
Enviromental Data Science (2023), 4:20 1–16

RESEARCH ARTICLE

An Analysis of Deep Learning Parameterizations for Ocean
Subgrid Eddy Forcing
Cem Gultekin1, Adam Subel1, Cheng Zhang3, Matan Leibovich1, Pavel Perezhogin1, Alistair
Adcroft3, Carlos Fernandez-Granda1,2 and Laure Zanna1

1Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA.
2Center for Data Science, New York University, New York, NY 10011, USA.
3Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ 08542, USA.

Keywords: mesoscale eddies, deep learning parameterization, climate modeling

MSC Codes: Primary – CODE1; Secondary – CODE2, CODE3

Abstract
Due to computational constraints, climate simulations cannot resolve a range of small-scale physical processes,
which have a significant impact on the large-scale evolution of the climate system. Parameterization is an approach to
capture the effect of these processes, without resolving them explicitly. In recent years, data-driven parameterizations
based on convolutional neural networks have obtained promising results. In this work, we provide an in-depth
analysis of these parameterizations developed using data from ocean simulations. The parametrizations account for
the effect of mesoscale eddies toward improving simulations of momentum, heat, and mass exchange in the ocean.
Our results provide several insights into the properties of data-driven parameterizations based on neural networks.
First, their performance can be substantially improved by increasing the geographic extent of the training data.
Second, they learn nonlinear structure, since they are able to outperform a linear baseline. Third, they generalize
robustly across different CO2 forcings, but not necessarily across different ocean depths. Fourth, they exploit a
relatively small region of their input to generate their output. Our results will guide the further development of
ocean mesoscale eddy parameterizations, and multiscale modeling more generally.

Impact Statement

Climate simulations spanning decades or centuries cannot be run at a high spatial resolution due
to computational constraints. Unfortunately, as a result, critical fine-scale physical processes such as
mesoscale eddies are not captured by the simulations. Deep learning has emerged as a promising solution
to incorporate the effect of these processes. In this work, we evaluate several properties of these models
that are crucial for their deployment in climate simulations.

1. Introduction

Despite advances in hardware, climate simulations spanning decades or centuries are limited in their
spatial resolution to tens of kilometers (Balaji, 2021). This resolution is insufficient to resolve mesoscale
eddies that are crucial for the exchange of momentum, heat, and mass (Capet et al., 2008; Salmon,
1980) as well as for large-scale ocean circulation (Hallberg, 2013a; Keating et al., 2012; Waterman
and Jayne, 2011). Parameterization is an approach to capture the effect of small-scale processes on the
large-scale variables in climate models without resolving them explicitly. The main idea is to modify
the governing equations of a low-resolution model by adding a forcing term called subgrid forcing. This
term encapsulates the missing physics, representing the effect of the unresolved physical processes on
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the resolved variables in the climate model. The key challenge is that the subgrid forcing is a function
of high-resolution quantities, but only low-resolution quantities are observed in the model. Traditional
parameterization approaches are typically rooted in first-principle analysis of the climate-model physics
(Bony et al., 2015; Randall et al., 2003; Schneider et al., 2017).

In recent years, data-driven parameterizations have been developed with promising results (Beucler
et al., 2021; Bodner et al., 2023; Frezat et al., 2021; Guan et al., 2022; Guillaumin and Zanna, 2021;
Perezhogin et al., 2024; Sane et al., 2023; Yuval and O’Gorman, 2020; Zanna and Bolton, 2020; Zhang
et al., 2023). In the data-driven framework, a high-resolution simulation capable of resolving the physical
processes of interest is utilized as ground truth. The resolution of the data is then artificially reduced
via filtering and coarse-graining to enable the computation of "ground-truth" subgrid forcing. Machine
learning (ML) algorithms are used to predict this forcing from the low-resolution data. In the case
of mesoscale eddies, applying this framework to convolutional neural networks (CNNs) has achieved
promising results (Guillaumin and Zanna, 2021; Zanna and Bolton, 2020).

