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Abstract
There is growing interest in discovering interpretable, closed-form equations for subgrid-
scale (SGS) closures/parameterizations of complex processes in Earth system. Here, we
apply a common equation-discovery technique with expansive libraries to learn closures
from filtered direct numerical simulations of 2D forced turbulence and Rayleigh-Bénard
convection (RBC). Across common filters, we robustly discover closures of the same form
for momentum and heat fluxes. These closures depend on nonlinear combinations of gra-
dients of filtered variables (velocity, temperature), with constants that are independent of
the fluid/flow properties and only depend on filter type/size. We show that these closures
are the nonlinear gradient model (NGM), which is derivable analytically using Taylor-series
expansions. In fact, we suggest that with common (physics-free) equation-discovery algo-
rithms, regardless of the system/physics, discovered closures are always consistent with the
Taylor-series. Like previous studies, we find that large-eddy simulations with NGM closures
are unstable, despite significant similarities between the true and NGM-predicted fluxes
(pattern correlations > 0.95). We identify two shortcomings as reasons for these insta-
bilities: in 2D, NGM produces zero kinetic energy transfer between resolved and subgrid
scales, lacking both diffusion and backscattering. In RBC, backscattering of potential en-
ergy is poorly predicted. Moreover, we show that SGS fluxes diagnosed from data, presumed
the “truth” for discovery, depend on filtering procedures and are not unique. Accordingly,
to learn accurate, stable closures from high-fidelity data in future work, we propose several
ideas around using physics-informed libraries, loss functions, and metrics. These findings
are relevant beyond turbulence to closure modeling of any multi-scale system.

Plain Language Summary

Even in state-of-the-art climate models, the effects of many important small-scale pro-
cesses cannot be directly simulated due to limited computing power. Thus, these effects
are represented using functions called parameterizations. However, many of the current
physics-based parameterizations have major shortcomings, leading to biases and uncertain-
ties in the models’ predictions. Recently, there has been substantial interest in learning
such parameterizations directly from short but very high-resolution simulations. Most stud-
ies have focused on using deep neural networks, which while leading to successful param-
eterizations in some cases, are hard to interpret and explain. A few more recent studies
have focused on another class of machine-learning methods that discover equations. This
approach has resulted in fully interpretable but unsuccessful parameterizations that pro-
duce unphysical results. Here, using widely-used test cases, we 1) explain the reasons for
these unphysical results, 2) connect the discovered equations to well-known mathematically
derived parameterizations, and 3) present ideas for learning successful parameterizations
using equation-discovery methods. Our main finding is that the common loss functions that
match patterns representing effects of small-scale processes are not enough, as important
physical phenomena are not properly learned. Based on this, we have proposed a number
of physics-aware metrics and loss functions for future work.

1 Introduction

Turbulent flows are ubiquitous in many geophysical systems, including atmospheric
and oceanic circulations, and play an important role, e.g., greatly enhancing mixing and
transport. Direct numerical simulation (DNS) of high-dimensional turbulent flows often
becomes computationally intractable. Therefore, numerical simulations of most geophysical
turbulent flows cannot resolve all the relevant scales (Fox-Kemper et al., 2019; Palmer, 2001;
Schneider, Teixeira, et al., 2017). Large-eddy simulation (LES) is a practical approach
to balance computational cost and accuracy: the large scales of the flow are explicitly
resolved, while the effects of the small-scale features which cannot be resolved by the given
grid resolution, called subgrid-scale (SGS) features, are parameterized as a function of the
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resolved flow (Pope, 2000; Sagaut, 2006; Smagorinsky, 1963). However, the performance of
the LES models strongly depends on the accuracy of the employed SGS closure. Over years,
there have been extensive efforts focused on formulating physics-based and semi-empirical
SGS closures using various techniques in many turbulent flows (Meneveau & Katz, 2000;
Moser et al., 2021; Pope, 2000; Sagaut, 2006), including geophysical flows (Alexander &
Dunkerton, 1999; Anstey & Zanna, 2017; Berner et al., 2017; Cessi, 2008; Gallet & Ferrari,
2020; Herman & Kuang, 2013; Jansen & Held, 2014; O’Kane & Frederiksen, 2008; Khodkar
et al., 2019; Sadourny & Basdevant, 1985; Schneider, Teixeira, et al., 2017; Sridhar et al.,
2022; Sullivan et al., 1994; Tan et al., 2018; Zanna et al., 2017).

The challenge of modeling SGS closures lies in faithfully representing the two-way
interactions between the SGS processes and the resolved, large-scale dynamics. There are
two general approaches to SGS modeling: (a) functional and (b) structural (Sagaut, 2006).
The functional SGS closures are developed by considering the inter-scale interactions (e.g.,
energy transfers). This is often achieved by introducing a dissipative term. Hence, functional
SGS closures generally take an eddy-viscosity form to mimic the average function of the
SGS eddies. Among the first and most-used functional closures is the Smagorinsky model
(Smagorinsky, 1963). Later, dynamic formulations of this model were proposed, in which the
key coefficient is dynamically adjusted to the local structures of the flow (Germano, 1992;
Lilly, 1992; Ghosal et al., 1993; Chai & Mahesh, 2012). Existing functional closures, most of
which are the eddy-viscosity type, can be excessively dissipative (Vreman et al., 1996; Guan
et al., 2022a). Furthermore, they cannot capture the structure of the SGS terms, leading to
a low correlation coefficient (CC< 0.5) with the true SGS terms, i.e., those diagnosed from
the DNS data (Carati et al., 2001; Guan et al., 2022a; Moser et al., 2021).

On the contrary, structural closures tend to have much higher CC with the true SGS
terms. Structural closures approximate the SGS terms by constructing it from an evaluation
of large-scale motions or a formal series expansion. One of the most common structural
closures is the nonlinear gradient model (Leonard, 1975; Clark et al., 1979), referred to
as NGM hereafter (it is also known as the tensor diffusivity model). The NGM can be
derived analytically: the SGS term is approximated using a first-order truncated Taylor-
series expansion of the SGS stress’ convolution integral (details discussed later). However,
despite CC> 0.9, LES with NGM closure has been found to be unstable in many studies of
two-dimensional (2D) and three-dimensional (3D) turbulence. These instabilities are often
attributed to insufficient dissipation and more importantly, to the presence of too-strong
backscattering in NGM (Leonard, 1997, 2016; Liu et al., 1994; Fabre & Balarac, 2011; Lu
& Porté-Agel, 2010; Meneveau & Katz, 2000; Prakash et al., 2021; S. Chen et al., 2003,
2006; Vollant et al., 2016; Moser et al., 2021). As a result, while backscattering (basically
anti-diffusion or up-gradient flux) is an important process to represent in closure models
(Grooms et al., 2015; Guan et al., 2022a; Hewitt et al., 2020; Nadiga, 2010; Shutts, 2005),
it is ignored in most practical SGS closures in favor of stability (though there has been
some new exciting progress; see, e.g., Jansen et al. (2015) and Juricke et al. (2020)). In
fact, currently operational climate models do not accounts for backscattering in their ocean
parameterizations (Hewitt et al., 2020). Consequently, a framework for developing SGS
closures with the right amount of diffusion and backscattering, that can capture both the
structure and function of the SGS terms, has remained elusive (Moser et al., 2021; Pope,
2000; Sagaut, 2006).

Before moving forward, it should be pointed out that while the discussion so far has
been focused on closure for geophysical turbulence, many other critical processes in the
Earth system (in atmosphere, ocean, land, cryosphere, biosphere and at their interfaces)
require parameterizations in Earth system models (Stensrud, 2009; Schneider, Jeevanjee, &
Socolow, 2021). Thus, the discussion below and as clarified later, the findings of this paper,
are broadly relevant to parameterization efforts in Earth science.

Recently, machine learning (ML) has brought new tools into SGS closure modeling
(Schneider, Lan, et al., 2017; Zanna & Bolton, 2021; Brunton et al., 2020; Duraisamy, 2021;
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Gentine et al., 2021; Balaji, 2021). The strength of ML techniques is their ability to handle
high-dimensional data and learn strongly nonlinear relationships. Therefore, ML techniques
are attractive tools that might be able to extract more hidden knowledge from data, poten-
tially providing better SGS closures and even new insights into SGS physics. Data-driven
SGS closures, e.g., based on deep neural networks trained on high-fidelity simulation data
such as DNS data, have been developed for canonical geophysical flows such as 2D and quasi-
geostrophic turbulence (Bolton & Zanna, 2019; Frezat et al., 2022; Guan et al., 2022a, 2023;
Pawar et al., 2020; Maulik et al., 2018; Srinivasan et al., 2023) and oceanic and atmospheric
circulations (Beucler et al., 2021; Brenowitz & Bretherton, 2018; Cheng et al., 2022; Guil-
laumin & Zanna, 2021; Rasp et al., 2018; Yuval & O’Gorman, 2020; X. Zhang et al., 2022).
While some of these studies found the learned data-driven SGS closures to lead to stable
and accurate LES (Yuval & O’Gorman, 2020; Guan et al., 2022a, 2023; Frezat et al., 2022),
a number of major challenges remain (Schneider, Jeevanjee, & Socolow, 2021; Balaji, 2021).
Perhaps the most important one is interpretability, which is difficult for neural networks,
despite some recent advances in explainable ML for climate-related applications (Clare et
al., 2022; Mamalakis et al., 2022), including for SGS modeling (Subel et al., 2023). The
black-box nature of neural network-based closures aside, there are also challenges related
to generalizability, computational cost, and even implementation (Balaji, 2021; Chattopad-
hyay et al., 2020; Guan et al., 2022a; Kurz & Beck, 2020; Maulik et al., 2019; Subel et al.,
2021; Xie et al., 2019; Zhou et al., 2019), limiting the broad application of such closures in
operational climate and weather models, at least for now.

An alternative approach that is rapidly growing in popularity involves using ML tech-
niques that provide interpretable, closed-form equations, e.g. using sparse linear regression.
The underlying idea of this equation-discovery approach is that given spatial, temporal, or
spatio-temporal data from a system, one can discover the governing (algebraic or differential)
equations of that system (Brunton et al., 2016; Y. Chen et al., 2022; Goyal & Benner, 2022;
Mojgani et al., 2022b; Schneider et al., 2020; Rudy et al., 2017; Schaeffer, 2017; Schmidt &
Lipson, 2009; Schneider, Stuart, & Wu, 2021; Schneider et al., 2022; Udrescu & Tegmark,
2020; S. Zhang & Lin, 2018). Most of the aforementioned studies are focused on discovering
the entire governing equations from data, though few recent studies have used this approach
to discover SGS closures (see below). This approach has the following advantages over more
complex methods such as neural networks in the context of SGS modeling: 1) the learned
closure is significantly easier to interpret based on physics (Zanna & Bolton, 2020), 2) the
number of required training samples and the training costs are often considerably lower
(Brunton et al., 2020; Mojgani et al., 2022b), and 3) the computational cost of implemen-
tation in conventional solvers is lower, as the discovered closures often involve traditional
operations, e.g., gradients and Laplacians (Udrescu & Tegmark, 2020; Ross et al., 2023).

