
1.  Introduction
The climate system is governed by highly nonlinear equations, making them inherently multiscale, with 
small-scale processes backscattering to large scales. Fluid dynamics equations are known and valid in a 
continuum. However, climate models solve fluid dynamics equations on a grid, resulting in approximate 
solutions. Ideally, increasing the spatio-temporal resolution could improve these truncated simulations. 
However, even with the increasing available computational power, running high-resolution climate models 
over decades or centuries is not a viable approach within the near future (Balaji, 2021). Typically, the im-
pact of unresolved small-scale processes on coarse quantities is accounted for via parameterizations. These 
parameterizations are commonly based on first principles (Gent & McWilliams, 1989; Germano et al., 1991; 
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Fox-Kemper & Menemenlis, 2008; Lilly, 1992; Marshall & Adcroft, 2010). Despite vastly improving the phys-
ics of climate models, current parameterizations continue to induce biases in simulations (IPCC, 2013).

The era of Machine Learning offers an opportunity to improve the parameterization of unresolved process-
es using available data from observations and limited high-resolution simulations. While some progress has 
been made toward online learning of neural networks (NN) for unresolved processes in partial differential 
equations (Sirignano et al., 2020), the approach is not yet ready for complex climate simulations and might 
not be generalizable due to model dependence. Therefore, the typical approach in atmosphere and ocean 
modeling consists in training Machine Learning algorithms offline, with a subgrid forcing term that is di-
agnosed via a filtering operation over high-resolution simulation data, used as the ”truth”. Recent studies 
have shown the potential of Machine Learning approaches for atmospheric (Rasp et  al.,  2018; Yuval & 
O'Gorman, 2020) and ocean parameterizations (Bolton & Zanna, 2019; Zanna & Bolton, 2020) to improve 
simulations. So far, most studies on ocean parameterizations that use Machine Learning have been limited 
to the use of data from ocean-only models with idealized geometry. The viability of Deep Learning param-
eterizations trained using data from realistic coupled or uncoupled models and their potential to generalize 
to different climates both remain open questions. In addition, the stability and the physical behavior of im-
plementations of Deep Learning parameterizations in models have also been a subject of debate (Brenowitz 
et al., 2020; Yuval & O'Gorman, 2020; Zanna & Bolton, 2020).

Here we address these questions by showing the high performance of a Deep Neural Network in offline pre-
dictions of subgrid momentum forcing in different climates using data from a high-resolution coupled cli-
mate model, which resolves ocean mesoscale eddies in many regions (Griffies et al., 2015; Hallberg, 2013), 
and show which will result in a stable implementation online. Our work focuses on parameterizing the in-
teraction between mesoscale eddies and large-scale flow, which is key to establishing the transfer of energy 
between reservoirs and scales (Ferrari & Wunsch, 2009) and to establishing the large-scale ocean circulation 
(Waterman & Jayne, 2011). In particular, we propose a stochastic parameterization that aims to represent 
the inherent uncertainty of the subgrid forcing (Juricke et al., 2017), stabilize the online implementation of 
the parameterization (Palmer, 2012; Zanna et al., 2017) and reduce systematic biases (Berner et al., 2017; 
Gagne II et al., 2020). Stochastic parameterizations are in demand in particular in what has been referred 
to as the gray zone (Gerard, 2007; Jones et al., 2019; Zanna et al., 2020), where subgrid processes are partly 
resolved (Berner et al., 2017).

In our study, our NN model outputs the mean and standard deviation for the predicted momentum forc-
ing, given coarse-resolution velocities. The predictions of mean and standard deviation of the momentum 
forcing form the basis of a stochastic parameterization that we will implement in an idealized ocean model. 
Our contribution therefore establishes a bridge between recent developments on Deep Learning approaches 
to the problem of stochastic parameterizations (Berloff, 2005; Brankart, 2013; Frederiksen & Davies, 1997; 
Juricke et al., 2017; Mason & Thomson, 1992; Williams et al., 2016; Zanna et al., 2017).

The manuscript is structured as follows. In Section 2, we describe the data, the NN architecture and the 
training procedure—which uses a probabilistic loss function. In Section 3, we conduct an offline test on a 
global scale, showing the ability of our NN to generalize to regions not seen during training. We also show 
the ability of our NN to generalize to a different climate in which 2CO  levels are higher and have affected the 
mesoscale variability. In Section 4, we demonstrate the potential for increased stability via an implementa-
tion of our stochastic parameterization into an idealized ocean model, without further training of the NN. 
Finally, in Section 5 we conclude and discuss the implications of our work and future directions.

2.  Methods
In Sections 2.1 and 2.2, we describe the filtering and subsequent coarsening of the data in order to diagnose 
the corresponding subgrid momentum forcing necessary to force a coarse-resolution model. In Section 2.3 
and 2.4, we describe a procedure that enables us to represent the uncertainty associated with the forcing 
using a probabilistic loss function for training. In Section 2.5, we review the structure of our proposed NN. 
Finally, in Section 2.6 we provide details about our training procedure.
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2.1.  Data for Training and Validation

Applications of Deep Learning to the parameterization of subgrid ocean momentum forcing and backscat-
ter have been limited to ocean-only idealized models so far (Bolton & Zanna, 2019; Zanna & Bolton, 2020). 
In contrast, here we investigate the use of Deep Learning on data from a state-of-the-art high-resolution 
coupled climate model, CM2.6 (Delworth et al., 2012; Griffies et al., 2015). The nominal horizontal reso-
lution of the ocean component of CM2.6 is 1/10, therefore resolving mesoscale eddies in many regions of 
the ocean (Hallberg, 2013). The data and tools for analysis were obtained from the Pangeo platform (Aber-
nathey et al., 2021).

The data used in the present work consists of the high-resolution simulated ocean surface velocity field u  
with components u (zonal) and v (meridional), where the upper arrow is used to denote quantities that sit 
on the high-resolution grid. The model grid is configured according to an Arakawa B-grid (Griffies, 2015), 
with velocity points (both zonal and meridional) placed to the North-East of tracer (T ) cells, i.e. the top-
right corner of a T -cell. The temporal resolution of the surface velocity data is daily, and the available data 
span over ∼7,000 days (about 20 years) for each of the two available simulations—a control simulation 
with pre-industrial atmospheric 2CO  levels, referred to as piControl, and a forced simulation with a 1% 

2CO  increase per year, referred to as 1ptCO2 (Griffies et al., 2015). The 1ptCO2 simulation experiences a one 
percent increase of 2CO  per year from the levels of the control simulation until it reaches doubling after 
70 years, at which point the 2CO  levels remain constant. The 1ptCO2 simulation data available from Pangeo 
corresponds to years 60–80.