Our goal in this work is to provide an in-depth study of CNNs for parameterization. We utilize the
CM2.6 dataset as our source of high-resolution data. CM2.6 is a publicly-available advanced coupled cli-
mate model (Griffies, 2015) with an approximate resolution of 0.1◦, making it well-suited for accurately
representing mesoscale eddies (Hallberg, 2013b). The dataset includes surface and subsurface data for
two levels of CO2 in the atmosphere. Guillaumin and Zanna, 2021 proposed a CNN-parameterization for
surface momentum fields in CM2.6 at 0.4◦ resolution. Here, we extend their approach to parameterize
temperature, and build upon it to study the following key questions about CNN-based mesoscale-eddy
parameterizations.
Does the geographic extent of the training dataset matter? In Guillaumin and Zanna (2021), the
training domain was constrained to four relatively small regions of the Pacific and Atlantic Oceans.
We show that extending the training dataset to encompass the entire global ocean surface leads to a
substantial improvement in performance, particularly for temperature.
Do the properties of CNN parameterizations change at different resolutions? When training a
CNN parameterization, an important consideration is how to choose the resolution of the target low-
resolution climate model. We studied the performance of CNN-based parameterizations at resolutions
of 0.4◦, 0.8◦, 1.2◦, and 1.6◦. Our results show to what extent reducing resolution decreases the skill
of the parameterizations, and also demonstrate that their properties remain similar across the different
resolutions.
Do CNN-parameterizations just invert the coarse-graining and filtering operator? As explained
above, CNN-parameterizations estimate subgrid forcing from low-resolution data, obtained from a
high-resolution model via filtering and coarse-graining. These filtering and coarse-graining operators
are linear and can be partially inverted to estimate subgrid turbulence fields (and hence the subgrid
forcing itself) (Langford and Moser, 1999). Examples of subgrid parameterizations based on partial filter
inversion include the velocity gradient model (Chow et al., 2005; Clark et al., 1979), the scale-similarity
model (Bardina et al., 1980; Meneveau and Katz, 2000) and the approximate deconvolution model (Stolz
and Adams, 1999). An important question is whether CNN-parameterizations just learn to implement
this partial inversion. We developed a baseline parameterization solely based on linear inversion to
answer it. Our results indicate that CNNs outperform this baseline parameterization, suggesting that
they are able to leverage physical structure and do not merely learn to perform inversion.
Do data-driven parameterizations generalize across CO2 levels and ocean depths? Understanding
the generalization properties of data-driven parameterizations is crucial for their deployment in real-
istic models. In particular, determining their behavior at different CO2 levels is critical for long-term
climate simulations and predictions. Our results show that a CNN-based parameterization trained at
pre-industrial CO2 levels generalizes robustly at significantly increased CO2 levels. In addition, we inves-
tigate the generalization ability these models across different ocean depths, ranging from the surface
down to 728 meters. In MOM-suite climate models, the ocean is represented as vertically stacked, irreg-
ularly spaced horizontal layers (Griffies, 2015), with substantially different dynamics. At the surface,
wind, solar radiation, and atmospheric interactions dominate circulation, whereas at greater depths,
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dynamics depend more on temperature and salinity (Salmon, 1980). Our results show that surface-
trained models have difficulties generalizing at greater depths, and, conversely, models trained beyond
55 meters do not generalize robustly to the surface.
What spatial extent do CNN-parameterizations require as input? The spatial extent needed to
compute a parameterization at each grid point greatly influences its computational cost. In addition, it
informs the degree of nonlocality needed to approximate the local subgrid forcing. In order to investigate
its impact on CNN-parameterizations, we evaluated the performance of multiple CNNs with a range
of input sizes. These experiments were complemented with a gradient-based sensitivity analysis. Our
results indicate that a much smaller input size than the one used in previous models is sufficient to
achieve strong performance.

The paper is organized into five sections, including the introduction. In Section 2, we describe
the governing equations of the climate simulation, and explain how we generate the data to train the
data-driven parameterizations. In Section 3, we define data-driven parameterizations based on deep
learning, as well as a baseline parameterization based on linear inversion. In Section 4, we describe our
experiments and present the results. Finally, in Section 5, we summarize our conclusions and discuss
directions for future research.

2. Governing Equations and Data Coarsening

In this section we describe the governing equations of our climate model of interest, as well as the
data-coarsening procedure used to generate the data needed to train data-driven parameterizations. Our
ground-truth high-resolution climate model is CM2.6, a coupled model that includes various physical
quantities describing oceanic evolution, such as momentum, temperature, salinity, and biogeochemical
tracers (Griffies, 2015). The model resolution (0.1◦) is sufficient to faithfully represent mesoscale eddies.
In our experiments, we consider seven different ocean depths, including the surface, and two different
CO2 levels.

Our study focuses on the evolution of three variables: longitudinal and latitudinal momentum fields
(𝑢 and 𝑣, respectively) and the temperature field (𝑇). The evolution of these quantities is governed by
the following equation:

𝜕𝑐↑

𝜕𝑡
+ 𝒖↑ · ∇𝑐↑ = 𝐹

↑
𝑐 , 𝑐 ∈ {𝑢, 𝑣, 𝑇} (2.1)

We use the arrow symbol ↑ to denote fine-grid variables. The vector 𝒖↑ represents the components
of longitudinal (𝑢) and latitudinal (𝑣) momentum on the fine grid. The gradient operator ∇ contains the
spatial derivatives in these two directions using spherical coordinates. Note that we are omitting the
discussion of the vertical momentum contribution to the equation, merely because its contribution to
the subgrid terms diagnosed in the model is small compared to the horizontal terms. The momentum
forcing terms 𝐹

↑
𝑢 and 𝐹

↑
𝑣 account for external sources of dynamics, such as frictional and pressure

stresses, the Coriolis force, or transport between vertically adjacent stratified ocean layers (Griffies,
2015). The temperature forcing 𝐹

↑
𝑇

accounts for isopycnal and diapycnal mixing, as well as heat fluxes
at the ocean surface.

In climate modeling, it is common to employ a local Cartesian coordinate system that approximates
the Earth’s surface as a flat plane when dealing with small variations. This coordinate system allows for
measurements in meters rather than angles. Therefore, we define ∇ = (𝜕𝑥 , 𝜕𝑦) as the spatial gradient in
meters along the longitudinal and latitudinal directions.