A number of equation-discovery techniques and test cases have been recently employed
for structural modeling of the SGS stress. In the first study of its kind, Zanna and Bolton
(2020) used relevance vector machine (RVM), a sparsity-promoting Bayesian linear regres-
sion technique, with a library of second-order velocity derivatives and their nonlinear com-
binations, to learn a closed-form closure model for the SGS momentum and buoyancy fluxes
from filtered high-resolution simulations of ocean mesoscale turbulence. They found a clo-
sure that resembled the NGM, with close connections to earlier physics-based modeling
work by Anstey and Zanna (2017). Although, the discovered closure performed well in a
priori (offline) tests, it was unstable a posteriori (online), i.e., when it was coupled to a
low-resolution ocean solver. Following the same general approach, more recently, Ross et
al. (2023) proposed a novel equation-discovery approach combining linear regression and
genetic programming (GP). This hybrid approach uses GP to discover the structure of the
equation followed by linear regression to fine-tune the coefficients. In contrast to methods
such as RVM, GP does not require an explicit library of features, instead, it uses a simple
set of features and operations, and constructs expressions by successively applying operators
and combining expressions. Similarly, in other disciplines, Reissmann et al. (2021) and Li
et al. (2021) recently used gene expression programming (GEP) to discover SGS stress for
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the Taylor-Green vortex and the 3D isotropic turbulence, respectively. They developed a
nonlinear closure consisting of the local strain rate and rotation rate tensors, based on what
is known as Pope tensors (Pope, 1975), which will be discussed later. Overall, these more
recent studies found that GEP- and GP-based closures often outperform common baselines
such as the Smagorinsky and the mixed models when turbulence statistics and flow struc-
tures are considered (Li et al., 2021; Reissmann et al., 2021; Ross et al., 2023). Note that
there also have been a number of studies focused on equation-discovery for functional mod-
eling, e.g., using techniques such as Ensemble Kalman inversion (Schneider, Stuart, & Wu,
2021; Schneider et al., 2020); see the Summary and Discussion.

In this study, we build on the work by Zanna and Bolton (2020) and use 2D-forced
homogeneous isotropic turbulence (2D-FHIT) and Rayleigh-Bénard convection (RBC) to
extend and expand their analysis in several directions:

1. We use RVM with an expansive high-order library to discover closures from DNS
data for the SGS momentum flux tensor (2D-FHIT and RBC) and the SGS heat flux
vector (RBC).

2. We conduct extensive robustness analysis of the discovered closures across a variety
of flow configurations, filter types, and filter sizes, and examine the potential effects
of numerical errors.

3. Further clarify the connections between the robustly discovered SGS momentum and
heat flux closures, and the SGS closures obtained analytically from the truncated
Taylor-series expansion of the filter’s convolution integral, the NGM (Leonard, 1975).

4. Explain the physical reason for the unstable a posteriori LES with the discovered
SGS closures, despite their high a priori accuracy in some metrics (such as CC).

5. Present a decomposition of the SGS tensor to the Leonard, cross, and Reynolds
components, showing their relative importance and dependence on the filter type/size.

6. Based on these findings, we present a number of ideas for discovering stable and
accurate SGS closures from the data in future work.

Note that while we focus on the use of RVM here, our findings and conclusions in (1)-(6)
are applicable to any equation-discovery effort, and not just for SGS momentum and heat
fluxes in geophysical turbulence, but for SGS modeling in any nonlinear dynamical system.

This paper is organized as follows. In Section 2, we provide an introduction to methodol-
ogy, including the governing equations of test cases (2D-FHIT and RBC), filtering procedure
for data and equations, RVM algorithm, and the employed library of the basis functions.
Section 3 includes the discussion on the discovered closures, a priori and a posteriori tests,
connection with the physics-based closures, and contribution of the Leonard, cross, and
Reynolds components. Summary and Discussion are in Section 4.

2 Models, Methods, and Data

2.1 Filtering Procedure

In DNS, the velocity field, u(x, t), is resolved using high spatio-temporal resolutions
down to all relevant scales. In LES, a low-pass filtering operation, denoted by (.), is per-
formed on the equations and flow fields. The resulting filtered fields, for example, filtered
velocity, u (x, t), can be adequately resolved using relatively coarse spatio-temporal reso-
lutions: the required grid spacing is proportional to the specified filter width, ∆, which is
analogous to the size of the smallest eddies resolved in the LES (Pope, 2000; Sagaut, 2006).
Using u(x, t) as an example, the general spatial filtering operation is defined by (Sagaut,
2006)

u(x, t) = G ∗ u =

∫ ∞

−∞
G (r)u(x− r, t)dr, (1)
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where ∗ is the convolution operator, and the integration is performed over the entire domain.
The specified filter kernel, G, satisfies the normalization condition∫ ∞

−∞
G (r) dr = 1. (2)

Subsequently, any flow field such as velocity can be decomposed into a filtered (resolved)
part and SGS (residual) part:

u(x, t) = u(x, t) + u′(x, t), (3)

where u′ is the SGS field. While this appears to be analogous to the Reynolds decomposition,
an important distinction should be noted: the filtered residual field may not be strictly zero
(u′ ̸= 0, thus u ̸= u), depending on the choice of the filter function (Sagaut, 2006). Further
details about the filters used in this work (Gaussian, box, Gaussian + box, and sharp-
spectral) are given in Appendix A.

2.2 Two-dimensional Forced Homogeneous Isotropic Turbulence (2D-FHIT)

We consider 2D-FHIT as the first test case. This canonical flow has been extensively
used for testing novel physics-based and ML-based SGS closures for geophysical turbulence
in the past decades (Boffetta & Ecke, 2012; Chandler & Kerswell, 2013; Guan et al., 2022a;
Tabeling, 2002; Thuburn et al., 2014; Vallis, 2017; Verkley et al., 2019). The dimensionless
continuity and momentum equations for 2D-FHIT in (x, y) spatial dimensions are:

∇ · u = 0, (4)
∂u

∂t
+ (u · ∇)u = −∇p+ 1

Re
∇2u+F +R, (5)

where u = (u, v) is the velocity, p is the pressure, F represents a time-constant external
forcing, R is the Rayleigh drag, and Re is the Reynolds number. The domain is doubly
periodic with length L = 2π.

The equations for LES are obtained by applying a homogeneous 2D filter (Eq. (1)) to
Eqs. (4)-(5). The filtered continuity and momentum equations are:

∇ · u = 0, (6)
∂u

∂t
+ (u · ∇)u = −∇ p+

1

Re
∇2u−∇ · τ+F +R, (7)

where τ is the SGS stress tensor:

τ =

[
τxx τxy
τyx τyy

]
=

[
u2 − u2 uv − u v

uv − u v v2 − v2

]
. (8)

A closure model is needed to represent τxx, τxy (= τyx), and τyy, in terms of the resolved
flow (u, v, p). However, currently, this is not possible just using the first principles due to
the presence of the u2, uv, and v2 terms.

We study three cases of 2D-FHIT (Table 1), creating a variety of flows that differ in
dominant length scales and energy/enstrophy cascade regimes. For DNS, as discussed in
Appendix B, Eqs. (4)-(5) are numerically solved at high spatio-temporal resolutions using
a Fourier-Fourier pseudo-spectral solver. For the LES, the same solver at lower spatio-
temporal resolution is used (Appendix B).

2.3 Turbulent Rayleigh-Bénard Convection (RBC)

As our second test case, we use 2D turbulent RBC, a widely used canonical flow for
buoyancy-driven turbulence (Chillà & Schumacher, 2012; Dabbagh et al., 2017; Hassanzadeh
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Table 1. Physical and numerical parameters used in the 2D-FHIT cases. Cases with different

flow regimes are produced by varying forcing wavenumber,
(
fkx , fky

)
, and Re. For each case, we

use several filter types (Gaussian, box, Gaussian + box, and sharp-spectral filters) and filter sizes,

∆ =
2L

NLES
, where NLES = {32, 64, 128, 256} for Cases K1 and K3 and NLES = {128, 256} for Case

K2. Here, NLES and NDNS are the number of points in each direction on the LES and DNS grids,

respectively. L = 2π is the length of the domain. Note that the lowest NLES is chosen such that the

LES resolution resolves at least 80% of the DNS kinetic energy (Pope, 2000). Filters are applied in

both spatial dimensions for 2D-FHIT.

Cases Re (fkx
, fky

) NDNS

K1 20,000 (4, 0) 1024
K2 20,000 (25, 25) 1024
K3 100,000 (4, 0) 2048

et al., 2014; Kooloth et al., 2021; Lappa, 2009; Sondak et al., 2015), which in addition to
the SGS (momentum) stress, requires closure modeling of the SGS heat flux (Pandey et al.,
2022; Peng & Davidson, 2002; Wang et al., 2008). Under the Oberbeck-Boussinesq approxi-
mation, the dimensionless governing equations for the flow between horizontal walls at fixed
temperatures (the bottom wall being warmer than the top) in (x, z) spatial dimensions are:

∇ · v = 0, (9)
∂v

∂t
+ v · ∇v = −∇p+ Pr∇2v +RaPr θẑ, (10)

∂θ

∂t
+ v · ∇θ − w = ∇2θ, (11)

where v = (u,w) is the velocity, θ is the temperature (T ) departure from the conduction
state, ẑ is the unit vector in the vertical direction, and Ra and Pr are the Rayleigh and
Prandtl numbers, respectively. The domain is periodic in the horizontal direction with
length L = 6π; no-slip boundary conditions are applied at the walls. We use three cases of
turbulent RBC (Table 2) in which the Ra and Pr are varied.

To properly resolve the thin boundary layers in turbulent RBC, a pseudo-spectral solver
with (non-uniform) Chebyshev collocation points in the vertical direction is used. However,
filtering variables on a non-uniform grid can cause major errors in the diagnosed SGS terms,
because the filters will not commute with spatial derivatives (Yalla et al., 2021). As a
result, following the common practice for LES, we only filter the equations in the horizontal
direction, where (uniform) Fourier collocation points are used. The LES equations obtained
by applying a 1D filter along the horizontal direction, x, to Eqs. (9)-(11) are:

∇ · v = 0, (12)
∂v

∂t
+ v · ∇v = −∇ p+ Pr∇2v + PrRa θẑ −∇ · τ, (13)

∂θ

∂t
+ v · ∇θ − w = ∇2θ −∇ · J , (14)

where τ is the SGS (momentum) stress tensor

τ =

[
τxx τxz
τzx τzz

]
=

[
u2 − u2 uw − uw

uw − uw w2 − w2

]
, (15)

and J is the SGS heat flux vector

J =

[
Jx
Jz

]
=

[
uθ − u θ

wθ − w θ

]
. (16)
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Table 2. Physical and numerical parameters used in three cases of turbulent RBC. Cases with

different flow regimes are produced by varying Ra and Pr. For each case, we use several filter types

(Gaussian, box, Gaussian + box, and sharp-spectral cutoff filters) and filter size ∆ = ∆x =
2L

NLES
,

where NLES = {128, 256} for Case R1 and NLES = {128, 256, 512} for Cases R2 and R3. Here,

NLES is the number of points on the LES grid in the horizontal direction, x. NDNS
x and NDNS

z are

the number of grid point on the DNS grid in the horizontal and vertical directions, respectively.