2.2.  Filtering and Coarse-Graining Procedure

In this section, we describe the processing necessary to generate the training data for our NN. The procedure 
follows the two steps presented in Zanna and Bolton (2020): low-pass area-weighted Gaussian filtering, fol-
lowed by coarse-graining. Applied on the high-resolution surface velocities u  from the CM2.6 simulations, 
this procedure generates coarse-resolution velocity data that mimics the simulation data from coarser mod-
els and will serve as the input to our NN. In addition, given the high-resolution and filtered velocity data, 
we diagnose the missing subgrid forcing of a coarse-resolution model (e.g., CM2.5) compared to its high-res-
olution counterpart (here, CM2.6). This missing forcing is the subgrid parameterization needed at coarse 
resolution to mimic the effect of unresolved scales on the large-scale flow that will be learned by the NN.

Unlike data used in previous machine learning studies (Bolton & Zanna, 2019; Yuval & O'Gorman, 2020; 
Zanna & Bolton, 2020), the CM2.6 grid is on a sphere. In the zonal direction, the spacing is 1/10, and in the 
meridional direction, it varies from approximately 1/10 near the equator to 1/20 at high latitudes, so that 
the zonal and meridional extent of grid boxes varies with latitude. The grids of CM2.5, with 1/4 nominal 
resolution, and CM2.1, with 1 nominal resolution, have a similar structure. As such, the meridional length 
scale used to define the subgrid eddy forcing should depend on the latitude, which would in part capture the 
latitudinal variations of the Rossby deformation radius. In contrast with the typical approach, rather than 
selecting a uniform length scale to filter the data and generate a coarse-resolution field, we select a uniform 
and unitless integer scaling factor  , that defines the number of grid boxes from the high-resolution grid 
that map to a single grid box of the low-resolution grid. This is the simplest and most consistent definition 
of subgrid scale for the purpose of data-driven parameterizations. This unitless scaling factor applies to both 
the filtering and coarse-graining steps.

We now describe in details the two steps of our low-resolution data generation procedure given the fixed 
scaling factor  . As a first step we apply a low-pass weighted Gaussian filter, denoted by  , to the high-res-
olution surface velocity data, with weights provided by grid box areas, to separate the subgrid from the re-
solved field (Bolton & Zanna, 2019). The standard deviation of the Gaussian kernel is set to / 2 , such that 
approximately 80% of its weight falls within the interval [ / 2, / 2]   of length  . Note that in using a uni-
form scaling factor we also allow the use of standard convolution algorithms for regularly spaced data. This 
would not be possible if we were using a uniform length scale as we would then have to adapt the size of 
the filter in terms of number of grid points as a function of latitude, incurring a high computational cost to 
generate the training data. The second step simply consists of a coarse-graining procedure, resulting in the 
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filtered and coarse-grained velocity field u u 


, where ·


 denotes 

the coarse-graining operator by a factor  . The coarse-graining operator 
is based on the mean function applied over squares of side length   – 
equivalent to area-weighted average. After coarse-graining, the resulting 
grid consists of approximately 2  times less points than the high-resolu-
tion grid.

This filtering and coarse-graining procedure is applied to surface veloc-
ites from the CM2.6 control simulation. Figure 1 shows a snapshot of the 
filtered and coarse-grained surface zonal velocity. In addition, the subgrid 
momentum forcing on the high-resolution grid, denoted [ , ]T

X YS S  S , 
is diagnosed via,

 · · ,         
 

S u u u u� (1)

and is then coarse-grained according to S S    . For exact implemen-
tation details of the procedure in the form of pseudo-code, please see Ap-
pendix B or the online code.

In our work, we primarily target parameterization for the eddy-permit-
ting regime, or the gray zone, in which momentum parameterizations are 
in demand to mimic the inverse energy cascade (backscatter) processes 
while potentially overcoming spurious dissipation (Bachman, 2019; Char-
ney, 1971; Jansen et al., 2019; Kjellsson & Zanna, 2017; Kraichnan, 1967; 
Larichev & Held, 1995; Leith, 1990; Rhines, 1977; Salmon, 1980; Treguier 
et al., 1997; Zanna et al., 2017, 2020). Here, we present experiments in 
which we set 4  , such that, irrespective of the subdomains of study, 

the coarse-grained grid has ∼4 times less grid boxes along each horizontal dimension. This choice of four 
grid boxes leads to a subgrid forcing of an ocean model at resolution 0.4, close to the resolution of ESM4 
which has a nominal resolution of 0.5 (Dunne et al., 2020).

The filtering and coarse-graining procedure is applied to both data from the piControl and 1pctCO2 simu-
lations. The piControl data set will be used both for training and offline testing, while the 1ptCO2 data set 
will be used for testing only.

2.3.  Prediction: Conditional Distribution of Subgrid Scale Forcing

Our goal is to learn a parameterization, denoted by Ŝ, of the diagnosed true subgrid momentum forcing, S 
(Equation 1), using deep learning. We propose a NN that uses maps of coarse surface velocities, u, at a given 
time as inputs, and estimates the subgrid momentum forcing components at that same time as outputs. 
Here estimates is to be understood in a broad sense: it could be a single-value prediction or a probability 
distribution as discussed below.

Specifically, in this work we present a stochastic parameterization of the subgrid momentum forcing. To do 
so, we assume that at each grid box, the distribution of the forcing is Gaussian, conditionally on the coarse 
surface velocities (we do not assume that the marginal distribution of the forcing is Gaussian). We also 
assume that the forcing at individual grid boxes and times are conditionally independent given the coarse 
surface velocities.

The rationale behind stochastic approaches to the modeling of subgrid-scale forcing has been widely 
discussed (Berloff, 2005; Buizza et al., 1999; Crommelin & Vanden-Eijnden, 2008; Duan & Nadiga, 2007; 
Frederiksen & Davies, 1997; Majda et al., 1999; Palmer, 2001), in particular; they can partly account for 
the uncertainty in the representation for the subgrid forcing (Berner et al., 2017; Brankart, 2013; Juricke 
et al., 2017; Stanley et al., 2020; Williams et al., 2016; Zanna et al., 2018); and, they have proven potential in 
stabilizing numerical simulations (Berner et al., 2017; Palmer, 2012; Zanna et al., 2017).
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Figure 1.  Filtered and coarse-grained surface velocity u in [ /m s] from 
piControl used as training data: (a) standard deviation of surface velocity 
norm and (b) snapshot of the zonal component. The gray rectangles 
identify the subdomains selected for training the Neural Network (NN).
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One of the main sources of uncertainty in the predicted subgrid forcing comes from the fact that we only use 
the resolved coarse velocities to make a prediction. Given a surface velocity field over a subdomain of the 
oceans at a given time, we do not necessarily expect the subgrid momentum forcing to be given by a deter-
ministic mapping. To illustrate this statement, consider Equation 1; for the problem at hand, u  is unknown, 
and while u u  is well-defined as a mapping, it is not invertible. Thus the parameterization problem can 
be viewed as an inverse problem, for which probabilistic representations are a common approach (Bish-
op, 1991). If u  is seen as a random variable, we may want to represent the probability distribution ( | )P u u ,  
and the same applies to the forcing. Hence we may want our NN's output to determine a parametric proba-
bility distribution rather than a single number.