Our goal is to study the properties of data-driven parameterizations that estimate the subgrid forcing
of low-resolution versions of CM2.6. To obtain these coarser datasets, we reduce the resolution of
the CM2.6 data via a two-step procedure proposed in Guillaumin and Zanna (2021), consisting of
filtering and coarse-graining. Filtering smooths the data on the original high-resolution fine grid.
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We leverage two alternative filters for this purpose: Gaussian filtering and General-Circulation-Model
(GCM) filtering (Loose et al., 2022).

We use a tilde to denote the low-resolution variables. The equations governing the low-resolution
variables are derived from (2.1) by applying filtering on both sides.

The vertical advection term (𝑤 𝜕𝑐
𝜕𝑧

) is significantly smaller than the horizontal terms, at all depths in
this dataset. Therefore we reduce our analysis to the 2D system:

In order to achieve the same form as the high-resolution equation, the low-resolution advective term,
𝒖↑ · ∇𝑐↑ is added to both sides and the terms are rearranged:

( 𝜕𝑐↑
𝜕𝑡

+ 𝒖↑ · ∇𝑐↑
)
= 𝐹

↑
𝑐 , (2.2a)

𝜕𝑐↑

𝜕𝑡
+ 𝒖↑ · ∇𝑐↑ = 𝒖↑ · ∇𝑐↑ −

(
𝒖↑ · ∇𝑐↑

)
+ 𝐹

↑
𝑐 (2.2b)

𝑆
↑
𝑐 ≡ 𝒖↑ · ∇𝑐↑ −

(
𝒖↑ · ∇𝑐↑

)
, 𝑐 ∈ {𝑢, 𝑣, 𝑇} (2.2c)

The term 𝑆
↑
𝑐 is the subgrid forcing on the fine-grid. The low resolution data are mapped to a coarser

grid via coarse-graining which reduces the grid dimensions by a coarse-graining factor 𝜅. This yields the
coarse-grid dataset. We use

〈〉
𝜅

to denote the coarse-graining operation. For example, the longitudinal
momentum on the coarse grid equals

𝑢 =
〈
𝑢↑
〉
𝜅
.

Crucially, the coarse-grained subgrid forcing 𝑆𝑐,

𝑆𝑐 =
〈
𝒖↑ · ∇𝑐↑ − 𝒖↑ · ∇𝑐↑

〉
𝜅
, 𝑐 = {𝑢, 𝑣, 𝑇}, (2.3)

depicted in Figure 1, depends on the fine-grained quantities. The key challenge of parameterization is to
estimate this subgrid forcing from coarse-grained data, in order to close the corresponding coarse-grid
equations.

3. Methodology

3.1. Data-Driven Parameterization Based on Deep Learning

In this section, we describe a data-driven framework for the estimation of the subgrid forcing defined in
Section 2 using deep neural networks. To simplify the exposition, let 𝑆𝑡 ,𝑥 indicate the subgrid forcing
corresponding to one of our three variables of interest (longitudinal momentum, latitudinal momentum,
or temperature) at a time 𝑡 and location 𝑥. The goal is to estimate 𝑆𝑡 ,𝑥 from the low-resolution momentum
and temperature fields, denoted by u𝑡 ,𝑥 and 𝑇𝑡 ,𝑥 , surrounding that location at that time.

Following previous studies (Bolton and Zanna, 2019; Guillaumin and Zanna, 2021; Perezhogin et
al., 2023; Ross et al., 2023), we used a deep convolutional neural network 𝑆Θ, where Θ represents the
network parameters, to produce an estimate 𝑆Θ (u𝑡 ,𝑥 , 𝑇𝑡 ,𝑥) of the subgrid forcing 𝑆𝑡 ,𝑥 given the low-
resolution data u𝑡 ,𝑥 and 𝑇𝑡 ,𝑥 . In order to train and evaluate the neural network, we partitioned the CM2.6
data in time: the first 80% was used to create a training set Ttrain and the last 15% to create a test set
Ttest, leaving a 5% buffer in between to minimize dependence between the sets due to autocorrelation.
The training and test examples were generated from the high-resolution CM2.6 data: u𝑡 ,𝑥 and 𝑇𝑡 ,𝑥 were
obtained via filtering and coarse-graining of the high-resolution momentum and temperature maps,
and the corresponding ground-truth subgrid forcing 𝑆𝑡 ,𝑥 was computed following (2.3). These data
correspond to a control simulation with pre-industrial atmospheric CO2 levels.

In addition, a forced simulation with increased CO2 levels was used to create another test set.
The forced simulation experiences a one percent increase in CO2 levels per year from the levels of
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𝜅 = 4 𝜅 = 8 𝜅 = 12 𝜅 = 16

𝑢

𝑇

𝑆𝑢

𝑆𝑇

Figure 1. Examples of coarse-grid variables for different values of the coarsening factor 𝜅 along with
their corresponding subgrid eddy forcing. The fine-grid data are extracted from the CM2.6 surface
dataset, and filtered using GCM filtering. The rows represent longitudinal momentum (𝑢), temperature
(𝑇), subgrid longitudinal momentum forcing (𝑆𝑢), and subgrid temperature forcing (𝑆𝑇 ) respectively.

the control simulation until it reaches double CO2 levels after 70 years. The available data from the
simulation corresponds to years 60–80. These data were processed in the same way as data from the
control simulation to create the +1%CO2 test dataset.