L = 6π is the length of the domain in the horizontal direction. Note that the lowest NLES is chosen

such that the LES resolution resolves at least 80% of the DNS kinetic energy (Pope, 2000). Filters

are only applied along the horizontal direction.

Cases Ra Pr
(
NDNS

x , NDNS
z

)
R1 106 100 (2048, 400)
R2 40× 106 7 (2048, 400)
R3 40× 106 100 (2048, 400)

Here, in addition to τ, J needs a closure model too.

For DNS, as discussed in Appendix C, Eqs. (9)-(11) are numerically solved at high
spatio-temporal resolutions using a Fourier-Chebyshev pseudo-spectral solver. For LES, the
same solver with lower spatial resolution is used (Appendix C).

2.4 Filtered Direct Numerical Simulation (FDNS) Data

It should be highlighted that in this study with two canonical test cases, we consider
DNS data as the “truth”, and use filtered DNS (FDNS) data to discover the closures. How-
ever, in reality, performing DNS for many geophysical flows is computationally prohibitive.
In such cases, high-resolution LES that adequately resolves the process of interest (e.g.,
ocean eddies, gravity waves, etc.) is often used as the truth to train the ML algorithms for
SGS modeling (Yuval & O’Gorman, 2020; Zanna & Bolton, 2021; Shen et al., 2022; Sun et
al., 2023).

Here, we compute FDNS variables on the LES grids, which are 4 to 64 times coarser
than the DNS grid in both spatial dimensions for 2D-FHIT and one spatial dimension for
RBC (see Tables 1-2). More specifically, we first apply the respective filter’s transfer function
(Tables A1 and A2) to the DNS data, and then coarse-grain the results onto the LES grid.
Note that following some of the recent papers (Grooms et al., 2021; Guan et al., 2022a), we
define “filtering” as an operation that removes the small scales but keeps the grid resolution
(e.g., DNS), and “coarse-graining” as an operation that changes the grid size, e.g., from the
DNS resolution to LES resolution. Note that τ and J in Eqs. (7), (13), and (14) need to be
on the LES grid.

The filtering and coarse-graining are performed following Sagaut (2006) and Guan et
al. (2022a). Briefly, using the velocity u (xDNS, t) as an example, and denoting the DNS grid
and wavenumber as xDNS and kDNS, we first transform the DNS velocity into the spectral
space û (kDNS, t), where (̂.) means Fourier transformed. This is followed by applying the
filter in the spectral space:

û (kDNS, t) = Ĝ (kDNS)⊙ û (kDNS, t) . (17)

Here, Ĝ (kDNS) can be any of the transfer functions listed in Tables A1 and A2, and ⊙ is
the Hadamard (element-wise) multiplication. After the filtering operation, coarse-graining
is performed to transform the filtered variable from the DNS to the LES grid. In this study,
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Figure 1. Snapshots of the (a) DNS vorticity field ω (NDNS = 1024) and the (b) FDNS vorticity

field ω (NLES = 128) for Case K2 (see Table 1). The (c) DNS temperature field T (NDNS = 2048),

and the (d) FDNS temperature field T (NLES = 256) for Case R3 (see Table 2). The Gaussian

filter is applied in both cases.

we perform coarse-graining in spectral space with cutoff kc = π/∆, which for example in
2D, yields

û(kLES, t) = û (|kDNS,x| < kc, |kDNS,y| < kc, t) . (18)

Hereafter, for brevity, we use the term “filtered” (still denoted by ·) to mean “filtered” and
then “coarse-grained”.

Figure 1 shows the effects of filtering on the vorticity and temperature fields for 2D-
FHIT and RBC, illustrating that the small-scale structures of ω and T are removed due to
filtering and the fields are smoothed out.

2.5 The Equation-discovery Method

In this study, we employ the RVM (Tipping, 2001) to discover closed-form closures
for each element of the τ tensor and J vector from the FDNS data. RVM is a sparsity-
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promoting Bayesian (linear) regression technique that has shown promise in applications
involving dynamical systems (S. Zhang & Lin, 2018; Zanna & Bolton, 2020; Mojgani et
al., 2022b). RVM relies on a pre-specified library of basis functions Φ; each column of this
matrix is a basis, e.g., a linear or nonlinear combination of relevant variables such as velocity
and temperature and/or their derivatives. The library should be expressive enough so that
s, a vectorized snapshot of a element of any τ or J , could be completely represented as

sRVM = Φc. (19)

The vector of regression weights, c, is computed by minimizing the mean-squared error
(MSE)

MSE = ∥SRVM − SFDNS∥22, (20)

where vector S consists of n samples of s stacked together. RVM assumes Gaussian prior
distributions for each weight, and the width of the Gaussian posterior provides a measure of
the weight’s uncertainty. Sparsity is enforced via an iterative process: basis functions whose
weights’ uncertainties exceed a pre-specified hyperparameter (threshold), α, are removed
(pruned), and Eq. (20) is minimized again. The iterations stop when all the remaining basis
functions have uncertainties smaller than α. Larger α results in lower MSE but more terms
in the discovered model (see below).

A critical step in using RVM (and most equation-discovery methods) is the choice of
the library. Here, we have chosen the following libraries. For momentum stress, we use[

∂(q1+q2)A

∂xq1∂yq2

]p1 [
∂(q4+q5)B

∂xq4∂yq5

]p2

or

[
∂(q1+q2)C

∂xq1∂zq2

]p1 [
∂(q4+q5)D

∂xq4∂zq5

]p2

; (21)

where A,B = u or v (2D-FHIT) and C,D = u or w (RBC). Note that experiments with
including θ in D yield the same results. For heat flux, we use[

∂(q1+q2)A

∂xq1∂zq2

]p1 [
∂(q4+q5)θ

∂xq4∂zq5

]p2

, (22)

where A = u,w, or θ (RBC). These libraries are expansive, with integers 0 ≤ q ≤ 8 and
0 ≤ p ≤ 2, though the total derivative order is limited to 8th (there are a total of 546 and
614 terms in the libraries used for momentum and heat fluxes, respectively). The form of
these libraries is motivated by the Galilean-invariant property of the SGS terms, and by
past studies. For example, these libraries include Pope’s tensors (Pope, 1975), which have
been used in physics-based (Anstey & Zanna, 2017; Gatski & Speziale, 1993; Jongen &
Gatski, 1998; Lund & Novikov, 1993) and equation-discovery (Li et al., 2021; Reissmann
et al., 2021; Ross et al., 2023) approaches in the past (and include the structure of the
Smagorinsky model; see below). Our library also includes the basis functions used by Zanna
and Bolton (2020).

Note that all calculations for the libraries (and any computation in this work) is per-
formed using the same spectral methods used for DNS and LES.

We have found it useful for interpretability of the outcome and improving the robust-
ness of the algorithm to remove redundant terms using the continuity equation (e.g., using
∂v/∂y = −∂u/∂x, ∂2v/∂y∂x = −∂2u/∂x2, etc.). Also, we have found it essential to nor-
malize each basis in Φ to have a zero mean and a unit variance, because the amplitude of
higher-order derivatives can be much larger than that of the lower-order ones.

Like any method, equation discovery using RVM has a number of strengths and weak-
nesses:

1. It is data efficient (Zanna & Bolton, 2020; Mojgani et al., 2022b). For example, here,
we report the results with n = 100 FDNS samples, but even with n = 1, the results
remain pratically the same.
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2. It is more robust, in terms of convergence, compared to similar sparsity-promoting
techniques (S. Zhang & Lin, 2018; Zanna & Bolton, 2020).

3. A pre-specified library is needed and it is assumed that the true answer (e.g., the SGS
stress) can be represented as a linear combination of the chosen basis functions.

4. The pre-specified hyper-parameter α determines how parsimonious the discovered
model is. Decreasing α leads to a smaller (likely, more interpretable) model at the
expense of increasing the MSE. Here, we follow the model-selection literature (Mangan
et al., 2017; Mojgani et al., 2022b) and objectively choose α using the L-curve, as
shown later.

5. The answer can depend on the choice of the loss function. The RVM’s MSE loss
(Eq. (20)) is strictly following the principle of structural modeling, matching the flux
between the FDNS and discovered model.

Note that the above strengths (1)-(2) are highly desirable while these weaknesses (3)-(5)
are common among many equation-discovery methods, although techniques such as GP and
GEP can address (3) and (5), for example using an evolving library. We will further discuss
(3)-(5) in Section 4.

3 Results

In this section, we present and discuss the discovered closures, and analyze them a
priori (offline) and a posteriori (online, coupled with LES). We then uncover the connections
between the discovered closure and the NGM. For all results presented here, we use n = 100
FDNS samples from a training set and 20 FDNS samples from an independent testing set.

3.1 The Discovered Closures for SGS Momentum and Heat Fluxes

For each of the six cases in Tables 1-2, we separately discover closures for three elements
of the SGS stress tensor, i.e., τxx, τxy = τyx, and τyy for 2D-FHIT, and τxx, τxz = τzx, and
τzz for RBC. Additionally, we discover two elements of the SGS heat flux vector, i.e., Jx
and Jz for RBC. We discover individual closures for 4 filter types: Gaussian, box, sharp-
spectral, and Gaussian + box. The first three are common filter types, while the last one
is motivated by a few recent studies (Zanna & Bolton, 2020; Guillaumin & Zanna, 2021).
We also examine several filter sizes, ∆ (see Tables 1-2), and the effect of varying α, which
as mentioned earlier, is a key hyper-parameter in RVM.

We analyze the a priori performance of the discovered closures using the most com-
monly used metric: the average of CCs for testing samples (Sagaut, 2006; Maulik et al.,
2019; Guan et al., 2023). For each element of τ or J , denoted below by τ for convenience,
the CC for each testing sample is calculated between 2D patterns of τ from FDNS and τ
predicted by the RVM-discovered closure for the corresponding filtered flow variables (e.g.,
u, v etc.):

CC =
⟨
(
τRVM − ⟨τRVM⟩

) (
τFDNS − ⟨τFDNS⟩

)
⟩√

⟨(τRVM − ⟨τRVM⟩)2⟩
√
⟨(τFDNS − ⟨τFDNS⟩)2⟩

, (23)

where ⟨·⟩ is domain averaging. The same equation is also used for computing CC values of
2D patterns of inter-scale energy or enstrophy transfer, P (defined later).

As a representative example of the findings, Fig. 2(a)-(b) shows the averaged CC for
τyy (K1-K3) and Jx (R1-R3) as α is increased. Figure 2(c)-(d) presents the number of terms
in the discovered closures. With small α, the discovery is unsuccessful (CC=0; zero term).
However, as α is further increased, for all cases, CC abruptly jumps to above 0.8−0.9 with 1-2
discovered terms, and then gradually converges to 1 but with exponentially growing number
of terms in the discovered closure. The CC-α relationship forms an “L-curve”. The elbow
of this curve indicates the α that balances accuracy and model size, and is extensively used
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in the model-selection and equation-discovery literature to objectively choose α (Lawson &
Hanson, 1995; Calvetti et al., 2000; Mangan et al., 2017; Goyal & Benner, 2022; Mojgani
et al., 2022b). Examining all cases with other filter sizes and filter types reveals the same
behavior as shown in Fig. 2, with the exception of the sharp-spectral filter. For this filter,
the discovery is unsuccessful, leading to low CC and non-robust results; we will explain the
reason of this failure later in this section.