Besides, a stochastic parameterization of the subgrid forcing can also account for the fact that what we call 
the true subgrid forcing, Equation 1, depends on our choice of filter which may not adequately represent 
the “missing forcing” from any given numerical model at coarse-resolution. One could train our NN with 
subgrid forcing generated from a variety of methods, to partially account for the fact that the exact subgrid 
forcing is not known.

The output Gaussian distribution at each location can be interpreted as an estimate of the conditional distri-
bution of the subgrid momentum forcing given the local velocity field. Its mean represents the expectation 
of that conditional probability distribution, while its standard deviation represents the uncertainty around 
the mean. Such representation will allow deriving confidence intervals of the predicted subgrid momen-
tum forcing (see Section 3.2). It also forms the basis of our stochastic parameterization, see Section 4 about 
implementation. In the next section, we will show how to learn the mean and standard deviation of the 
subgrid forcing from data.

2.4.  Probabilistic Loss Function: From MSE to Gaussian Log-Likelihood

To train our NN, we aim to find a local minimum to a loss function ( , ))ˆ (L S S θ  — summed over all the sam-
ples of the training data set—that represents the mismatch between our prediction Ŝ and the true value S 
given the current state of the parameters of the NN, represented by the vector of parameters θ. Here, S, the 
target tensors of the NN corresponding to a single sample at a given time, has dimensions ( , , )C x yn n n , where 

2Cn   for the zonal and meridional component of the velocity field, and ( xn , yn ) is the size of the domain 
considered, i.e., the number of grid boxes in the zonal and meridional direction, respectively. We have ig-
nored the number of mini-batches here for simplicity, which will be discussed in Section 2.6.

The most common loss function used in regression is the Mean Square Error (MSE), which in our case 
would take the form of, for a single sample,

 2MSE , , , ,
1 1 1

( , ( )) ,ˆ ˆ
nn n yC x

k i j k i j
k i j

L 
  

 S S S S� (2)

where k  denotes the index of the component of the subgrid momentum forcing (here, 1 corresponds to the 
zonal component and 2 to the meridional component). Despite its widespread use within the Deep Learning 
community for regression, the MSE loss function is not always appropriate. To justify the above claim brief-
ly, it is common to interpret the MSE loss function from a probabilistic perspective. For simplicity, we limit 
the discussion to univariate random variables, but this can be easily extended to multivariate variables. Let 

,   be random variables; assume that   is observed, and   is such that its conditional probability density 
function given   is a Gaussian distribution with mean  and constant standard deviation  ,

2

22

1 ( ( ))( ; , ) exp .
22

p      


    
  

� (3)

If we assume that ( )   can be modeled by a parametric function f  (in our case the NN) with parameter 
θ, the log-likelihood of the parameters ,θ  for an independent and identically distributed (i.i.d.) sample 
  1, ,

,i i i n
 

 
 will be given by,

2
2

2
1

1 ( ( , ))( , ) log2 .
2 2

n
i i

i

fl   


     
  


θθ� (4)
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Maximizing this log-likelihood (Maximizing the log-likelihood results in estimating the parameters of a 
probability distribution, so that under the assumed statistical model f  the observed data   is most probable) 
over ,θ  can be achieved in a separable way (Davison, 2003): we first maximize over θ, which corresponds 
to training the NN using the MSE loss, and we then estimate   by simply computing the standard deviation 
of the residuals   1, ,

( , )i i i n
f  

 
θ . Hence, from a probabilistic point of view, by minimizing the MSE loss 

function, we are assuming a constant standard deviation (i.e., that does not depend on the velocity field).

In this study, we propose to relax this common assumption based on the literature and our understanding 
of the data. We replace the MSE loss function by a full negative Gaussian log-likelihood. Referring back to 
our univariate example, this would lead to replacing Equation 4 by,



2
2 1

2 2
1 2

1 ( ( , ))( ) log2 ( , ) ,
2 2 ( , )

n
i i

i
i i

fl f
f

  


     
  


θθ θ

θ
� (5)

where our function f  —which would correspond to our NN—now has two components, one for the mean, 
1f , of the Gaussian distribution, and the other one for the standard deviation, 2f . In particular, the term cor-

responding to the standard deviation of the Gaussian in Equation 5, 2( , )if  θ , does depend on the input i .  
In order to apply this to the problem of subgrid momentum forcing, we build our NN to output the two mo-
ments of a Gaussian distribution, at each location and for both (zonal and meridional) components of the 
subgrid momentum forcing. The output tensor, Ŝ, now has dimension (2 , , )C x yn n n : we have four output 
channels (2 Cn )— the first two correspond to the means of the two components of the subgrid momentum 
forcing, the last 2 correspond to the associated standard deviations. Our loss function therefore takes the 
form of (ignoring constant terms),

2
, , , ,

G 2, , 2
1 1 1 2, ,

( )
( , ( )) log ,ˆ2

ˆ
ˆ ˆ

nn n yC x k i j k i j
k i j

k i j k i j

L 
   

    
  


S S

S S S
S

θ� (6)

For ease of reading, we introduce a more natural notation, where we denote , ,C i jS  the true value of the forc-

ing,  mean
, ,

ˆ
C i jS  the mean of the predicted Gaussian distribution, and  std

, ,
ˆ

C i jS  its standard deviation, for component 
   zonal , meridionalC X Y  at location ,i j. With this notation, Equation 6 takes the form of,

 
 

 

mean 2
std , ,, ,

G , , 2
std, 1 1
, ,

( )
( , ( )) log .

2

ˆ
ˆ ˆ

ˆ

nn yx C i jC i j
C i j

C X Y i j
C i j

L
  

 
    

      

 
S S

S S S
S

θ� (7)

The NN will learn to jointly optimize the two moments of the predicted Gaussian distribution, as shown 
schematically in Figure 2. Note that we also jointly train on both zonal and meridional components of the 
forcing, rather than having separate NNs for each component, as in Zanna and Bolton (2020).

2.5.  Neural Network Architecture

Our NN is a Fully Convolutional Neural Network (Long et al., 2015) with a sequence of eight convolutional 
layers. The ReLU activation function is used for hidden layers. Given that the NN is fully convolutional, 
it can adapt to varying sizes of the input subdomain. We remind the reader that the input consists of two 
channels, one per component of the velocity field, while the output consists of four channels, two for each 
of the two components of the subgrid momentum forcing, see Section 2.4. We do not use any padding in the 
implementation of our convolutional layers. Due to the lack of padding in our NN structure, some pixels 
near the edges are lost in the application of convolutional layers. This results in the outputs predicted by our 
NN having spatial extent ( , )x yn p n p  , where p is a nonnegative integer that depends on the size of the 
kernels used in the convolutional layers.