Additional training and test sets were created from subsurface data at different ocean depths. These
data from the simulation at control CO2 levels, are available in the form of 5-day averages over the
same time period. They were processed in the same way as the surface data to generate corresponding
training and test sets for each depth.

The parameters of the neural network were learned via minimization of a loss function, quantifying
the approximation error over the training set. We consider two different loss functions. The first loss is
the mean squared error (MSE), approximated by the residual sum of squared errors,

MSE(Θ) = 1
𝑛train

∑︁
𝑡∈Ttrain

∑︁
𝑥∈X

(
𝑆Θ (u𝑡 ,𝑥 , 𝑇𝑡 ,𝑥) − 𝑆𝑡 ,𝑥

)2
, (3.1)

where Ttrain, X and 𝑛train denote the times, locations and number of data included in the training set.
The second loss is the heteroscedastic Gaussian loss (HGL) proposed in Guillaumin and Zanna, 2021,
which simultaneously estimates the conditional mean and conditional variance of the subgrid forcing
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by maximizing a Gaussian likelihood

HGL(Θ) =
∑︁

𝑡∈Ttrain

∑︁
𝑥∈X

(
𝑆Θ (u𝑡 ,𝑥 , 𝑇𝑡 ,𝑥) − 𝑆𝑡 ,𝑥

)2

2𝑉Θ (u𝑡 ,𝑥 , 𝑇𝑡 ,𝑥)
+ log(𝑉Θ (u𝑡 ,𝑥 , 𝑇𝑡 ,𝑥)). (3.2)

𝑉Θ (u𝑡 ,𝑥 , 𝑇𝑡 ,𝑥) is an estimate of the conditional variance of the subgrid forcing given the low-resolution
data, which is also generated by a convolutional neural network. Both loss functions were minimized
via batch-based stochastic gradient descent with respect to the network parameters. Additional details
about the training procedure are reported in Supplementary Section A.

3.2. Linear-Inversion Baseline Parameterization

In this section we propose a procedure to estimate subgrid forcing based on partial inversion of the
filtering and coarse-graining operations described in Section 2. Many subgrid parameterizations are
based on an approximate inversion of the filtering operator, achieved for instance via popular inversion
methods based on truncated Taylor series expansion and iterative deconvolution (Carati et al., 2001;
Chow et al., 2005). The accuracy of these parameterizations depends on the number of iterations in the
inversion procedure. Here we take a different approach, performing a complete (not iterative) inversion.

Let 𝐿 represent a linear operator mapping a high-resolution variable defined on the fine grid to its
filtered and coarse-grained counterpart. For example, the longitudinal momentum on the coarse grid
equals

𝑢 =
〈
𝑢↑
〉
𝜅
= 𝐿𝑢↑, (3.3)

where 𝑢↑ is the high-resolution longitudinal momentum (following the notation of Section 2). The
pseudoinverse 𝐿† of the linear operator projects coarse-grid variables onto the fine grid,

𝑐inv = 𝐿†𝑐, 𝑐 = {𝑢, 𝑣, 𝑇}, (3.4)
𝒖inv = (𝑢inv, 𝑣inv). (3.5)

We define the linear-inversion parameterization as the estimate of the subgrid forcing obtained by
plugging the fine-grid projection of the corresponding variable into equation (2.3):

𝑆inv,𝑐 =
〈
𝒖inv · ∇𝑐inv − 𝒖inv · ∇𝑐inv

〉
𝜅
, 𝑐 = {𝑢, 𝑣, 𝑇}. (3.6)

Note that this parameterization completely ignores the high-frequency information suppressed by the
coarse-graining operation. In addition, the filtering operation can only be inverted at frequencies where
its Fourier transfer function (the set of eigenvalues that defines how the filter attenuates the Fourier
harmonics (Grooms et al., 2021)) is nonzero (Stolz and Adams, 1999).

The pseudoinverse operator is computed according to the following formula: 𝐿† = 𝐿𝑇 (𝐿𝐿𝑇 )−1,
where the mapping 𝐿 is represented by a sparse matrix and (𝐿𝐿𝑇 )−1 is approximated by a sparse matrix
up to numerical precision, as explained in more detail in Supplementary Section B.