We use the L-curve to determine the optimal α. In 2D-FHIT, there are two kinks in
the curve around the elbow, corresponding to the discovery of closures with 1 and 2 terms,
respectively (Fig. 2(a), (c)). Given the robust and asymptotic behavior in α after the second
kink, we use the corresponding α to identify the discovered closure (see the black circles).
We find that consistently, across Cases K1-K3, filter types, and filter sizes, this closure is of
the form

τ =

[
τxx τxy
τyx τyy

]
= ∆2

axx
(
∂u

∂x

)2

+ bxx

(
∂u

∂y

)2

axy
∂u

∂x

∂v

∂x
+ bxy

∂u

∂y

∂v

∂y

axy
∂u

∂x

∂v

∂x
+ bxy

∂u

∂y

∂v

∂y
ayy

(
∂v

∂x

)2

+ byy

(
∂v

∂y

)2

 , (24)

where axx, bxx, axy, bxy, ayy, and byy are the discovered coefficients (∆2 is factored out to
further highlight the independence of these coefficients from the filter size). Table 3 shows
that these 6 coefficients are the same, and the same for Cases K1-K3, although they can
depend on the filter type. This table also shows the average CC values of the discovered
closure, which are around 0.99, demonstrating the accurate prediction of each element of
the stress tensor and the excellent a priori (offline) performance of the discovered closure
for a broad range of LES resolutions.

Following the same approach, we discover basically the same closure for τ in RBC

τ =

[
τxx τxz
τzx τzz

]
= ∆2

dxx
(
∂u

∂x

)2

dxz
∂u

∂x

∂w

∂x

dxz
∂u

∂x

∂w

∂x
dzz

(
∂w

∂x

)2

 , (25)

where, as before, dxx, dxz, and dzz are the coefficients with ∆2 factored out. Note that
Eq. (25) is the same as Eq. (24), except that here, there is one term rather than two in
each element of the tensor, which is a result of filtering (in RBC) performed only in the
horizontal, x, direction. As before, Table 4 shows that these d coefficients are the same,
and the same for Cases R1-R3, though varying with filter type. Like before, the discovered
closure has fairly high CC values.

Again, following the same approach, we determine the optimal α for discovering the
closure of J . In Fig. 2(b), Case R1 has a clear elbow while Cases R2-R3 have two kinks
around the elbow. Examining all cases and the number of discovered terms (Fig. 2(d)), we
find that the single-term closures discovered at the first kink (circled) provide consistent
and robust results. This closure is

J =

[
Jx
Jz

]
= ∆2


dx
∂u

∂x

∂θ

∂x

dz
∂w

∂x

∂θ

∂x

 , (26)

where dx and dz are the discovered coefficients with ∆2 factored out. Table 5 shows that
these d coefficients are the same, and the same for Cases R1-R3, but varying with filter
type. As before, the discovered closure has a good a priori performance.

To summarize the findings, Eqs. (24)-(26) and Tables 3-5 show that
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1. Closures of the same form are robustly discovered for τ in two vastly different systems,
2D-FHIT and RBC. Even the closure for J overall has the same form, consisting of
the products of the first-order derivatives of the variables involved in the nonlinearity
of the SGS term.

2. Not just the form, but even the coefficients of the terms in the closures, are con-
sistently the same as parameters such as Re, forcing wavenumber, Ra, or Pr are
changed in Cases K1-K3 and R1-R3, leading to different dynamics. The coefficients
are independent of the fluid and even the flow properties.

3. The form of the closures is independent of the filter type unless the sharp-spectral
filter is used. The coefficients, once normalized by ∆2, are independent of filter size,
but depend on filter type.

4. The discovered closures have outstanding a priori performance, often with CC> 0.95
and even as high as 0.99. It should be noted that the CCs reported in these tables are
averaged over a broad range of NLES. The values of CC are higher for larger NLES,
i.e., smaller ∆.

–13–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 2. Representative examples of the the effects of increasing the sparsity-level hyper-

parameter, α, on the CC and number of terms in the discovered closure. (a), (c): τyy (2D-FHIT)

and (b), (d): Jx (RBC). A Gaussian filter with NLES = 128 (K1-K3) and NLES = 256 (R1-R3)

is used, but the same behavior is observed with any other NLES and filter type (except for the

sharp-spectral, see the text). In general, for small α (< 1), no closure is discovered (CC=0, zero

term). With increasing α, the CC converges to ∼ 1 (a more accurate a priori closure) but at the

expense of a larger closure with many more terms (note the logarithmic scale of the y axes in panels

(c)-(d)). However, the CC-α relationship forms an “L-curve”, whose elbow indicates the α that

balances accuracy and model size (see the text).
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3.2 The Nonlinear Gradient Model (NGM): Taylor-series Expansion of the
SGS Term

A closer examination of Eq. (24) reveals that this closure is indeed the NGM (this
includes both the form and the coefficients, within the uncertainty range). This connection
was already pointed out by Zanna and Bolton (2020), although the implications and findings
such as 1-4 mentioned in the previous subsection were not further discussed in their short
letter.

First, let’s briefly review the NGM (Leonard, 1975; Clark et al., 1979; Sagaut, 2006).
As a simple illustration of the idea behind this model, Appendix D presents the derivation
of the NGM using a 1D arbitrary field, a(x). Taylor-series expansion of a(x − rx) around
a(x) (Eq. (D2)) simplifies the convolution integral of the filtering operation (Eq. (D1)) such
that a(x) can be written in terms of a(x) and its derivatives, with coefficients that depend
only on the moments of the the filter’s kernel, G (Eq. (D4)). Using u2 and u2 as a(x), we
eventually arrive at an analytically derived closure for τxx with error O

(
∆4
)
(Eq. (D12)).

In 2D with filtering applied in both directions (like our 2D-FHIT), the NGM is (Sagaut,
2006)

τNGM
2D =

[
τxx τxy
τyx τyy

]
= cτ∆

2


(
∂u

∂x

)2

+

(
∂u

∂y

)2
∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y
∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y

(
∂v

∂x

)2

+

(
∂v

∂y

)2

+O
(
∆4
)
, (27)

where cτ depends on the filter’s kernel. Similarly, for the 2D RBC with filtering only in the
x direction, the NGM is

τNGM
1D =

[
τxx τxz
τzx τzz

]
= dτ∆

2


(
∂u

∂x

)2
∂u

∂x

∂w

∂x
∂u

∂x

∂w

∂x

(
∂w

∂x

)2

+O
(
∆4
)
. (28)

As emphasized in Appendix D, there is nothing specific to momentum flux or even turbulence
(or even physical systems) in the derivation of NGM. In fact, for the filtered quadratic
nonlinearity of any two arbitrary variables, one arrives at the same expression with O

(
∆4
)

accuracy. For example, following this derivation, for the SGS heat flux, we obtain

JNGM =

[
Jx
Jz

]
= dJ∆

2


∂u

∂x

∂θ

∂x

∂w

∂x

∂θ

∂x

+O
(
∆4
)
, (29)

where like cτ and dτ , dJ only depends on the filter’s kernel.

Computing cτ , dτ , dJ for each of the filter types used in this study, we confirm that
the discovered closures for the SGS stress are basically the NGM (Eqs. (27)-(28)), and in
the case of the SGS heat flux, an NGM-like (Eq. (29)) closure (see Tables 3–5).

Based on the above analyses, we can now explain the findings (1)-(4) in Section 3.1.
Closures of the same structure are robustly discovered for both SGS momentum and heat
fluxes in two vastly different turbulent flows (and independent of parameters such as Re,
Ra, Pr, and forcing) because the first term in the Taylor-series expansion dominates the
SGS flux. As a result, in equation-discovery using common loss functions such as MSE and
evaluation metrics such as CC, which aim at closely matching τ or J , NGM or NGM-like
closures are discovered (if the library is expansive enough to include all the relevant terms).
We emphasize that this would be the case with discovering the representation of the filtered
nonlinearity of any two arbitrary variables. As already observed, the coefficients of the
discovered closure become even closer to those of NGM as ∆ is decreased (thus reducing
potential contributions from the truncated O

(
∆4
)
terms).
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Table 4. Coefficients in Eq. (25), the robustly discovered closure for τ for RBC (note that ∆2

is included in the coefficients). For Cases R1-R3 and different filter types, the mean and standard

deviation of the discovered coefficients over different NLES are reported (see Table 2). The average

CC of the closure for each element of τ is shown in parentheses. The last column shows the

analytically derived coefficients for the NGM (see Section 3.2).

Case Filter
τxx τxy τyy Mean NGM(
∂u

∂x

)2
∂u

∂x

∂w

∂x

(
∂w

∂x

)2

R1

Gaussian

∆2

10.89± 0.39

∆2

11.01± 0.41

∆2

10.55± 0.75

∆2

10.98± 0.49

∆2

12
(0.98) (0.97) (0.92) (0.95)

Box

∆2

10.45± 0.94

∆2

10.21± 0.93

∆2

10.32± 0.87

∆2

10.35± 0.97

∆2

12
(0.98) (0.94) (0.91) (0.93)

Gaussian + box

∆2

5.35± 0.56

∆2

5.37± 0.35

∆2

5.21± 0.48

∆2

5.29± 0.66

∆2

6
(0.93) (0.94) (0.89) (0.91)

R2

Gaussian

∆2

11.35± 0.41

∆2

11.82± 0.36

∆2

9.7± 0.54

∆2

10.62± 0.79

∆2

12
(0.98) (0.88) (0.81) (0.89)

Box

∆2

10.52± 0.65

∆2

9.38± 0.5

∆2

9.11± 0.59

∆2

10.01± 0.44

∆2

12
(0.97) (0.90) (0.86) (0.91)

Gaussian + box

∆2

5.48± 0.24

∆2

5.33± 0.12

∆2

5.00± 0.23

∆2

5.27± 0.28

∆2

6
(0.98) (0.92) (0.93) (0.94)

R3

Gaussian

∆2

11.22± 0.16

∆2

11.34± 0.41

∆2

10.51± 1.03

∆2

11.02± 0.79

∆2

12
(0.94) (0.93) (0.91) (0.93)

Box

∆2

10.17± 0.32

∆2

9.94± 0.64

∆2

9.44± 1.32

∆2

9.85± 0.95

∆2

12
(0.93) (0.93) (0.92) (0.92)

Gaussian + box

∆2

5.46± 0.10

∆2

5.55± 0.12

∆2

4.87± 0.66

∆2

5.3± 0.54

∆2

6
(0.93) (0.90) (0.88) (0.90)
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Table 5. Coefficients in Eq. (26), the robustly discovered closure for J for RBC (note that ∆2

is included in the coefficients). For Cases R1-R3 and different filter types, the mean and standard

deviation of the discovered coefficients over different NLES are reported (see Table 2). The average