The mean of the subgrid momentum forcing predicted by the NN can take any real value, as such we do not 
use any activation function in the final layer for the first two channels. However, the output predicted for 
the standard deviations are required to be positive. To enforce this constraint, we use a softplus function, 
defined by,
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softplus( ) ln(1 exp ) 0,x x  � (8)

as a final activation function for the two output channels associated with the standard deviations.

2.6.  Training and Validation Procedure

We now describe our training procedure. The inputs are fed into the NN in the form of mini-batches (i.e., 
small batches of several samples stacked along an extra dimension), rather than individually, such that the 
dimensions of our input tensors are batch( , , , )C x yn n n n , where batchn  is the number of samples per mini-batch, 
set to batch 4n   in our experiments. A common practice in the methodology of NNs is to normalize inputs 
to be distributed within the interval [ 1,1] , to avoid vanishing and exploding gradients in the application of 
the back-propagation algorithm. Here, we multiply the surface velocities by a factor of 10, which approxi-
mately corresponds to normalizing by the standard deviation ( 0.1 m/s) of the surface velocity data from 
the training subdomains. This same transformation is applied in testing.

The targets used to train and evaluate our NN consist of the true subgrid momentum forcing S for a giv-
en subdomain. We train our NN on data from the piControl simulation. We restrict the training data to a 
combination of four selected sub-domains of the oceans—shown as gray rectangles in Figure 1, see also 
Table 1— that correspond to various dynamical regimes: the Gulf Stream extension, the Equatorial Atlan-
tic, just south of the Equatorial Pacific, and in the South Pacific gyre. Further improvements through more 
advanced selection and weighting of the training subdomains may improve performance. We select the 

first 80% of the data (approximately spanning 16 years) as training data, 
and use the final 15% (approximately spanning 3 years) for validation. 
We ignore 5% of the data (1 year) to avoid any correlation between the 
training data and the validation data, as it could cause validation metrics 
to become over-optimistic.

During the training phase samples are entirely shuffled across the time 
dimension, as well as across subdomains. This allows to jointly train on 
data from all selected subdomains simultaneously. However, this requires 
the input tensors obtained from all the subdomains to have the same 

GUILLAUMIN AND ZANNA

10.1029/2021MS002534

7 of 25

Figure 2.  Our neural network (NN) outputs four maps: the two first maps are the maps of the means of the predicted 
forcing components, the last two maps are the standard deviation of the predicted forcing components.

Subdomain Latitude range Longitude range

A 35.0°, 50.0° −50.0°, −20.0°

B −40.0°, −25.0° −180.0°, −162.0°

C −20.0°, −5.0° −110.0°, −92.0°

D 0.0°, 15.0° −48.0°, −30.0°

Table 1 
Subdomains Used for Training and Validation
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spatial sizes. We therefore crop the input tensors according to the smallest size across subdomains for both 
spatial dimensions, resulting in training samples of spatial extent ( , ) (38,45)x yn n  . Given the nonMarkovi-
an nature of turbulence (Kraichnan, 1959), further work incorporating temporal dependence and memory, 
rather than shuffling the data, might improve the skill of the learned parameterization (Porta Mana & 
Zanna, 2014).

We compute the average loss—defined in Section 2.4 — over the samples of a mini-batch, across the two 
components of the forcing, and across both spatial dimensions. The average loss is then back-propagated 
to obtain the derivatives of the loss function with respect to the NN's parameters. The NN's parameters are 
then updated using the ADAM algorithm (Kingma & Ba, 2015). ADAM has become one of the go-to opti-
mization algorithms in the Deep Learning community, which is in part due to its robustness to the choice 
of the learning rate and its quick convergence. After the NN's parameters have been updated, we repeat the 
same process with a new mini-batch, and so on, until all the training data has been used, which corresponds 
to one epoch of training. At this point, we compute the average loss over the validation data, which was not 
used for optimization. We track this validation loss over the whole set of training epochs and repeat this 
process. We implement early stopping so that training stops once the validation loss has not improved for 
four consecutive epochs of training. More details about our final choice of hyperparameters, such as the 
learning rate, hand-picked through a validation procedure, can be found in Appendix A.

3.  Offline Tests on a Global Scale
We test our probabilistic deep learning parameterization on a global scale and demonstrate its generaliza-
tion properties offline using test metrics introduced in Section 3.2. In Section 3.3, we first carry out a test 
on piControl  in order to assess the ability of our NN model to generalize to regions and dynamical regimes 
not seen during the training phase. We then carry out a test on 1ptCO2 in Section 3.4, where the 2CO  levels 
in the atmosphere reach double those of the piControl simulation. Our results show that our stochastic 
deep learning parameterization performs well in this new climate, without requiring further training of our 
NN; this is crucial if such parameterizations are to be used in models for climate projections (O'Gorman & 
Dwyer, 2018; Rasp et al., 2018).

3.1.  Global Reconstruction for Offline Testing

We directly apply our trained NN to the global coarsened velocities for offline testing. While the training 
subdomains are only 38 45  points, we use the global extent of the oceans for testing which results in an 
input tensor of dimension  , (900,625)x yN N  . This is possible due to the convolutional nature of the NN. 
When applying the NN to global data, we extend the input velocities cyclically along the zonal dimension 
(since the output values of the tensor for xi N  requires information from 1i  ), thus ensuring the out-
put covers all longitudes. Obviously, this is not possible along the meridional dimension, thus resulting 
in the loss of 10p   grid boxes (see Section 2.5) along the meridional dimension at high latitudes in each 
hemispheres.

Velocity snapshots are assembled to form small mini-batches with size 4 (equivalent to 4 days); the size is 
determined by the available GPU memory. Nonocean points of the input grid are stored as NaNs. In our 
tests, we therefore ignore locations whose receptive field intersect with a continent and show them in black 
in the maps shown thereafter (note, the receptive field of a neuron within the NN's output is the set of input 
neurons that impact its value).

3.2.  Metrics and Statistics for Offline Performance

To quantify the offline accuracy of our NN's predictions of the subgrid momentum forcing, we define sever-
al metrics. We note 7300T   the total number of days over which these metrics are computed.