4. Experiments and Results

4.1. Evaluation

The parameterizations described in Section 3 were evaluated on the held-out test set, containing 10%
of the CM2.6 data. Our main evaluation metric is the coefficient of determination 𝑅2. Let 𝑆𝑡 ,𝑥 denote
the ground-truth subgrid forcing at time 𝑡 and location 𝑥, and 𝑆(u𝑡 ,𝑥 , 𝑇𝑡 ,𝑥) the estimate computed from
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the low-resolution data u𝑡 ,𝑥 and 𝑇𝑡 ,𝑥 . The 𝑅2 coefficient is defined as

𝑅2 = 1 −

∑
𝑡∈Ttest

∑
𝑥∈X

(
𝑆(u𝑡 ,𝑥 , 𝑇𝑡 ,𝑥) − 𝑆𝑡 ,𝑥

)2∑
𝑡∈Ttest

∑
𝑥∈X 𝑆2

𝑡 ,𝑥

, (4.1)

where Ttest contains the time indices corresponding to the test set and X determines the spatial extent
over which we evaluate the model.

4.2. Geographic Extent of the Training Data

In order to study the effect of the geographic extent of the training data on CNN parameterizations, we
train the same CNN models on two training sets with different geographic coverage:

• The 4-regions models were trained on the four regions utilized in Guillaumin and Zanna (2021),
which are depicted in Supplementary Figure C.

• The global models were trained on the full planet.

We trained versions of these models at different resolutions: 0.4◦, 0.8◦, 1.2◦, and 1.6◦, obtained by
setting the data-coarsening factor 𝜅 equal to 4, 8, 16 and 32 respectively (see Section 2).

Figure 2 provides a visualization of the performance of both CNN models over the whole globe. The
global CNN model trained on the whole planet consistently outperforms the 4-regions model for both
momentum components and temperature. The difference in performance is especially pronounced at
extreme northern and southern latitudes. The first row of Figure 4 reports the aggregated performance
of both models for four different resolutions, corresponding to coarse-graining factors of 4, 8, 12 and
16. The global model exhibits strong performance, surpassing the 4-regions model at all resolutions for
both momentum and temperature. The difference in performance is particularly marked for temperature,
where the 4-regions model performs poorly.

Figure 3 shows that the uncertainty-quantification capabilities of the CNN models are also improved
by increasing the geographic extent of the training data. The figure shows the empirical distributions of
the subgrid forcing corresponding to longitudinal momentum (top row) and temperature (bottom row)
on the held-out test set, standardized using the conditional mean and conditional variance produced by
CNNs trained using the heteroscedastic Gaussian loss (3.2). If these conditional estimates are accurate,
the standardized distributions should have zero mean and unit variance. The global CNN (green) achieves
this to a larger extent than the 4-regions CNN (red).

4.3. Comparison with Linear-Inversion Parameterization

The linear-inversion parameterization presented in Section 3.2 estimates the subgrid forcing via a partial
linear inversion of the coarse-graining operator. It is important to note that this partial linear inversion
is nontrivial, because the data-coarsening process is not translation invariant due to coastal boundaries.

Figure 2 shows the test performance of this baseline over the whole globe, and compares it to the
CNN parameterizations. Close to the North Pole, its performance is superior, and it also outperforms the
4-regions CNN at extreme southern latitudes and some other regions, such as the South Pacific. The first
row of Figure 4 compares the overall performance of the models at several resolutions. For momentum,
the linear baseline is on par with the 4-regions CNN, but inferior to the global CNN. For temperature,
it is on par with the global CNN, and superior to the 4-regions CNN. We conclude that partial linear
inversion provides a strong baseline, and that the global CNN is able to learn high-resolution structure
that is inaccessible via linear inversion.
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Figure 2. Maps of the 𝑅2 coefficient for longitudinal momentum (left column) and temperature (right
column) parameterizations computed on a held-out test set. The rows correspond to the linear-inversion
parameterization described in Section 3.2 (top) and the CNN parameterization described in Section 3.1
trained on 4 regions (center) and on the whole planet (bottom). The CNN models were trained by
minimizing the MSE loss. The data were processed using General-Circulation-Model filtering and
coarse-grained with a factor of 4. The global CNN model trained on the whole planet consistently
outperforms the 4-regions model. It also outperforms the linear-inversion baseline, except in at latitudes
close to the North Pole. The 4-regions model exhibits poor performance at extreme northern and
southern latitudes.

4.4. Generalization Across CO2 Levels and Depth

The second row of Figure 4 reports the overall performance of CNN models trained at pre-industrial
CO2 levels, when tested on a forced simulation with a 1% increase in CO2 level per year, until the level
doubles after 70 years (Griffies, 2015). Overall, we observe that the models preserve similar performance
levels, indicating that they are able to generalize robustly across different CO2 levels. Generalization
for momentum is better than for temperature. This may be partially explained by the fact that the
CO2 increase produces a greater distribution shift for temperature than for momentum, as shown in
Supplementary Figure 12.

