

and Figs. A1b and A1d). The model generally strongly

underestimates both MKE and EKE. The stochastic

simulation exhibits improved EKE with an increase of

10%–20% especially in the Southern Ocean, the Gulf

Stream, and the Kuroshio when compared to the de-

terministic reference simulation. There is also an in-

crease in EKE in the tropics. These increases are of

similar amplitude as those in interannual SSH vari-

ability (section 4b), leading to a reduction of the EKE

model bias. The EKE in the reanalysis is one to two

orders of magnitude larger (see Figs. A1b and A1d)

than the EKE simulated by REF.

The impacts of the perturbations on MKE are less

uniform despite the general underestimation of MKE

compared to the reanalysis (Fig. A2e). While there is

an increase in MKE in the tropics (Fig. A2f), the

Southern Ocean and Kuroshio exhibit increases in

MKE accompanied by a decrease in a neighboring

region, suggesting a slight shift in the position of

currents.

APPENDIX B

Eddy Time Scale Perturbations

The stochastic perturbations to the Aref
GM correspond

to a skewed perturbation of the baroclinic eddy time

scale L. Choosing a perturbation amplitude of a 5 0.8

corresponds to a perturbation range for the eddy time

scale from 1/(1 1 0.8) 5 0.556 to 1/(1 2 0.8) 5 5. This

is a moderate perturbation given that eddy statistics

are skewed with a long tail of long eddy lifetimes and

high eddy amplitudes (Cheng et al. 2014; Samelson

et al. 2016). However, choosing this range corre-

sponds to an already relatively large symmetric per-

turbation of Aref
GM itself. An illustration of the effect of

the perturbations on baroclinic eddy time scales is

given in Fig. B1.

We would like to point out that the perturbations of

Aref
GM through L can be viewed as an extension of the

work done by Brankart (2013). Brankart (2013) in-

vestigated the nonlinear response of the equation of

state to subgrid variations in temperature and salinity.

However, in the implementation of these perturbations

in NEMO he neglected the effect of density variations

on the buoyancy frequency N, which affects the calcu-

lation both of the baroclinic eddy time scale L as well as

the buoyancy term in the TKEEq. (13). An extension to

the work of Brankart (2013) could therefore be an

FIG. B1. Baroclinic eddy time scales (left) for a deterministic reference simulation (blue) and the stochastically

perturbed simulation (red), and (right) the difference in time scales between deterministic and stochastic. The

distributions are based on the global model output of daily snapshots of eddy time scales generated by sensitivity

simulations for a period of 5 yr.
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inclusion of the density perturbations in the local

calculation of N. This might effectively also perturb

the deep convection parameterization through the

stability criterion evaluated for the water column at

each grid point.

APPENDIX C

Convection Time Scale Perturbations

In cases of unstable stratification vertical diffusion is

increased to a value of ArefMAX
vT 5 50m2 s21 in the de-

terministic model. For a deep convection event that acts

over a depth of 400m this coefficient corresponds to a

time scale of about 1h for the water column to mix and

stabilize. Variations to ArefMAX
vT affect this time scale as

illustrated by Fig. C1. Shown are the maximum and

minimum time scales LvT generated by the symmetric

stochastic perturbations to the vertical diffusion co-

efficient. Especially the low values ofArefMAX
vT will lead to

strongly increased mixing time scales for deep convec-

tion events. The perturbations to the vertical diffusion

coefficient impact deep convection events that affect a

water column of at least around 250-m height, given a

model time step of 1 h (highlighted by the blue lines in

Fig. C1).
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