CC of the closure for each element of J is shown in parentheses. The last column shows the

analytically derived coefficients for the NGM (see Section 3.2)

Case Filter
Jx Jz Mean NGM

∂u

∂x

∂θ

∂x

∂w

∂x

∂θ

∂x

R1

Gaussian

∆2

10.54± 0.66

∆2

10.3± 0.87

∆2

10.88± 1.3

∆2

12
(0.93) (0.90) (0.92)

Box

∆2

9.11± 0.86

∆2

9.00± 0.65

∆2

9.05± 0.80

∆2

12
(0.93) (0.92) (0.93)

Gaussian + box

∆2

5.32± 0.3

∆2

5.31± 0.5

∆2

5.31± 0.45

∆2

6
(0.96) (0.90) (0.93)

R2

Gaussian

∆2

11.27± 0.2

∆2

10.9± 0.4

∆2

11.12± 0.37

∆2

12
(0.89) (0.85) (0.87)

Box

∆2

9.7± 0.11

∆2

9.3± 0.23

∆2

9.5± 0.67

∆2

12
(0.90) (0.84) (0.87)

Gaussian + box

∆2

5.55± 0.08

∆2

5.1± 0.22

∆2

5.32± 0.78

∆2

6
(0.91) (0.85) (0.88)

R3

Gaussian

∆2

9.75± 0.47

∆2

9.21± 0.34

∆2

9.46± 0.97

∆2

12
(0.84) (0.83) (0.83)

Box

∆2

9.87± 0.23

∆2

9.5± 0.22

∆2

9.68± 0.57

∆2

12
(0.80) (0.81) (0.81)

Gaussian + box

∆2

4.78± 0.12

∆2

4.52± 0.34

∆2

4.65± 0.77

∆2

6
(0.83) (0.80) (0.81)
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The connection to the analytical derivation also explains why the coefficients in the
discovered models are independent of the fluid or even the flow properties (Ra, Re, Pr)
and only depend on the filter size (∆) and filter type. For the Gaussian and box filters
we obtain cτ = dτ = dJ = 1/12: this is because the parameters of the Gaussian filter are
chosen such that Gaussian and box filters’ kernels have the same second moment (Pope,
2000). For Gaussian + box filter, the coefficients are 1/6 because the kernel of this filter is
convolution of the Gaussian and box filter kernels. For the sharp-spectral filter, the moments
are indefinite, this is why there is no NGM discovery with this filter (and we will discuss
later why the discovery fails altogether). Note that coarse-graining done here via cutoff in
the spectral space does not change cτ , dτ and dτ ; however, if coarse-graining is done by other
techniques such as box averaging, then the coefficients might change (note that the NGM
coefficient for Gaussian + box filter is half of the coefficient of either filter; see Tables 3-5).

In short, one can explain the effects of different filter kernels and coarse-graining strate-
gies on the discovered closures following the analytically derivable NGM (see Appendix D
and Sagaut (2006)).

An important implication of the above findings and discussions is that the discovered
closure may not be unique and can depend on the filtering and coarse-graining procedure:
it depends on the filter type (and up to a factor, on the filter size). This is not a problem
of equation-discovery; in fact, the SGS fluxes diagnosed from FDNS are not unique and
depend on the filtering and coarse-graining procedure (this is further shown in Fig. 4 and
discussed at the end of this section). This has implications not just for equation-discovery,
but more broadly, for the ongoing efforts on learning SGS parameterizations for various
processes from high-fidelity data using ML. See Sun et al. (2023) for extensive discussions
about this issue focused on the data-driven SGS modeling of atmospheric gravity waves.

The next key question is about the accuracy and stability of LES of the 2D-FHIT and
RBC with the NGM closures, τNGM and JNGM. However, before discussing the a posteriori
(online) performance of NGM closures, we address one more issue, and that is about any
potential influence from numerical calculations in our equation discovery.

3.2.1 Effects of numerical discretization

The appearance of gradients of velocity (or temperature) in Eqs. (27)-(29) might sug-
gest to some that the discovered equations represent the truncated terms of finite differ-
ence/volume discretization schemes (the methods used in Zanna and Bolton (2020)). The
discussions in their paper and the comprehensive analyses here should leave no ambigu-
ity that Eqs. (27)-(29) represent the physics of the SGS fluxes, rather than any numerical
error. Still, we wish to discuss a few more points here, as numerical errors from finite
difference/volume discretizations or from aliasing (in spectral calculations) can certainly
contaminate equation discovery.

All numerical calculations in this study are performed using Fourier and Chebyshev
spectral methods. Moreover, we have repeated our calculations of the SGS fluxes and of
the basis functions in the library after de-aliasing based on the 2/3 rule (Orszag, 1971).
Furthermore, we have performed discovery on fluxes that are only filtered but not coarse-
grained (thus they remain on the high-resolution DNS grid). The outcomes of all these
experiments are Eqs. (27)-(29), demonstrating that the discovered closures do not contain
any contributions from numerical errors.

3.3 A posteriori (Online) Tests and Inter-scale Energy/Enstrophy Transfer

For all 6 cases and all tested NLES, the LES runs with NGM closures are unstable:
high-wave number features appear and the simulations eventually blow up (not shown).
This is consistent with the findings of Zanna and Bolton (2020), who only found stable LES
once the SGS momentum fluxes predicted by the discovered closure were attenuated. More
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generally, this is also consistent with extensive studies in the 1990s (though mainly focused
on 3D turbulence), which found that LES with the NGM closure is unstable (Liu et al.,
1994; Leonard, 1997; Vreman et al., 1997; Borue & Orszag, 1998; Meneveau & Katz, 2000;
Pope, 2000; S. Chen et al., 2003, 2006). The exact reason(s) for the instabilities remain
unclear but these studies found that in general, in 3D turbulence, NGM has insufficient
dissipation and/or too much backscattering; see, e.g., the discussions in Leonard (1997,
2016) and Sagaut (2006). As a result, later studies focused more on eddy-viscosity closures,
or on NGM with backscattering removed or combined with eddy-viscosity, the so-called
mixed models (Winckelmans et al., 1998; Cottet, 1996; Balarac et al., 2013). Such versions
of NGM have been used in some geophysical flows, e.g., for atmospheric boundary layer (Lu
& Porté-Agel, 2010, 2014; Khani & Porté-Agel, 2017; Khani & Waite, 2020; Khani & Porté-
Agel, 2022) and oceanography (Khani & Dawson, 2023).

In 2D turbulence with filtering done in both directions, such as our 2D-FHIT cases, the
NGM has a clear major shortcoming: it cannot capture any energy transfer between the
subgrid and resolved scales, despite capturing the enstrophy transfer well (S. Chen et al.,
2003, 2006; Nadiga, 2008). To further explore this issue, first note that the rate of kinetic
energy transfer between the resolved and subgrid scales, Pτ , is (Pope, 2000)

Pτ = −τ rijSij , (30)

where summation over repeated indices is implied. S and τ r are the 2D filtered rate of strain
tensor and the anisotropic part of the SGS stress tensor (see Appendix E for details). In 2D
turbulence with filtering done in both directions, using τNGM in the above equation shows
that PNGM

τ (x, y, t) is identically zero (see Appendix E). This is demonstrated numerically
in Table 6, which also shows that NGM captures both forward transfer and backscatter of
SGS enstrophy fairly well (CC> 0.95). Therefore, despite the high CC of τNGM with τFDNS,
and even a fairly accurate inter-scale enstrophy transfer, NGM cannot capture any inter-
scale energy transfer, indicating a major failure from a functional modeling perspective
(note that in this context, “inter-scale” means between the resolved and subgrid scales).
A physical/mathematical interpretation of this failure is that while NGM reproduces the
structure of τ remarkably well, it does not at all capture the correlations between the τ and
S tensors, e.g., the angles between their principle directions (Leonard, 2016).

This inability to represent any inter-scale energy transfer is likely the reason for the
instabilities of LES with NGM closure in Cases K1-K3 (and generally, in 2D turbulence). But
how about in RBC? In Cases R1-R3, filtering is conducted only in the horizontal direction,
and as a result, PNGM

τ is not identically zero. In fact, in these cases, the forward transfer and
backscatter of both kinetic energy and enstrophy are captured fairly well by NGM, with CC
often above 0.95 (Table 7). However, a deeper examination shows that the backscatter (anti-
diffusion) of inter-scale SGS potential energy, measured as PJ (see Appendix E), may not
be captured well, specially at low NLES (Table 7). Poor representation of backscattering
can certainly lead to instabilities, as for example shown by Guan et al. (2022a) for 2D
turbulence.

To further explore other potential shortcomings of NGM, we have also examined the
spectra of elements of τNGM and JNGM in comparison to those from FDNS (Figure 3).
This analysis shows that the spectra of SGS momentum and heat fluxes are captured well
across wavenumbers, even at high wavenumbers, indicating that NGM performs well in this
a priori (offline) metric.

To summarize the above analyses: we find all LES with NGM closures for 2D-FHIT and
RBC cases to become unstable even at high LES resolutions. Understanding the reason(s)
for this poor a posteriori (online) performance is essential to make further progress. Ex-
amining a few functional and structural metrics beyond CC of SGS fluxes (e.g., inter-scale
energy/enstrophy transfers, spectra) point to only one major shortcoming that is relevant to
2D-FHIT (and any 2D turbulent flow): NGM cannot capture any inter-scale kinetic energy
transfer, which is likely the reason for the instabilities. This is not an issue in RBC, for
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Table 6. The average correlation coefficient (CC) between inter-scale energy transfer (Pτ ) or

enstrophy transfer (PZ) patterns of the SGS momentum stresses from FDNS and from NGM closure

for Cases K1-K3 and different NLES. The CC of Pτ for both forward transfer (> 0) and backscatter

(< 0) of SGS energy is “undefined” since PNGM
τ = 0 everywhere for 2D-FHIT (in general, PFDNS

τ ̸=
0). On the contrary, the forward transfer and backscatter of SGS enstrophy are captured well by

the NGM. The Gaussian filter is used in FDNS.

Cases NLES = 32 NLES = 64 NLES = 128 NLES = 256

CC for Pτ (Pτ > 0, Pτ < 0)

K1
K2 undefined (undefined, undefined)
K3

CC for PZ (PZ > 0, PZ < 0)

K1 0.98 (0.98, 0.97) 0.98 (0.98, 0.97) 0.98 (0.98, 0.97) 0.98 (0.98, 0.96)
K2 - - 0.98 (0.98, 0.97) 0.99 (0.99, 0.98)
K3 0.98 (0.98, 0.97) 0.98 (0.98, 0.96) 0.97 (0.97, 0.95) 0.96 (0.97, 0.93)

which we only identify one shortcoming, and that is the poor representation of backscatter
(anti-diffusion) of potential energy, specially at low LES resolution. These findings indi-
cate that the poor a posteriori (online) performance of NGM might have different causes in
different flows and requires more extensive investigations.

Before discussing ideas for addressing these challenges in future work, we present more
analyses in two areas: a closer examination of the physics included in the library (Subsec-
tion 3.4) and the decomposition of the SGS fluxes and the sensitivity of the diagnosed fluxes
to the filter type/size (Subsection 3.5).