In addition, we investigated the performance of CNN-parameterizations at different depths, utilizing
the subsurface training and test sets described in Section 3.1. We trained separate CNN models on the
whole planet at six different depths: 5 m, 55 m, 110 m, 181 m, 330 m, and 728 m. We tested these
models and the surface model at all depths (including the surface). Figure 5 shows the results. The
surface model generalizes well to 5 m and vice versa, but both models do not generalize robustly to
greater depths. Conversely, models trained at depths 55 m and beyond do not generalize robustly to the
surface or to 5 m, but do generalize to the remaining depths. This indicates that the models learn very
different structure at the surface and near-surface, with respect to greater depths. The linear-inversion
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𝜅 = 4 𝜅 = 8 𝜅 = 12 𝜅 = 16
S 𝑢

S 𝑇

Figure 3. The graphs show the empirical distributions of the subgrid forcing corresponding to longi-
tudinal momentum (top row) and temperature (bottom row) on the held-out test set, standardized using
the conditional mean and conditional variance produced by CNNs trained using the heteroscedastic
Gaussian loss (3.2). Results for four different resolutions, corresponding to coarse-graining factors of
4, 8, 12 and 16 are shown. In all cases, the global CNN (green), trained on the entire globe, results
in an empirical distribution that more closely resembles a Gaussian with unit variance (blue, dashed)
than the 4-regions CNN (red), which indicates that the conditional-variance estimate is improved by
increasing the geographic extent of the training data.

parameterization, which is agnostic to physical structures, shows uniform performance at all depths.
However, at most depths the linear-inversion model is less accurate than the CNN-parameterization
trained at the same depths.

4.5. Input Stencil

A key consideration for the practical deployment of CNN-based parameterizations is their computational
cost, in particular in the absence of GPUs (Zhang et al., 2023). This cost depends on the input stencil
or field of view of the CNN, which is the spatial extent utilized by the model to produce an estimate
at each location. To determine the influence of the input stencil on the performance of these models,
we trained different models with the same number of parameters, but different input stencils. This was
achieved by reducing the size of the convolutional filters in each layer, while simultaneously increasing
the number of filters to preserve the overall number of parameters.

Figure 6 shows the test 𝑅2 coefficient for the longitudinal momentum (left) and temperature (right)
of CNN parameterizations with different input stencils. At all resolutions performance saturates when
the stencil size reaches 7×7. This is a considerable reduction from the 21×21 input stencils of previous
CNNs (Guillaumin and Zanna, 2021).

In order to test the hypothesis that CNN parameterizations primarily leverage information that
closely surrounds the output location, we performed a gradient-based analysis. The gradient of neural-
network outputs with respect to their input is widely used to interpret the functions learned by these
models (Mohan et al., 2019; Ross et al., 2023; Simonyan et al., 2013). It quantifies the sensitivity of
the network output to small changes in each input pixel. We measure the concentration of the gradient
by computing the fraction of the sum of squared gradient amplitude that lies within a certain input
stencil. Figure 7 shows the median concentration of the gradient energy of CNN parameterizations for
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Longitudinal momentum Latitudinal momentum Temperature
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Figure 4. The graphs in the first row show the test 𝑅2 coefficient for longitudinal momentum (left), lat-
itudinal momentum (center) and temperature (right) of the linear-inversion parameterization described
in Section 3.2 and the CNN parameterization described in Section 3.1 trained on 4 regions and on the
whole planet (global). Results for four different resolutions, corresponding to coarse-graining factors of
4, 8, 12 and 16 are shown. The global model outperforms the 4-regions model and the linear-inversion
baseline at all resolutions for both momentum components and temperature. The graphs in the second
row show the same results for data generated at an increased CO2 level. The CNN models were trained
by minimizing the MSE loss and the data were processed using General-Circulation-Model filtering.
Results for the heteroscedastic Gaussian loss and for Gaussian filtering are shown in Supplementary
Figures 10 and 11, respectively.

longitudinal momentum (left), latitudinal momentum (center) and temperature (right). At all resolutions,
90% or more gradient energy is concentrated within a stencil size of 7×7, which supports our hypothesis
that the network primarily leverages a small input region to generate its output.

5. Discussion and Outlook

This study revealed several insights regarding data-driven parameterizations for mesoscale eddies based
on convolutional neural networks, which may be useful for the design and implementation of these
models in other situations. First, we observed that the geographic extent represented in the training
data has a significant influence on model performance. Second, we compared CNN parameterizations
with a linear baseline, based on partial inversion of the coarse-graining operation typically used to
generate training data for data-driven parameterizations. The CNN parameterizations mostly outperform
the baseline, which suggests that the CNNs are able to learn nonlinear physical structure. Third, we
evaluated the generalization ability of CNN parameterizations at different CO2 levels and ocean depths,
finding that they are able to generalize to increased CO2 levels, but not from surface to subsurface
depths beyond 50 m (or vice versa). It is possible that surface atmospheric forcing has a strong influence
in the upper ocean, which is not present below the surface, creating a distribution shift that leads to a
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Figure 5. The graphs show the test 𝑅2 coefficient at different depths for the longitudinal momentum (left)
and temperature (right) of the linear-inversion parameterization (in red) described in Section 3.2 and
the CNN parameterization (in blue) described in Section 3.1 trained on the whole planet (global). The
different markers indicate the depth at which the corresponding CNN model was trained. Models trained
at shallow depth (surface and 5 m) do not generalize well to greater depth. Conversely, models trained
at greater depth do not generalize well to the surface. The CNN models were trained by minimizing the
MSE loss. The data were processed using General-Circulation-Model filtering and coarse-grained with
a factors of 4 (top), 8 (center) and 12 (bottom).

lack of generalization. Fourth, we determined that CNN parameterizations mainly exploit a relatively
small surrounding region of their input to produce their outputs. These insights were consistent for both
momentum and temperature parameterizations across different resolutions.
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Longitudinal momentum Temperature

Figure 6. The graphs plot the test 𝑅2 coefficient for the longitudinal momentum (left) and temperature
(right) of CNN parameterizations with different input stencils or fields of view (in pixels). Results
for four different resolutions, corresponding to coarse-graining factors of 4, 8, 12 and 16 are shown.
The CNN models were trained by minimizing the MSE loss. The data were processed using General-
Circulation-Model filtering. At all resolutions performance saturates when the stencil size reaches 7×7.
.