We first define our notation for the standard MSE and correlation. To make explicit the dimension along 
which the data is reduced to compute these two metrics, we write , , ,MSEC i j  for the time-mean MSE of the 

 ,C X Y  component of the forcing, where the reduction is carried out along the time axis, i.e.
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  2
mean

, , , , , ,, , ,
1

1MSE , 1, , , 1, , .ˆT

C i j C i j t x yC i j t
t

i N j N
T



       
  S S� (9)

The combined MSE, that encompasses both components X  and Y , can be shown on a map, and is defined as

   2 2
mean mean

, , , , , , , , , , , , , ,
1

1MSE .ˆ ˆT

i j X i j t X i j t Y i j t Y i j t
tT


            
     

 S S S S� (10)

We also define a scalar MSE according to,

   2 2
mean mean
, , , , , , , , , , , ,

1 1 1

1MSE .ˆ ˆ
NN yT x

X i j t X i j t Y i j t Y i j t
t i jx yN N T   

            
     

 S S S S� (11)

In addition to the standard MSE, we define an 2R  coefficient which is normalized by the value of the true 
subgrid forcing such that

  2
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2 1
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2
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ˆ
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12
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
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and a scalar version 2R , according to,

  2
mean

, , ,, , ,,
1 1 12

2
, , ,,

1 1 1

R 1
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S
� (14)

We note that 2R 1  and if  mean
, , ,

ˆ
C i j tS  is zero always, 2R  is 0. The advantage of this quantity is that it is easier 

to interpret when shown on a map—values close to 1 indicate that our predictions account for a large part 
of the average amplitude of the subgrid momentum forcing, while values close to 0 would indicate the 
opposite.

In order to verify that our model is not simply predicting the seasonal climatology of the subgrid momen-
tum forcing, we define modified versions of these quantities, e.g.,

 

 

2
mean

, , ,, , ,
2,clim 1

, , , 2
, , , , , ,

1

R , ,

ˆ

1 ,

T

C i j tC i j t
t

C i j T
clim
C i j t C i j t

t

C X Y




  
 

  






S S

S S
� (15)

where , , ,
clim
C i j tS  is the climatological C component subgrid momentum forcing at location ,i j and time t. 

This metric allows us to assess what percentage of the signal's variance we account for, after removing the 
inherent variability due to the seasonal cycle.

Another quantity of interest given our probabilistic representation of the subgrid momentum forcing pa-
rameterization is that of standardized residuals, given by,

(mean)
, , , , , ,

, , , (std)
, , ,

, , .
ˆ

ˆ
C i j t C i j t

C i j t
C i j t

C X Y


 
S S

e
S

� (16)
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Under our idealized assumption, these normalized residuals are expected 
to follow a standard normal distribution.

We will also use confidence intervals based on the standard deviation, to 
quantify the uncertainty in the predicted subgrid forcing and evaluate its 
performance. Under the Gaussian assumption, a 95% confidence interval 
corresponds to,

   mean std
, , , , , , .ˆ ˆ1.96 , ,C i j t C i j t C X Y S S� (17)

3.3.  Generalization & Dynamical Regions—Test on piControl

We carry out an offline test of our NN on global scale data from piControl. 
There are large variations in subgrid eddy momentum in the piControl 
(Figure  3a) across the oceans, with the largest amplitude occurring in 
eddy rich regions such as the Gulf Stream, Kuroshio, Southern Ocean 
and equatorial regions. There is a strong coherence between the pattern 
of the variance of the mean of the true subgrid forcing (Figure 3a) and 
that of the predicted forcing (Figure  3b). This coherence holds for the 
zonal and meridional component of the forcing, as shown for example in 
the correlation map between the true zonal forcing and the mean compo-
nent of the predicted zonal forcing (Figure D1).

The time-mean MSE over both components of the forcing (Equation 11) 
can vary by several orders of magnitude from one region to another (Fig-
ure 4a). However, these changes are largely due to the inherent spatial 
variability of the subgrid forcing, evident by comparing its spatial pattern 
(Figure 3a) with the spatial pattern of the MSE (Figure 4a). Therefore, the 

2,clim
, ,i jR   coefficient (Equation 15) is more informative of the NN's perfor-

mance (Figure 4b).

In most regions of the oceans, our NN is able to account for more than 
70% of the signal's variance, with performance nearing 90% in regions 
where the variance of the eddy momentum forcing is the highest, for in-
stance in the Gulf Stream region and Southern Ocean (see the appendix 
for maps of the 2,climR  computed for each component of the forcing—
Figure D2—showing similar skill). These metrics indicate that the NN 
generalizes well to most regions, despite being trained on only four small 
subdomains of the oceans. However, our NN performs poorly in sea-ice 
covered regions, which is not surprising as the dynamics of these regions 
were not included in the training and widely differ from open ocean tur-
bulence. Considering turbulence at the ocean-ice boundary will require 
numerical simulations that can adequately represent such processes.

The near-global (60 ,60S N  ) scalar 2R  value obtained is 0.869, while for 
2,climR  we obtain 0.855; the skill demonstrates the high performance of 

our NN and further confirms that the NN does not merely predict large 
variations due to seasonal climatology. The global 2R  is higher than the 
average of 2R  values over the map due to the higher 2R  values in regions 
where the variance of the forcing is large (note that Equation 14 is not the 
spatial average of Equation 12).

To demonstrate some advantages of predicting the two moments of a 
Gaussian distribution, we focus on time series at two different locations. 
We compare the time series of the true and predicted zonal forcing at 
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Figure 3.  Time-mean variance of the norm of subgrid momentum forcing 
in piControl: (a) True forcing S‖ ‖; (b) predicted mean, ˆ meanS‖ ‖ in offline 
testing.

Figure 4.  Time-mean (a) Mean Square Error (MSE) (10) and (b) 2,climR , 
the climatological version of (13), for piControl.
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30 ,60N W  , which is located within the turbulent Gulf Stream region, and at 20 ,104S W  , which corre-
sponds to a more quiescent region with less mesoscale eddy activity (Figure  5). The true zonal forcing 

, , ,X i j tS  is shown along with the mean prediction  mean
, , ,

ˆ
X i j tS  and the 95% confidence interval obtained from the 

predicted standard deviation  std
, , ,

ˆ
X i j tS . The forcing is generally well approximated by the predicted mean forc-

ing, except when extremes occur. However, the true forcing is, most of the time, within the 95% confidence 
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Figure 5.  Time series of the zonal component of the subgrid momentum forcing at (a) 30 ,60N W  , a location 
dominated by turbulent behavior and (b) 20 ,104S W  , a more quiescent location for 300 days: true forcing (solid blue), 
mean of the predicted forcing (orange), and 95% confidence interval (green).
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interval. The predicted standard deviation  std
, , ,

ˆ
X i j tS  varies greatly across the 

considered time window—indicating that the uncertainty of the forcing 
is not constant. Our NN performs best in turbulent regions. This is in 
agreement with 2R  maps where higher values are observed in regions 
where the forcing is larger, and also with results from idealized ocean 
models (Bolton & Zanna, 2019; Zanna & Bolton, 2020). Finally, to inves-
tigate regions with a low 2R  score, we analyze the time series of the true 
and predicted meridional forcing at 29 ,129N W   (Figure D3), which cor-
responds to a location near the West Coast of the United States where the 

2R  score is 0.532. The time series indicates that the low 2R  occurs due to a 
few extreme events that are not well predicted.