3.4 A Physics-guided Library: Pope Tensors

In Section 3.1, we consider an expansive library of basis functions combining the low-
and high-order derivatives and polynomials of velocity and temperature. Under certain as-
sumptions, smaller but physics-informed libraries can be devised. For example, Boussinesq
(1877) hypothesized that for a nearly homogeneous, incompressible, high-Re flow, the
anisotropic SGS stress τr (Eq. (E2)) is only a function of the filtered rates of strain S
(Eq. (E1)) and rotation Ω (Eq. (32)) tensors:

τr = τr
(
S,Ω

)
, (31)

Ω =
1

2

 0
∂u

∂y
− ∂v

∂x
∂v

∂x
− ∂u

∂y
0

 . (32)

Note that in Eqs. (7) and (13) and in general, only ∇ · τr has to be parameterized as the
rest of ∇ · τ can be absorbed into ∇p (Sagaut, 2006). Owing to Cayley-Hamilton theorem
(Gantmakher, 2000), τr can be represented as a linear combination of a finite number of
tensors, the so-called Pope tensors (Pope, 1975). In 2D, there are only 3 Pope tensors Z,
thus

τr =

2∑
n=0

ζ(n) (I1, I2)Z
(n). (33)
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Table 7. The average correlation coefficient (CC) between inter-scale kinetic energy transfer

(Pτ ) or enstrophy transfer (PZ) or potential energy transfer (PJ) patterns of the SGS fluxes from

FDNS and from NGM closure for Cases R1-R3 and different NLES. Note that for RBC, filtering is

conducted in only one direction (x), therefore, Pτ is not identically zero. Here, the forward transfer

and backscatter of SGS kinetic energy and enstrophy are overall captured well, specially as NLES

increases. However, the backscatter of SGS potential energy is not well captured, specially at low

LES resolutions. The Gaussian filter is used in FDNS. See Appendix E for the definition of PJ .

Cases NLES = 128 NLES = 256 NLES = 512

CC for Pτ (Pτ > 0, Pτ < 0)

R1 0.94 (0.96, 0.85) 0.99 (0.99, 0.98) −
R2 0.97 (0.81, 0.98) 0.98 (0.91, 0.98) 0.99 (0.97, 1.00)
R3 0.79 (0.81, 0.74) 0.88 (0.92, 0.81) 0.96 (0.97, 0.93)

CC for PZ (PZ > 0, PZ < 0)

R1 1.00 (1.00, 0.99) 1.00 (1.00, 1.00) −
R2 0.99 (0.96, 1.00) 0.99 (0.98, 1.00) 1.00 (1.00, 1.00)
R3 0.96 (0.95, 0.96) 0.99 (0.99, 0.98) 1.00 (1.00, 0.99)

CC for PJ (PJ > 0, PJ < 0)

R1 0.89 (0.89, 0.15) 0.97(0.97, 0.46) −
R2 0.76 (0.75, 0.65) 0.91 (0.91, 0.63) 0.98 (0.98, 0.76)
R3 0.77 (0.75, 0.40) 0.87 (0.86, 0.39) 0.94 (0.94, 0.44)

The three Pope’s tensors are Z(0) = I, Z(1) = S, and

Z(2) = SΩ−ΩS = −1

2


(
∂u

∂y

)2

−
(
∂v

∂x

)2

2

(
∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y

)
2

(
∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y

)
−
(
∂u

∂y

)2

+

(
∂v

∂x

)2

 , (34)

which is related to the anisotropic part of the NGM stress. In fact, τNGM−r = −∆2Z(2)/12
(see Eq. (E3)). Note that this is also the physics-based closure derived in Anstey and Zanna

(2017). Coefficients ζ(n) are functions of invariants I1 = tr(S
2
) and I2 = tr(Ω

2
). The

standard Smagorinsky model is ζ(1)(I1)Z
1.

Our expansive library, described in Eqs. (21)-(22), includes the individual terms to
discover Z(n) (n = 1, 2, 3); however, we have always found the NGM stress, τNGM. To see
whether the results will change with a discovery only done on the anisotropic SGS stress,
τr, and with a smaller library that only has the terms relevant to the Pope tensors, we
have conducted more experiments with 3 libraries for Cases K1-K3. The first library only
includes the 3 Pope tensors {Z(0),Z(1),Z(2)}, the second library only includes the 6 non-zero
elements of these tensors, and the third library only includes the 8 terms that compromise
these 6: {

1,
∂u

∂x
,
∂u

∂y
,
∂v

∂x
,

(
∂u

∂y

)2

,

(
∂v

∂x

)2

,
∂u

∂x

∂v

∂x
,
∂u

∂y

∂v

∂y

}
. (35)

The RVM with any of these libraries robustly discovers τNGM−r = −∆2Z(2)/12, without
Z(1) (or Z(0)) showing up (thus, no Smagorinsky/eddy viscosity-like term). Needless to say,
LES with this closure in unstable.
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Figure 3. Examples of the spectra of SGS fluxes predicted using NGM compared to those diag-

nosed using FDNS (the truth). (a) τxy from Case K1 and (b) Jz from Case R1 for 3 different NLES.

A Gaussian filter is used for FDNS, but the same behavior is observed for box and Gaussian+box

filters. Here, |̂·| is the modulus of Fourier coefficients.

The above analyses show the prevalence of NGM: it emerges whether the full or just
the anisotropic part of the SGS stress tensor is discovered, and whether an expansive or a
small physics-guided library is used.

3.5 Decomposition of SGS Fluxes: Leonard, Cross, and Reynolds Stresses

As discussed earlier, whether a closure could be successfully discovered from FDNS
data or if the NGM could be derived depend on the choice of the filter. The latter was
explained based on the dependence of the derived closure on the moments’ of the filter
kernel. Furthermore, the coefficients of the discovered closure and the analytically derived
coefficients of the NGM depend on the choice of the filters (Tables 3-5). Here, we further
demonstrate the sensitivity of the diagnosed FDNS SGS flux (which is treated as truth in
offline/supervised learning data-driven modeling approaches) to the choice of the filter, and
then decompose the flux into its three components to gain further insight.
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The top row of Fig. 4 show examples of SGS τ in 2D-FHIT diagnosed from the FDNS
data using different filter types. It is clear that the diagnosed fluxes are not unique and par-
ticularly different between Gaussian/box filters and sharp-spectral filter (similar differences
can be seen in SGS momentum and heat fluxes in RBC). This sensitivity, which has impor-
tant implications for data-driven SGS modeling efforts (Sun et al., 2023), has been known
for a long time in the LES community (Leonard, 1975; Sagaut, 2006). The Gaussian and box
filters extract fairly similar features, even of the almost the same amplitude (which is due to
their matched kernels’ second moments). The Gaussian+box filter captures similar features
but with a factor of ∼ 2 difference in amplitude (related to the factor of 2 difference in NGM
coefficients). However, the sharp-spectral filter captures very different features that have
much smaller length scales and amplitudes. This is the reason that RVM fails to discover
any closure from these FDNS data. We also point out that in Guan et al. (2022a, 2023),
deep convolutional neural networks (CNNs) could not be successfully trained on FDNS data
obtained using sharp-spectral cutoff filters, while high CC and stable/accurate LES runs in
different systems were achieved using CNNs trained on FDNS data obtained through the
Gaussian filter. Note that Ross et al. (2023) successfully trained CNNs (and performed
equation-discovery) using a “smoothed” sharp-spectral filter that had exponential decay at
high wavenumbers (rather than a cutoff). These findings further show the importance of
how the “true” SGS fluxes are diagnosed for offline/supervised learning.

To see the reason for this difference, we decompose the SGS tensor using u = u +
u′. Leonard (1975) introduced a decomposition of the SGS tensor into three components.
However, since two of these components were not Galilean-invariant (Speziale, 1985), a
Galilean-invariant decomposition was later proposed by Germano (1986):

τ = L+C+R. (36)

Here, L, C, and R are the Leonard, cross, and Reynolds stresses, which in 2D-FHIT are

L =

[
Lxx Lxy

Lyx Lyy

]
=

[
u 2 − u

2
u v − u v

u v − u v v 2 − v
2

]
, (37)

C =

[
Cxx Cxy

Cyx Cyy

]
=

[
2
(
uu′ − uu′

)
uv′ + u′ v − u v′ − u′ v

uv′ + u′ v − u v′ − u′ v 2
(
vv′ − v v′

) ]
, (38)

R =

[
Rxx Rxy

Ryx Ryy

]
=

[
u′ 2 − u′

2
u′v′ − u′ v′

u′v′ − u′ v′ v′ 2 − v′
2

]
. (39)

τ and J of RBC can be decomposed in the same fashion. The most familiar component,
the Reynolds stress, represents interactions in the unresolved scales that project onto the
resolved scale. The cross stress represents the direct interactions between the unresolved and
resolved scales that project onto the resolved scale. The Leonard stress includes interactions
between the resolved scales not captured by the low-resolution LES grid. See Leonard (1975)
and McDonough (2007) for more discussions.

The relative importance of these three components in τ and J depends on the filter
type and size (and even the flow characteristics). Rows 2-4 of Fig. 4 show examples of
the Leonard, cross, and Reynolds stress components of τxy. For Gaussian, box, and Gaus-
sian+box filters, the Leonard stress dominates, followed by cross and then Reynolds stress.
However, for sharp-spectral, only the Reynolds stress has coherent structures that more
or less resemble the Reynolds stress from Gaussian/box filters. The strong dependence on
filter type comes from the fact that for Gaussian and box filters, u′ ̸= 0 and u ̸= u, leading
to non-zero Leonard and cross stresses. However, for the sharp-spetcral filters, u′ = 0 and
u = u, resulting in Reynolds stress as the only non-zero component, except for potential
contributions from numerical errors.
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Figure 4. The first row shows examples of snapshots of the SGS stress, τxy, for Case K1,

diagnosed from FNDS data using different filters and NLES = 128 (see Table 1). Rows 2-4 show

the three components of this τxy: the Leonard stress, Lxy, cross stress, Cxy, and Reynolds stress,

Rxy. Note the substantially different ranges of the colorbars.

As for the dependency on filter size, as ∆ increases, the relative importance of Reynolds
stress increases: See Fig. 5 for examples from Cases K3 (τxx) and R3 (Jz). Finally, note
that the relative importance of these three components might depend on the flow itself. For
example, in 3 km-resolution regional simulations of the tropics, Sun et al. (2023) found that
the vertical (horizontal) flux of the SGS zonal momentum is dominated by the Reynolds
(Leonard) stress, which was attributed to the substantial differences of the filtered vertical
wind and the filtered zonal or meridional winds.

The above analyses further explain the strong dependency of the diagnosed “true” SGS
flux and the discovered closures on the filter type and size. These analyses also show that
depending on the filter type/size, the Reynolds stress may not be the only component of
the SGS flux that needs to be parameterized. In fact, the Leonard and cross stresses might
be even larger and have to be included in the calculation of the total SGS flux and in the
closure. Needless to say, these sensitivities have major implications for the “true” SGS flux
that is fed into the RVM or any equation-discovery algorithm (and more broadly, any ML
algorithm).
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Figure 5. The L2-norm of the SGS components versus NLES. (a) τxx from Case K3. (b) Jz

from Case R3. The contribution of SGS components is dependent on filter size: as NLES decreases,

i.e., ∆ increases, the relative importance of Reynolds stress (Leonard stress) increases (decreases).