Longitudinal momentum Latitudinal momentum Temperature

Figure 7. The graphs plot the median concentration of the gradient energy of CNN parameterizations
for longitudinal momentum (left), latitudinal momentum (center) and temperature (right), along with
error bars indicating the 10% and 90% quantiles. The concentration is measured as the fraction of
the sum of squared gradient amplitude within an input stencil or field of view of a certain size. Results
for four different resolutions, corresponding to coarse-graining factors of 4, 8, 12 and 16 are shown.
The CNN models were trained by minimizing the MSE loss. The data were processed using General-
Circulation-Model filtering. At all resolutions 90% or more gradient energy is concentrated within a
stencil size of 7 × 7.

Our study focused on offline metrics, which quantify to what extent parameterizations are able to
approximate the missing subgrid forcing in coarse-grid climate simulations. A crucial direction for
future research is to evaluate parameterizations in an online setting, once incorporated in realistic
climate models (see (Perezhogin et al., 2024; Zhang et al., 2023) for recent progress in this direction).
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layer-1 layer-2 layer-3 layer-4 layer-5 layer-6 layer-7 layer-8
𝜅 = 4
width (2,3)x128 128x64 64x 32 32x 32 32x32 32x32 32x32 32x(4,6)
kernel
size

5x5 5x5 3x3 3x3 3x3 3x3 3x3 3x3

𝜅 = 8
width (2,3)x208 208x104 104x52 52x52 52x52 52x52 52x52 52x(4,6)
kernel
size

3x3 3x3 2x2 2x2 2x2 2x2 2x2 2x2

𝜅 =

12,16
width (2,3)x279 279x140 140x70 70x70 70x70 70x70 70x70 70x(4,6)
kernel
size

2x2 2x2 2x2 2x2 2x2 2x2 1x1 1x1

Table 1. Structure of the convolutional layers of the CNN architectures used for each coarse-graining
factor 𝜅.

A. Neural-Network Implementation Details

Following (Guillaumin and Zanna, 2021) the convolutional neural networks used in this study consist of
eight convolutional layers interleaved with ReLU nonlinearities. Table 1 provides a detailed description
of the convolutional layers used for the different coarse-graining factors. We incorporate a batch-
normalization layer (Ioffe and Szegedy, 2015) after each intermediate layer. For the models trained with
the heteroscedastic Gaussian, the output layer has multiple channels, associated with the conditional
mean and conditional variance estimate. The latter estimate is generated in the form of the inverse
conditional standard deviation, which is constrained to be nonnegative by a softplus activation function,
as in (Guillaumin and Zanna, 2021).

During training, we use a variable learning rate scheduler called ReduceLROnPlateau, available in
pytorch. Starting from an initial learning rate (equal to 0.01), the scheduler checks if the validation
error has decreased at the end of each epoch. If this is not the case, over a certain number of epochs
(equal to 3), the learning rate is decreased. The process continues until the learning rate reaches below
a certain threshold (equal to 10−7). The training mini-batches contain four frames for a coarse-graining
factor of 4, as in (Guillaumin and Zanna, 2021). At larger factors, the minibatch sizes are increased to
preserve the number of grid points.

In Section 4.5 we report results for different CNNs with the same number of parameters, but different
input stencils. This was achieved by reducing the size of the convolutional filters in each layer, while
simultaneously increasing the number of filters to preserve the overall number of parameters. This was
achieved by first shrinking the kernel sizes to achieve a certain stencil size, and then increasing the
number of channels.

B. Linear Baseline Details

Section 3.2 proposes a procedure to estimate subgrid forcing based on partial inversion of the filtering and
coarse-graining operations described in Section 2. The procedure involves computing the pseudoinverse
of the linear operator 𝐿 that maps the high-resolution variables defined on the fine grid to their filtered
and coarse-grained counterparts.