To further analyze our predicted forcing from the piControl data set, we 
study the global distribution of a stochastic simulation of subgrid mo-
mentum forcing generated using,

   mean std
, , , ,, , , , , , , 1, , , 1, , ,ˆ ˆ

C i j C i j x yC i j C i j C X Y i N j N       S S S �

where the , ,C i j  is are i.i.d. standard normal and the inputs to the NN are 
the coarsened surface velocities from piControl. The histograms of the 
global distribution of each component of the subgrid forcing for the true 
and simulated forcing show that the two distributions are very similar 
(Figure D4). However, the distribution of the true forcing has longer tails 
than that of the simulated forcing. This is partly due to our assumption 
that the distribution of the forcing, conditioned on the coarse surface 
velocity field, is Gaussian. We test this hypothesis by investigating the 
distribution of normalized residuals, defined by Equation 16. Figure D5a 
consists of the sample distribution of normalized residuals (blue), after 
subsampling one point out of ten along the time axis, and one point out 

of five along the spatial axes, shown together with the probability density function of the standard normal 
distribution (red). We also present a quantile-quantile (QQ)-plot of the sampled normalized residuals in 
Figure D5b, using the same subsampling procedure as in Figure D5a. The normalized residuals have much 
heavier tails than those of a standard normal. Hence, we could improve our model by using another distri-
bution with heavier tails, or a multimodal distribution (Bishop, 1991). This approach will likely improve the 
offline prediction of extreme events which we have shown is problematic in our NN.

3.4.  Generalization & Climate Change—Test on 1ptCO2

One key challenge for deep learning parameterizations in ocean and climate modeling is for them to be 
able to generalize to a new climate (Martínez-Moreno et al., 2021; O'Gorman & Dwyer, 2018). So far, we 
have only used data from the piControl simulations, both for training (Section 2.6) and testing (Section 3.3). 
Here, we test the trained NN from Section 2.6, without further tuning, using simulated data from 1ptCO2. 
The surface velocities, associated kinetic energy, and subgrid momentum forcing, are influenced by the 

2CO  forcing. The time-mean standard deviation of the surface velocity between piControl and 1ptCO2 (Fig-
ure 6a) changes by up to 40% in some parts of the oceans. The majority of the changes are occurring in 
regions dominated by high kinetic energy in piControl such as the Gulf Stream region and its extension, the 
Kuroshio extension, or the Southern Ocean. Additionally, we identify large changes in the Indian Ocean 
and in the Arctic, ice-melt is likely related to changes in the latter. Similar changes in the subgrid momen-
tum forcing between piControl and 1ptCO2 are occurring as well (Figure 6b). The surface velocities used 
as inputs to the NN and the target subgrid forcing to be predicted are therefore significantly different from 
those of piControl.

In order to compare performance of our NN on piControl and 1ptCO2  we use the same metrics as in Sec-
tion 3.3. The MSE and 2,climR  metrics computed over the 20 years of daily simulation data from 1ptCO2 are 

GUILLAUMIN AND ZANNA

10.1029/2021MS002534

12 of 25

Figure 6.  Relative difference between piControl and 1ptCO2 in the 
standard deviation of the (a) surface velocity norm and (b) subgrid forcing 
norm. Positive (negative) values indicate that the variance has increased 
(decreasing) in the 1ptCO2 compared to the piControl.
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shown in Figure 7. Our NN performs as well for this new climate as it 
did for the climate it had been trained on (e.g., compare Figure 7 with 
Figure 4). The time-mean 2,climR  obtained on piControl and 1ptCO2 show 
little difference (Figure 7c), except in the North-East Atlantic and in cer-
tain polar regions which were partially ice-covered in piControl, where 
there is a slight decrease in performance (at most 0.1) as measured by the 
time-mean 2,climR . We compute scalar metrics of our NN's performance 
over the 1ptCO2 simulation data, again limited to 60 ,60S N  , and obtain 
0.871 for 2R  and 0.858 for 2,climR , i.e. very similar to the values obtained 
for piControl. The NN for subgrid momentum forcing trained on piCon-
trol data generalizes well to an unseen warmer climate as simulated by a 
coupled high-resolution climate model.

4.  Online Implementation for an Idealized Model
Offline performance tests have not been good predictors for online per-
formance, as shown for example in Zanna and Bolton (2020), at least not 
using current metrics. The coupling between the machine learning (ML) 
parameterization and the prognostic coarse-resolution ocean model must 
satisfy the same numerical stability criteria and conservation properties 
as any physics-derived parameterization. Therefore, good offline perfor-
mance is a necessary but not sufficient condition to the success of any ML 
parameterization.

Zanna and Bolton (2020) implemented a convolutional NN parameteri-
zation which, while physically constrained, led to too vigorous an inverse 
energy cascade and energy backscatter. While the model was not numer-
ically unstable, the behavior of the model was pushed into a different 
dynamical regime in which the eddy mean-flow interactions dominated 
over the external wind forcing. To ensure a reasonable dynamical behav-
ior, the authors tuned down the parameterization by applying a spatially 
and temporally uniform multiplicative factor to reduce the magnitude of 
the forcing in an ad-hoc way.

The use of a stochastic parameterization has the potential to damp the 
eddy (and destabilizing) feedbacks seen in Zanna and Bolton  (2020). 
Here, we use the same idealized barotropic shallow water model as in 
Zanna and Bolton (2020) and developed by Klöwer et al.  (2018) to im-
plement the stochastic deep learning parameterization learned from 

complex CM2.6 data; for further details on the model, consult these these references, or our code. The sto-
chastic parameterization is implemented in a 40 km horizontal resolution run, and we compare the runs to 
a high-resolution model run at 10 km horizontal resolution, hence mimicking the change in resolution be-
tween CM2.6 simulation data and the coarse-grained data we generated to diagnose the momentum forcing. 
Note that we tested offline the learned CM2.6 parameterization with data from the shallow water model and 
shown that the learned NN model transfers well to a different data set and model before implementation, 
see details in Appendix C.

Unlike CM2.6 which was on a B-grid, the shallow water model is discretized on an Arakawa C-grid. There-
fore, at each time step of the integration, we first interpolate the two velocity components on tracer points 
and then pass them through our NN. This produces, for each grid box and for each component of the forc-

ing, a mean  mean
, ,

ˆ
C i jS  and a standard deviation  std

, ,
ˆ

C i jS .

The stochastic subgrid momentum forcing S  implemented in the shallow water model is then generated 
(see schematics in Figure 10) according to,
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Figure 7.  Performance of the trained neural network (NN) on 
1ptCO2simulation: (1) Mean Square Error (MSE) (1ptCO2) ; (b) 2,climR  
metric (1ptCO2); (c) Change in 2,climR  between 1ptCO2 and piControl.
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   mean std
, , , ,, , , , , , , 1, , , 1, , ,ˆ ˆ

C i j C i j x yC i j C i j C X Y i m j m       S S S � (18)

where the , ,C i j  are sampled according to i.i.d. standard normal distributions, and 96x ym m   is the num-
ber of points of the low-resolution grid along the x and y axes respectively. The field S  is then interpolated 
back to the u and v grid for the X  and Y  components, respectively, and used as the value of the subgrid mo-
mentum forcing in the shallow water model.