Norm of all the SGS components are normalized by the respective SGS flux’s norm. A Gaussian

filter is used, but the same behavior is observed for the box and Gauassian+box filters.

4 Summary and Discussion

In this work, we have used relevance vector machine (RVM) to discover subgrid-scale
(SGS) closures from filtered direct numerical simulation (DNS) data for both the SGS
momentum flux tensor (in 2D forced homogeneous isotropic turbulence, 2D-FHIT, and
Rayleigh-Bénard convection, RBC) and the SGS heat flux vector (in RBC). The expansive
library includes derivatives of velocity (and temperature) up to 8th order (calculated using
spectral methods) and their quadratic combinations. We have conducted extensive robust-
ness analysis of the discovered closures across a variety of flow configurations (changing
Re,Ra, Pr, and the forcing wavenumber), filter types (Gaussian, box, Gaussian + box, and
sharp-spectral cutoff), and filter sizes.

Based on these analyses, except for when the sharp-spectral filter is used (see below),
we have robustly discovered the same closure for the SGS stress in 2D-FHIT and RBC.
We have further shown that this closure model is in fact the NGM, which can be derived
analytically from the first term of the Taylor-series expansion of the convolution integral.
The discovered SGS heat flux in RBC is also consistent with the truncated Taylor-series
expansion. We have demonstrated a few important points about these discovered closures:

1. They all have high CC (often > 0.9 − 0.95) with the true SGS terms obtained from
filtered DNS data, i.e., excellent performance based on this commonly used a priori
test metric. The same closure is discovered regardless of the system because the
expansion’s first term dominates the MSE loss function of RVM.

2. Despite this high CC, all a posteriori (online) tests result in unstable LES. This is
consistent with the past findings about the NGM in the LES community (mainly for
3D turbulence) and in the climate community (for geophysical turbulence). Here, we
argue that the inability of NGM to capture any inter-scale kinetic energy transfer
in 2D-FHIT (or any 2D flow filtered in both directions) is likely the reason for the
instability. For RBC, where filtering is done only in one direction, deeper investiga-
tions into the spectra of the SGS fluxes and inter-scale enstrophy and potential energy
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transfer, pointed to another likely reason for the instability: poor representation of
the backscatter of SGS potential energy. This suggests that the poor a posteriori
(online) performance of NGM might have different reasons in different flows.

3. The exact form of the discovered closure depends on the filter type and the filter size,
∆. For filters with compact support (i.e., all filters used here except for sharp-spectral
cutoff), the structure of the closures is the same, but coefficients are different (still,
consistent with the Taylor-series expansion, as shown in the appendices). For the
sharp-spectral cutoff filter, the equation discovery fails, again, consistent with the
fact that the Taylor-series expansion cannot be conducted, a known issue in the LES
literature (Sagaut, 2006). Again, note that with a smoothed sharp-spectral filter,
Ross et al. (2023) successfully performed equation-discovery.

As a side note, while the terms of the discovered closures might look like truncation error of
finite difference/volume discretization, in our work, all calculations (DNS solver, SGS terms,
library) are done using spectral methods. This further shows, along with the Taylor-series
expansion results, that the discovered closures are indeed representing the physics of the
SGS terms, rather than any numerical error.

As an additional piece of analysis, we also present the decomposition of the SGS terms
to the Leonard, cross, and Reynolds terms. We show that the Leonard and then cross terms
often dominate the total SGS term, though the relative amplitude of these terms decreases
as the filter size increases. However, this analysis shows that only computing the Reynolds
momentum stress or heat flux can lead to discovering an inaccurate closure (and in general,
in data-driven SGS modeling, in too-small SGS fluxes). That said, the relative importance
of these 3 terms depends on the filter type and size, and likely, on the flow’s spatial spectrum
(Sun et al., 2023).

The analyses presented in this paper are aimed at highlighting the promises and chal-
lenges of the equation-discovery approach to SGS modeling. On one hand, it is promising
that this approach robustly discovers closures that could be closely connected with those
mathematically derived, and could be easily interpreted and analyzed in terms of turbulence
physics. On the other hand,

a) The commonly used MSE loss function, or similar loss functions, will be always domi-
nated by the leading term(s) of the Taylor-series expansion. Thus, sparsity-promoting
equation-discovery techniques, at least with the common derivative/polynomial-based
libraries, will always find the NGM (if all the relevant terms exists in the library).
Note that this is true for the closure of any SGS process, as the Taylor-series expansion
applies to any compact filter. Thus, this point and many of the main points of this
paper are relevant beyond just SGS modeling for turbulence, but also SGS modeling
of other nonlinear, multi-scale processes in the Earth system.

b) Given that our diagnoses show shortcomings of the NGM with functional modeling
metrics (e.g., inter-scale energy transfer), one idea is to include such physics con-
strains in the loss function. For example, Guan et al. (2023) demonstrated that a
loss functions that combines structural and functional modeling constraints can en-
hance the a priori and a posteriori performance of the data-driven closure model
in the small-data regime. More functional-modeling physics constraints (as domain
averaged or wavenumber-dependent quantities) can be included in the loss function,
which can potentially close the gap between a priori (offline) and a posteriori (on-
line) performance. While the loss function of some techniques such as RVM may
not be flexible to change beyond MSE, other methods such as GP/GEP or symbolic
regression provide such flexibility (Ross et al., 2023; Cranmer, 2023). Also, equation-
discovery using neural network-based algorithms has gained popularity recently, as
for example, their loss functions can be very flexible given the use of backpropagation
for training (Z. Chen et al., 2021). That said, “spectral bias” (Xu et al., 2019), the
fundamental challenge of neural networks in learning high wavenumbers, can become
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an issue when equation-discovery is the goal; see Mojgani et al. (2022a) for an example
and a solution in a quasi-geostrophic turbulence testcase.

c) The fault may not entirely (or at all) lie with the MSE loss function. Guan et al.
(2022a) showed that a deep CNN with basically the same MSE loss function as the
one used here (which only accounts for structural modeling) can learn a closure for 2D
turbulence that has CC> 0.95 and leads to stable and accurate LES (and accurate
inter-scale transfers; see Guan et al. (2023)). But a major difference between the
CNN and RVM is that the former does not use a pre-defined set of basis functions,
but rather, learns them. Recent work by Subel et al. (2023) has shown that the
CNN of Guan et al. (2022a) learned a set of low-pass, high-pass, and band-pass
Gabor filters. As another major difference, the CNN’s sparsity is not user-defined,
but rather, comes from over-parameterization.

d) Related to (c), the discovered closures can depend on the choice of the library. This
issue can be addressed by trying more expansive libraries (though this can lead to
non-robust discoveries) or as mentioned earlier, by using methods such as GP or
GEP, which allow the library to evolve (see Schmidt and Lipson (2009); Udrescu and
Tegmark (2020); Ross et al. (2023)). Libraries inspired by the CNNs’ basis functions
or distilled from other deep neural networks could be explored as well (Subel et al.,
2023; Cranmer et al., 2020). Furthermore, there are studies, e.g., based on the Mori-
Zwanzig formalism, suggesting that memory has to be included in closures (Wouters
& Lucarini, 2013; Parish & Duraisamy, 2017). Hence, basis functions that include
temporal information (as already used in Ross et al. (2023)) should be further explored
in future work.

e) Choosing the hyper-parameter(s) that determine the level of sparsity might require
more thoughts too. While the L-curve criterion has shown success in many problems,
the metrics for which the curve is calculated for should be further investigated. The
common a priori metrics such as CC of SGS fluxes are completely incapable of identi-
fying shortcomings from a functional modeling perspective, such as lack of inter-scale
energy transfer or poor representation of backscattering, which can be diagnosed us-
ing additional metrics. Note that a high CC of SGS fluxes has been found as the
necessary but not sufficient condition for a successful closure (Meneveau, 1994).

f) Aside from all of the above issues related to the discovery algorithm, what needs
to be discovered (the “truth”) should be further examined. The discovered closures
can depend on the filter type/size and the methodology (e.g., calculating Reynolds
stress or the full SGS stress), because what is diagnosed as the “true” SGS flux from
DNS has such dependencies. This has important implications for any data-driven SGS
modeling approach, including those using deep neural networks or any other statistical
learning method (Fatkullin & Vanden-Eijnden, 2004; Zanna & Bolton, 2021; Guan et
al., 2022a; Sun et al., 2023).

We point out that there are other approaches to equation-discovery of SGS closures
that are more directly focused on functional modeling. One is based on learning a closure
from the differences between the evolved states of a high-resolution and a low-resolution
simulation (Lang et al., 2016; Mojgani et al., 2022a, 2022b). The other is to learn from
the differences between the evolved long-term statistics of such simulations (Schneider et
al., 2020; Schneider, Stuart, & Wu, 2021; Schneider et al., 2022). These approaches would
partially or entirely resolve the issues (a), (b), and (f) mentioned above, although challenges
(d) and (e) would remain. Furthermore, the a priori performance of such closures and
challenges in interpretability arising from numerical errors accumulated during evolutions
are left to be further investigated.

In summary, equation-discovery is a promising approach to developing interpretable,
practical, stable, and accurate SGS closures for various complex processes. However, further
work, particularly on physics-guided loss functions (that for example, contain both structural
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Table A1. List of 1D filters and their kernel and transfer functions. All filters are implemented in

the spectral space, i.e., by applying their transfer function on Fourier-transformed variables. Here,

r and k are coordinates in the physical space and spectral space, respectively. ⊙ is the Hadamard

product and (̂.) is the Fourier transform.

Filter Kernel function Transfer function

General G (r) Ĝ (k) =

∫ ∞

−∞
ei2πkrG (r) dr

Gaussian (GG)

(
6

π∆2

) 1
2

exp

(
−6r2

∆2

)
exp

(
−k

2∆2

24

)

Box (GB)


1

∆
, if r ≤ ∆

2
0, otherwise

sin( 12k∆)
1
2k∆

Gaussian + box GG (r) ∗GB (r) ĜG (k)⊙ ĜB (k)
(GGB)

Sharp-spectral cutoff
sin
(
πr
∆

)
πr

1, if
(
kc − |k| ≥ 0

)
, kc =

2π

∆
0, otherwise

(GS)

and functional modeling components), physics- and data-guided libraries, and better metrics
are needed.

Appendix A Filtering Procedure

In this work, we explore the most commonly used filters in LES and climate modeling:
the Gaussian filter, the box filter, the Gaussian + box filter, and the sharp-spectral filter
(Sagaut, 2006; Grooms et al., 2021). The box filter (also known as the top-hat filter) is
simply the average of a variable over a box of dimension ∆; for instance, in 1D space,
u (x, t) is the average of u (x◦, t) over x−∆/2 < x◦ < x+∆/2. The Gaussian filter’s kernel

is G (r) =
1

σ
√
2π

exp

(
−1

2

(
r − µ

σ

)2
)
, with zero mean, µ = 0, and variance, σ2 = ∆2/12.