We first reshape two-dimensional arrays of velocities or temperature into one-dimensional vectors and
exclude the land points. This allows to represent operator 𝐿 with a sparse matrix. The pseudoinverse is
given by the formula 𝐿† = 𝐿𝑇 (𝐿𝐿𝑇 )−1, where the inverse matrix ((𝐿𝐿𝑇 )−1) is computed via hierarchical
matrix factorization following Börm et al. (2003). One factorization step divides any matrix 𝑀 into 4
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lyr-1 lyr-2 lyr-3 lyr-4 lyr-5 lyr-6 lyr-7 lyr-8 stencil
width 128 64 32 32 32 32 32 32
ker. size 5 5 3 3 3 3 3 3 21x21
width 186 93 46 46 46 46 46 46
ker. size 3 3 3 3 3 3 2 2 15x15
width 208 104 52 52 52 52 52 52
ker. size 3 3 2 2 2 2 2 2 11x11
width 271 136 68 68 68 68 68 68
ker. size 2 2 2 2 2 2 2 2 9x9
width 279 140 70 70 70 70 70 70
ker. size 2 2 2 2 2 2 1 1 7x7
width 296 148 74 74 74 74 74 74
ker. size 2 2 2 2 1 1 1 1 5x5
width 327 164 82 82 82 82 82 82
ker. size 2 2 1 1 1 1 1 1 3x3
width 528 264 132 132 132 132 132 132
ker. size 1 1 1 1 1 1 1 1 1x1

Table 2. Across the study, we use adapt the original 8 layer CNN architecture to various stencil sizes.
The stencil size refers to the total input window size of the CNNs. Each row corresponds to a CNN
model. Each convolutional layer has a number of output channels (width) and filter size (ker. size). All
kernels are square shaped and the total input sizes (stencil) are provided in the last column..

blocks as follows:

𝑀 =

(
𝐴 𝐵

𝐶 𝐷

)
, (B.1)

where each block is half the size of the original matrix. The block matrix can be formally inverted as
follows:

𝑀−1 =

(
(𝑀/𝐷)−1 −(𝑀/𝐷)−1𝐵𝐷−1

−𝐷−1𝐶 (𝑀/𝐷)−1 𝐷−1 + 𝐷−1𝐶 (𝑀/𝐷)−1𝐵𝐷−1

)
, (B.2)

where 𝑀/𝐷 = 𝐴− 𝐵𝐷−1𝐶 is the Schur complement. The procedure is applied recursively to the matrix
𝐿𝐿𝑇 until the individual matrices can be directly inverted. An essential ingredient of our approach is
the approximation of the inverse matrix ((𝐿𝐿𝑇 )−1) by a sparse matrix. Sparsity of the inverse matrix is
achieved by neglecting matrix elements that are below the numerical precision during each factorization
step.

C. Additional Figures

Figure C shows the geographic locations used to train the 4-regions CNN model, following (Guillaumin
and Zanna, 2021). Figure 9 shows maps of the test 𝑅2 coefficient for temperature of the CNN parame-
terization trained on the whole globe by minimizing the heteroscedastic Gaussian loss (left) and MSE
(right). Figures 10 and 11 show analogous results to Figure 4, but for the heteroscedastic Gaussian loss
and for Gaussian filtering, respectively. Figure 12 shows the distribution shift in the subgrid forcing
corresponding to momentum and temperature, between the control simulation and the simulation with
increased CO2 levels.
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Figure 8. The shaded regions indicate the geographic locations used to train the 4-regions CNN model
following (Guillaumin and Zanna, 2021).
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Figure 9. Maps of the test 𝑅2 coefficient for temperature of the CNN parameterization trained on the
whole globe by minimizing the heteroscedastic Gaussian loss (left) and MSE (right). The data were
processed using General-Circulation-Model filtering at coarse-grained at different factors, indicated
by the value of 𝜅 in each row.
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Figure 10. The graphs in the first row show the test 𝑅2 coefficient for longitudinal momentum (left), lat-
itudinal momentum (center) and temperature (right) of the linear-inversion parameterization described
in Section 3.2 and the CNN parameterization described in Section 3.1 trained on 4 regions and on the
whole planet (global). Results for four different resolutions, corresponding to coarse-graining factors
of 4, 8, 12 and 16 are shown. The graphs in the second row show the same results for data generated
at an increased CO2 level. The CNN models were trained by minimizing the heteroscedastic Gaussian
loss and the data were processed using General-Circulation-Model filtering.



REFERENCES 19

Longitudinal momentum Latitudinal momentum Temperature
M

SE
lo

ss
M

SE
lo

ss
(+

1%
CO

2)
H

G
L

lo
ss

H
G

L
lo

ss
(+

1%
CO

2)

Figure 11. Test 𝑅2 coefficient for longitudinal momentum (left), latitudinal momentum (center) and
temperature (right) of the linear-inversion parameterization described in Section 3.2 and the CNN
parameterization described in Section 3.1 trained on 4 regions and on the whole planet (global). Results
for four different resolutions, corresponding to coarse-graining factors of 4, 8, 12 and 16 are shown. The
CNN models were trained by minimizing the MSE loss (rows 1 and 2) and the Gaussian heteroscedastic
loss (rows 3 and 4). Row 2 and 4 show results for the test set with increased CO2 level. The data were
processed using Gaussian filtering.
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Figure 12. Distribution of the subgrid forcing for longitudinal momentum (top), latitudinal momentum
(center) and temperature (bottom) for different coarse-graining factors (indicated by the value of 𝜅 above
each column), computed from data at pre-industrial CO2 levels (blue) and at significantly increased
CO2 levels (red). The data were processed using General-Circulation-Model filtering. We observe a
clear distribution shift for the temperature data.
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