We ran the following simulations for 10 years each: a high resolution run (10 km), a coarse-resolution run 
(40 km) without parameterization, and three different ensemble members of the coarse-resolution run with 
the stochastic parameterization. The parameterized simulations are stable and produced a physically con-
sistent state without any tuning or scaling factor. The kinetic energy of the flow is improved: both the mean 
and the standard deviation are very close to the high-resolution simulation (Figure 8). Similarly to Zanna 
and Bolton (2020), the variance of the velocity fields (not shown) and sea surface height (Figure 9) are vastly 
improved by the parameterization. However, changes in the mean velocity are rather small (not shown). 
We believe that the simplicity of the shallow water model used in the present study is at the core of the lack 
of substantial improvement in the mean flow and our parameterization will need to be tested in a more 
complex model. Unlike Zanna and Bolton (2020), no physical constraint was imposed when learning the 
NN parameterization in our study; yet, we do not observe any drift in the model. Despite using zero-padding 
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Figure 8.  Kinetic energy [ 2 2/m s ] (a) time series, and (b) histogram for the low resolution unparametrized simulation at 30 km (blue), low resolution 
parameterized ensemble member simulations (green, orange, red), and filtered + coarse-grained high-resolution simulation (purple). In panel (b) the solid 
vertical lines indicate the mean and the dashed vertical lines the standard deviation of the simulated kinetic energy; only one ensemble member is shown, but 
the other ensemble members produce similar statistics.

Figure 9.  Standard deviation of sea surface height [ ]m  for (left) the low resolution simulation; (middle) one ensemble member from the parameterized 
versions; (right) the high resolution simulation.
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during the implementation, the solutions near the boundaries are not strongly impacted. Overall, the coarse 
resolution stochastic simulations are 25% slower than the unparameterized runs but more than 40 times 
faster than a high-resolution simulation at 10 km on the same CPU. However, this statement is to be taken 
with care as the high-resolution simulation was not optimized.

5.  Discussion
Current parameterizations of ocean and atmosphere processes can lead to biases in climate models and 
remain a large source of uncertainty in climate projections. Therefore, harnessing state-of-the-art Deep 
Learning and statistical methods to improve parameterizations of subgrid processes has recently raised a 
lot of interest (Bolton & Zanna, 2019; Rasp et al., 2018; Yuval & O'Gorman, 2020; Zanna & Bolton, 2020). 
Here, we have demonstrated the potential of Deep Learning approaches for the problem of ocean momen-
tum subgrid parameterizations using data generated by a realistic coupled climate model, as opposed to 
data from idealized ocean-only quasi-geostrophic or primitive equation simulations (Bolton & Zanna, 2019; 
Zanna & Bolton, 2020).

The use of data from realistic coupled climate models to train Deep Learning is nontrivial due to the size 
of the data, the use of the tripolar irregular spherical grid, and the coupling between the ocean and the at-
mosphere. Here, we establish a filtering and coarse-graining procedure to diagnose the subgrid momentum 
forcing in a global model and show that using only a limited number of subdomains, we can train a NN 
to skillfully predict the subgrid momentum forcing over the global oceans, and in a different climate with 
increased 2CO  levels. However, there are several remaining challenges.

We have shown that the offline skill of the predictions is lower in regions where sea-ice is present. There-
fore, to improve parameterizations of ocean mesoscale eddies in these regions, it might be necessary to 
acquire data that can faithfully represent these interactions with sea-ice and likely with the atmosphere in 
polar regions. Another outstanding challenge is to diagnose and train for subgrid momentum forcing in 
grid boxes near continents. Our NN accounts for some nonlocal turbulent interaction (Frederiksen, 1999; 
Kraichnan, 1959), however the influence of large-scale far-field on the subgrid momentum forcing could 
potentially be improved by increasing the size of the subdomain used for training. The current size of the 
subdomain was chosen for convenience, by considering the best skill with the smallest amount of data. In 
addition, learning the standard deviation (in addition to the mean) of the subgrid parameterization takes 
into account the missing nonlocal interactions to some extent (and any other missing feedbacks in the 
learning procedure). While larger subdomains may perform better offline, training might require larger 
amounts of data to avoid overfitting and may not translate into a better online implementation. Yet, other 
structures such as the U-net (Ronneberger et al., 2015) allow for interactions with larger scales. Our ex-
periments with a U-net structure have not yet led to any improvements in the subgrid momentum forcing 
parameterization; though further investigation might be required.

To improve the generalization of data-driven parameterizations, simulations spanning the phase space of 
turbulence (different forcing, viscosity, etc.) could be used to train Machine Learning models and poten-
tially offer a window into the theoretical underpinning of subgrid models (Kitsios et al., 2016; Porta Mana 
& Zanna, 2014). These Machine Learning models could be implemented more generally in climate model 
simulations. In addition, 1 / 10-resolution ocean models still underestimate the true mesoscale transient 
kinetic energy. While the use of Large Eddy Simulations (LES) and Direct Numerical Simulations (DNS) 
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Figure 10.  Procedure for generating the stochastic parameterization (Equation 18) implemented in the coarse 
resolution idealized model, based on the trained neural network (NN).
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could alleviate these issues, these models cannot be run at global scales or include all components of the 
climate system, all of which influence the eddy momentum forcing. Satellite observations of sea surface 
height could be used to fine-tune our trained NN via transfer learning. Yet, using satellite data comes with 
its own challenges due to sparse spatio-temporal sampling and error due to the interpolation of the gridded 
datasets. These challenges could be overcome in the near future as higher resolution satellite data becomes 
available and improved gridding procedures are being developed.

We only used information from the surface layer to train for subgrid momentum forcing (since subsurface 
velocity data is not publicly available). Training a NN model for each layer of a climate model would likely 
be limited by computational power and storage (of the NN parameters) and of limited scientific use. In-
stead, a single NN model of similar complexity to the one presented in this manuscript can be trained using 
data from all layers of a coupled model (Bolton & Zanna, 2019; Zanna & Bolton, 2020). While the current 
NN might generalize well to other layers, we might expect degradation in skill in regions that interact 
strongly with bathymetry, for example.