These values are chosen to match the second moments of the Gaussian and box filters
following Leonard (1975). The kernel for Gaussian + box filter is the convolution of the
Gaussian and box filter kernels, which is equivalent to using a Gaussian filter followed by a
box filter. The sharp-spectral cutoff filter simply removes the wavenumbers beyond a cutoff,
kc. The 1D filters used in this work are listed in Table A1, and the 2D filters are listed in
Table A2. Note that all of these 4 filters commute with the spatial and temporal derivative
operators on uniform grids (Pope, 2000; Sagaut, 2006).

Appendix B The 2D-FHIT Numerical Solver

The numerical solver is the same as the one used in Guan et al. (2022a). Briefly, we
solve Eqs. (4)-(5) in the vorticity-streamfunction, ω − ψ, formulation, where

ω = (∇× u) · ẑ. (B1)
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Table A2. List of 2D filters and their kernel and transfer functions. All filters are implemented in

the spectral space, i.e., by applying their transfer function on Fourier-transformed variables. Here,

r and k are coordinates in the physical space and spectral space, respectively, with r = (rx, ry),

|r|2 = r2x + r2y, k = (kx, ky), and |k|2 = k2
x + k2

y. ⊙ is the Hadamard product and (̂.) is the Fourier

transform.

Filter Kernel function Transfer function

General G (r) Ĝ (k) =

∫ ∞

−∞

∫ ∞

−∞
ei2π(kxrx+kyry)G (r) dr

Gaussian (GG)
6

π∆2
exp

(
−6 |r|2

∆2

)
exp

(
−|k|2 ∆2

24

)

Box (GB)


1

∆2
, if (rx, ry) ≤

∆

2
0, otherwise

sin( 12kx∆) sin
(
1
2ky∆

)(
1
2kx∆

) (
1
2ky∆

)
Gaussian + box GG (r) ∗GB (r) ĜG (k)⊙ ĜB (k)

(GGB)

Sharp-spectral
sin
(

π|r|
∆

)
π |r|

1, if
(
kc − |k| ≥ 0

)
, kc =

2π

∆
0, otherwise

(GS)

With this formulation, the governing equations are

∇2ψ = −ω, (B2)
∂ω

∂t
+N (ω, ψ) =

1

Re
∇2ω − χω − f, (B3)

where N (ω, ψ) is

N (ω, ψ) =
∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y
. (B4)

f is a deterministic forcing (Chandler & Kerswell, 2013; Kochkov et al., 2021):

f = fkx
cos(fkx

x) + fky
cos(fky

y), (B5)

where fkx
and fky

are the forcing wavenumbers and χ = 0.1 represents the Rayleigh drag
coefficient. Comparing Eq. (5) with Eq. (B3), it is evident that ∇ × R = −χω and
∇×F = −f .

In DNS, Eqs. (B2)-(B3) are solved in a doubly periodic domain using a Fourier-
Fourier pseudo-spectral solver with second-order Adams-Bashforth and Crank Nicholson
time-integration schemes for the advection and viscous terms, respectively (time step ∆tDNS).
For LES, we use the same solver with lower spatio-temporal resolution: We use NLES that
is 8 to 64 times smaller than NDNS, and ∆tLES = 10∆tDNS.

Appendix C The RBC Numerical Solver

We solve Eqs. (9)-(11) using a Fourier-Chebyshev pseudo-spectral solver (Khodkar et
al., 2019; Khodkar & Hassanzadeh, 2018). Briefly, using the ω − ψ formulation, the dimen-
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sionless governing equations become

∇2ψ = −ω (C1)
∂ω

∂t
+N (ω, ψ) = Pr∇2ω + PrRa θẑ, (C2)

∂θ

∂t
+M (θ, ψ) +

∂ψ

∂x
= ∇2θ, (C3)

where N (ω, ψ) and M (θ, ψ) are

N (ω, ψ) =
∂ψ

∂z

∂ω

∂x
− ∂ψ

∂x

∂ω

∂z
, M(θ, ψ) =

∂ψ

∂z

∂θ

∂x
− ∂ψ

∂x

∂θ

∂z
. (C4)

For DNS, we solve Eqs. (C1)-(C3) in domain (6π, 1). Periodic boundary conditions are
imposed in the horizontal direction and no-slip and fixed temperature boundary conditions
are imposed on the horizontal walls. Second-order Adams-Bashforth and Crank Nicholson
time integration schemes are used for the advection and viscous terms, respectively. Table 2
presents the NDNS and NLES for each case. For LES, we use the same solver but with lower
resolution in the horizontal direction.

Appendix D Taylor-series Expansion of the SGS Flux for a 1D Field

Let’s focus on a spatially 1D field a(x) (dependence on t is not explicitly written for
brevity). The filtering operation’s convolution integral (Eq. (1)) becomes

a(x) = G ∗ a =

∫ ∞

−∞
G (rx) a (x− rx) drx, (D1)

The Taylor-series expansion of a(x− rx) around a(x) gives

a (x− rx) = a (x)− 1

1!

∂a (x)

∂x
rx +

1

2!

∂2a (x)

∂x2
r2x + . . . (D2)

Substituting this into Eq. (D1) and using a = a(x), a = a(x) for brevity yields

a =

∫ ∞

−∞
G (rx) adrx −

∫ ∞

−∞
G (rx)

∂a

∂x
rxdrx +

1

2!

∫ ∞

−∞
G (rx)

∂2a

∂x2
r2xdrx + . . . (D3)

= a

∫ ∞

−∞
G (rx) drx − ∂a

∂x

∫ ∞

−∞
G (rx) rxdrx +

1

2!

∂2a

∂x2

∫ ∞

−∞
G (rx) r

2
xdrx + . . . (D4)

The second line follows the first line considering that a and its derivatives do not depend
on the variable of integration, rx. In Eq. (D4), a depends on a and its derivatives, with
coefficients that only depend on the filter type and size through moments of the kernel, G.
For example, for a Gaussian filter (Table A1)∫ ∞

−∞
G (rx) drx = 1,

∫ ∞

−∞
G (rx) rxdrx = 0,

∫ ∞

−∞
G (rx) r

2
xdrx =

∆2

12
. (D5)

Note that all the odd moments are 0, resulting in O
(
∆4
)
as the order of the truncated

terms once the moments in Eq. (D5) are substituted in Eq. (D4):

a = a+
1

2!

∆2

12

∂2a

∂x2
+O

(
∆4
)
. (D6)

To calculate a term like τxx = u2 − u2, we first use a = u in Eq. (D6) and then square it to
arrive at

u2 = u2 + 2u

(
1

2!

∆2

12

∂2u

∂x2

)
+O

(
∆4
)
. (D7)
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Next, we use a = u2 in Eq. (D6) to obtain

u2 = u2 +
1

2!

∆2

12

∂2u2

∂x2
+O

(
∆4
)
, (D8)

= u2 +
2

2!

∆2

12

((
∂u

∂x

)2

+ u
∂2u

∂x2

)
+O

(
∆4
)
. (D9)

Using Eq. (D7) and Eq. (D9) we find

τxx = u2 − u2 =
∆2

12

(
∂u

∂x

)2

+O
(
∆4
)
. (D10)

Note that this expression depends on u rather than u, which is what we desire. Next, we
use a = ∂u/∂x in Eq. (D6) to obtain

∂u

∂x
=
∂u

∂x
+

1

2!

∆2

12

∂3u

∂x3
+O

(
∆4
)
. (D11)

Using this expression in Eq. (D10) yields an analytically derived closure for τxx with error
O
(
∆4
)

τNGM
xx = u2 − u2 =

∆2

12

(
∂u

∂x

)2

. (D12)

This is the NGM (Leonard, 1975; Sagaut, 2006). Four issues should be emphasized here

i. This procedure can be followed for any filter type. However, the Taylor series is
divergent for filters such as sharp-spectral, whose kernel’s second-order moment is
indefinite; for such filters, NGM does not exist (Meneveau & Katz, 2000; Sagaut,
2006).

ii. The same procedure can be followed to derive NGM for higher dimensions, e.g., τNGM
xx ,

τNGM
xy , and τNGM

yy in 2D; see Sagaut (2006).

iii. The coefficients in NGM depend on the filter’ kernel and its moments (Eq. (D5)).
For Gaussian and top-hat, the parameters of the kernels are chosen to match their
first moment, leading to ∆2/12 coefficient for both. However the coefficients differ
for higher-order terms (Sagaut, 2006).

iv. The procedure presented above is not specific to turbulence or even dynamical sys-
tems. The procedure and its outcome are valid for the filtered quadratic nonlinearity
of any two variables, even random variables.

Appendix E Subgrid-scale Energy and Enstrophy Transfers

The filtered rate of train tensor S and the anisotropic part of the SGS stress tensor τr

are

S =


∂u

∂x

1

2

(
∂u

∂y
+
∂v

∂x

)
1

2

(
∂u

∂y
+
∂v

∂x

)
∂v

∂y

 , (E1)

τr = τ− 1

2
tr (τ) I, (E2)

where I is the identity matrix. In 2D with filtering in both directions, the anisotropic part
of the SGS stress tensor from the NGM is

τNGM-r = τNGM − 1

2
tr
(
τNGM

)
I. (E3)

τNGM-r
2D =

∆2

12


1

2

((
∂u

∂y

)2

−
(
∂v

∂x

)2
)

∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y

∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y
−1

2

((
∂u

∂y

)2

−
(
∂v

∂x

)2
)
 . (E4)
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Inserting this and S (Eq. (E1)) into Eq. (30) shows zero point-wise inter-scale (kinetic)
energy transfer in NGM: PNGM

τ (x, y, t) = 0.

In buoyancy-driven turbulence such as RBC, the total inter-scale energy transfer rate
PE is the sum of the rate of transfer of kinetic energy (Pτ ) due to SGS momentum fluxes
and potential energy (PJ) due to SGS heat fluxes (Eidson, 1985; Peng & Davidson, 2002):

PE = Pτ + PJ

= −τ rijSij −RaPr Jz. (E5)

Given the 1D filtering used in RBC, τNGM-r
1D becomes

τNGM-r
1D =

∆2

12


1

2

((
∂u

∂x

)2

−
(
∂w

∂x

)2
)

∂u

∂x

∂w

∂x

∂u

∂x

∂w

∂x
−1

2

((
∂u

∂x

)2

−
(
∂w

∂x

)2
)
 , (E6)

and PNGM
τ is not strictly zero: The resulting production of subgrid-scale (SGS) energy

transfer for NGM is

PNGM
τ = −∆2

12

(
∂3u

∂x3
+
∂u

∂x

∂u

∂z

∂w

∂x

)
. (E7)

PNGM
J = −RaPr ∆

2

12

∂w

∂x

∂θ

∂x
(E8)

Similarly, one can define the inter-scale enstrophy transfer for 2D-FHIT and RBC as
(S. Chen et al., 2003)

PZ = −∇ω · (uω − uω) . (E9)

Open Research

The codes and data used in this work can be found at https://github.com/jakharkaran/
EqsDiscovery 2D-FHIT RBC and https://doi.org/10.5281/zenodo.7500647, respectively.
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