The NN presented here was trained to predict the parameters (mean and standard deviation) of a Gaussian 
probability distribution at each grid box, therefore providing a probabilistic prediction of the subgrid forcing 
with Deep Learning. This probabilistic approach attempts to account for both the uncertainty in the map-
ping between the coarse velocity field and the subgrid forcing, uncertainty in any missing interaction not 
included in the learning, and uncertainty in the data itself. Stochasticity has been shown to improve model 
bias and produce more reliable ensemble predictions (Berner et al., 2017). Besides, while most current Deep 
Learning approaches to the parameterization of subgrid processes have been deterministic, a stochastic 
approach could be key when it comes to online implementations. Several Deep Learning implementations 
of parameterizations trained offline have resulted in poor stability properties or unrealistic flows in online 
simulations. Stochasticity could provide one approach to potentially solve this issue as shown in previous 
work (Palmer, 2012; Zanna et al., 2017). Using an idealized shallow water model, we showed that imple-
menting our stochastic parameterization results in stable simulations and produces a realistic flow without 
any tuning. However, while the stochastic parameterization vastly improved some metrics (mean and vari-
ance of the kinetic energy), the impact on other metrics were only modest (e.g., zonal velocities).

The probabilistic approach presented here to learning the subgrid forcing remains simple and could be 
applied to parameterizing other processes. Yet it could benefit from more advanced probabilistic modeling. 
While we limited ourselves to conditionally i.i.d. Gaussian distributions, our analysis of residuals shows 
that representing higher moments could lead to a better representation of the distribution of subgrid forc-
ing. In addition, we do not account for the uncertainty associated with the parameters of the NN (Jospin 
et al., 2020). While Bayesian NNs remain computationally more expensive, recent progress on that front 
could be an interesting avenue of investigation, and may provide additional assurance compared to single 
outputs.

Finally, combining closed-form parameterizations with stochastic Deep Learning approaches could be an-
other fruitful avenue. For instance, it would be possible to predict the mean forcing via a closed-form equa-
tion, such as done by Zanna and Bolton (2020) using equation-discovery methods, while representing high-
er-order moments via a probabilistic Deep Learning approach similar to that proposed in this manuscript. 
This approach could improve our understanding of missing processes and their representation in climate 
models. While the effects of Deep Learning subgrid parameterizations on climate projections remain to be 
ascertained, the benefits of Deep Learning could be greater if they are used to understand processes from a 
probabilistic perspective.

Appendix A:  Neural Network Training Hyperparameters
The values of the hyperparameters used in our training procedure are provided in Table A1. The learning 
rate is decreased through the training procedure, hence we provide its initial value (for epoch 0) and epochs 
at which the rate is decreased. The provided number of epochs corresponds to the maximum number of 
training epochs. In practice, training usually stops earlier due to our implementation of early stopping.
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Appendix B:  Generation of Low-Resolution Data and Estimates of the Missing 
Mesoscale Subgrid Forcing
We provide pseudo-code for the generation of the low-resolution data based on the CM2.6 high-resolution 
data set. This algorithm makes use of two functions whose pseudo-code is also provided, filter, which ap-
plies a Gaussian filter to the high-resolution data weighted by the cell areas, and advections, which com-
putes the advection term of a discrete velocity field.
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Hyperparameter Value

Number of epochs 100

Learning rate Epoch   0 45e

Epoch 10 55e

Epoch 20 65e

Batch size 4

Filter sizes Layers 1 2 5

Layers 3 8 3

Padding No

Table A1 
Hyperparameter Values for Training
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Note: the high-resolution velocities are set to zero on land point when applying the Gaussian filter.
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Appendix C:  Offline Test of the Learned CM2.6 ML Parameterization With 
Shallow Water Data
To test if the learned ML parameterization with CM2.6 data generalizes to a different model, we conduct 
an offline test with data from the shallow water model described in Section 4. We use daily velocities from 
the high resolution run, a total of 3,600 velocity snapshots. We then apply the same procedure presented 
in Section 2, i.e. we filter and coarse-grain the data spatially to obtain coarse velocities on a low-resolution 
(40 km) grid. We also diagnose a true forcing, which we use as a reference for comparison with outputs from 
our NN. The time-average 2R  is high in most parts of the domain with values above 0.9, except in the more 
quiescent Eastern regions and near the boundaries with values of about 0.7–0.8 (Figure C1). The lower 2R  
values in quiescent regions is not surprising (due to the low forcing in that region), and consistent with 
offline results carried out on CM2.6 data.

The time series of the predicted mean forcing, along with 95% confidence intervals evaluated from the 
predicted standard deviation for both components, at locations indicated by the white and green dots in 
Figure C1, show good agreement with the true forcing (Figures C2 and C3). Overall the NN—trained on 
CM2.6 simulation data—is able to generalize to the shallow water model data without any degradation in 
performance, indicating that the ML model is able to capture the appropriate ocean subgrid eddy forcing 
simplified model.
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Figure C1.  Time-average 2R  coefficient maps for XS  (left) and YS  (right) for offline tests on simulation data from the 
shallow water model.
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Figure C2.  Time series of true forcing (blue), of the mean predictions (orange), and of the 95% confidence interval 
(dashed green) at the location indicated by the white dot in Figure C1.

Figure C3.  Time series of true forcing (blue), of the mean predictions (orange), and of the 95% confidence interval 
(dashed green) at the location indicated by the green dot in Figure C1.
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Appendix D:  Complementary Figures
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Figure D1.  Correlation between XS  and ( )ˆ mean
XS . Note the lower values are 0.7.

Figure D2.  Map of time-mean 2,climR  metric in piControl for (a) the zonal component (b) the meridional component. 
The performances for both components are similar with lowest values around 0.6.
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Figure D3.  Time series of the true (solid blue) zonal component of the subgrid momentum forcing, mean zonal 
component of our neural network (NN) (orange), and 95% confidence interval (green), at 29 ,129N W  . This location 
was selected within the region on the West coast of the United States where the 2R  is lower; the lower 2R  value appears 
to be due to a few extreme events that are not accurately predicted, rather than a consistent ill-performance.

Figure D4.  Sample log-probability distribution of true (purple) and stochastically simulated forcing (green) in the 
control simulation, for both components—zonal (left) and meridional (right). The histograms are shown on a log scale 
due to the hyperbolic-type distribution of the forcing.
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Figure D5.  Distribution analysis of normalized residuals (Equation 16) of subgrid momentum forcing in the 
control simulation. (a) Sample distribution (blue) along with the probability density function of the standard normal 
distribution (red), (b) QQ plot (blue) of normalized residuals against the standard normal distribution, and line (green) 
defined by y x .
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Data Availability Statement
The authors downloaded the simulation's ocean surface velocities from a Pangeo data catalog at https://raw.
githubusercontent.com/pangeo-data/pangeo-datastore/master/intake-catalogs/ocean/GFDL_CM2.6.yaml 
made publicly available by the Geophysical Fluid Laboratory. The code used in this study can be accessed 
from two repositories: https://doi.org/10.5281/zenodo.4573438 for the data processing, neural network train-
ing and its tests; https://doi.org/10.5281/zenodo.4573448 for its implementation in a shallow water model.
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