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a b s t r a c t 

Porta Mana and Zanna (2014) recently proposed a subgrid-scale parameterization for eddy-permitting 

quasigeostrophic models. In this model the large-scale fluid is represented as a non-Newtonian vis- 

coelastic medium, with a subgrid-stress closure that involves the Lagrangian derivative of large-scale 

quantities. This note derives this parameterization, including the nondimensional proportionality coef- 

ficient, using only two statistical assumptions: that the subgrid-scale term is locally homogeneous and 

decorrelates rapidly in space. The parameterization is then verified by comparing against eddy-resolving 

quasigeostrophic simulations, independently reproducing the results of Porta Mana and Zanna in a 

simpler model. 

© 2017 The Authors. Published by Elsevier Ltd. 
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1. Introduction 

Continuing improvement in the spatial resolution of operational

global ocean models has led to recent interest in subgrid-scale

parameterizations appropriate to models that partially resolve

mesoscale eddy dynamics. Fox-Kemper and Menemenlis (2008) ad-

vocate a nonlinear viscosity based on Leith ’s (1996) adaptation

to quasi-2D dynamics of Smagorinsky ’s (1963) successful large

eddy simulation (LES) approach. Whereas Leith’s nonlinear vis-

cosity is based on the idea of an inertial range with a con-

stant downscale flux of enstrophy, Jansen and Held (2014) and

Jansen et al. (2015) rely on the idea of an inertial range with

zero flux of energy to develop a nonlinear negative-viscosity ap-

proach similar to Sukoriansky et al. (1996) . The deterministic

approaches of Fox-Kemper and Menemenlis (2008) , Jansen and

Held (2014) and Jansen et al. (2015) are complemented by stochas-

tic approaches that model the energy transfer between resolved

and unresolved scales as a random process; such stochastic mod-

els have been largely based on empirical knowledge of sub-grid

eddy statistics (e.g. Berloff, 2005b; Grooms and Majda, 2013; Kit-

sios et al., 2013; Jansen and Held, 2014; Grooms et al., 2015 ). 

Porta Mana and Zanna (2014) proposed a novel eddy-permitting

parameterization not based on LES ideas like those above. They

performed thorough multiscale statistical analysis of an eddy-

resolving quasigeostrophic (QG) gyre simulation, similar to the ‘dy-
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amically consistent’ diagnostic framework from Berloff (2005a) ,

tudying in particular the component of the time tendency of the

arge-scale potential vorticity (PV) that is induced by subgrid-scale

erms. Finding that existing parameterizations did not match their

ata well, they proposed and empirically verified an accurate

arameterization of the form Eq. (5) below. This parameterization

elates the subgrid-scale term to the Lagrangian time derivative

f the large-scale potential vorticity. They showed that an analogy

etween the parameterization, which includes a time-tendency

f large-scale quantities, and the theory of non-Newtonian fluids

f second grade or ‘Rivlin-Ericksen fluids’ ( Rivlin and Ericksen,

997; Dunn and Fosdick, 1974; Truesdell and Rajagopal, 2010 )

an be drawn. This parameterization has been successfully im-

lemented in quasi-geostrophic models, showing improvement

n the mean flow, its variability and energy transfer between

cales ( Zanna et al., 2017 ). The parameterization is currently

eing developed for primitive-equation ocean models ( Anstey and

anna, 2017; Zanna et al., 2017 ). Anstey and Zanna (2017) show

hat some properties of QG turbulence are adequately captured

y the parametrization. The aim of this paper is to obtain the

arameterization of Porta Mana and Zanna (2014) , including the

ondimensional constant, using only assumptions of local homo-

eneity and rapid spatial decorrelation of the subgrid-scale term. 
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. Theoretical development 

In a quasigeostrophic (QG) model, the equation for potential

orticity (PV) evolution in a single layer is 

Dq n 

Dt 
= D n + F n (1) 

here the QG PV in the i th layer is q n , F n denotes forcing (e.g. via

ind stress), and D n denotes a dissipation operator acting to re-

ove enstrophy at small scales. The QG PV in the n th layer in-

ludes planetary, relative and stretching vorticity terms, such that

t is linearly related to the streamfunction ψ n in all layers, and

o the relative vorticity ∇ 

2 ψ n . The advective derivative takes the

orm 

D 

Dt 
= ∂ t + u n · ∇ (2)

here u n = (−∂ y ψ n , ∂ x ψ n ) . 

We will assume that a system of equations of the form (1) gov-

rns the dynamics at all scales, and approximate solutions can

e computed using numerical simulations with sufficiently high

esolution. The computational cost of these simulations can be

rohibitive. Eddy-permitting models use spatial resolution high

nough to permit, but not to completely resolve typical mesoscale

ddies. 

The goal is to design a numerical method that accurately sim-

lates the resolvable scales in a model with eddy-permitting res-

lution, with a grid-box roughly equal to the Rossby radius of de-

ormation. To that end we begin by constructing a set of partial

ifferential equations governing the resolvable part of the true so-

ution. We therefore apply a time-independent spatial low-pass fil-

er denoted · to Eq. (1) 

D q n 
Dt 

= ∂ t q n + u n · ∇ q n = S ∗n + D 

∗
n + F n . (3)

he dissipation term D 

∗
n in the large-scale evolution is often not

qual to the low-pass filtered original dissipation term D n ; for

xample, the viscosity is often increased to help keep solutions

mooth. The eddy source term has the form 

 

∗
n = u n · ∇ q n − u n · ∇q n + D n − D 

∗
n . (4)

Porta Mana and Zanna (2014) ran well-resolved simulations of

G dynamics with different forcing and dissipation, applied a low-

ass spatial filter to the results, and diagnosed the eddy source

erms S ∗n directly. They compared it to a variety of parameteriza-

ions, and discovered that the data is in excellent agreement with

 new parameterization of the form 

 

∗
n ≈ −( 0 . 45�x ) 

2 ∇ 

2 D q n 
Dt 

(5) 

here �x is the grid size of the eddy-permitting numerical model,

hich is related to the length scale of the low-pass spatial filter ·.
he parametrization relies on analogy between the truncated tur-

ulent stresses and non-Newtonian stresses, arguing the need for

ome spatial coherence and infinitesimal memory ( Rivlin and Er-

cksen, 1997 ). 

The goal of this section is to present a derivation of the above

arameterization using the following two fundamental assump-

ions: 

• The eddy source term is rapidly-decorrelating in space. 
• The eddy source term is locally-spatially-homogeneous. 

The precise meaning of these assumptions will become clear in

he course of the derivation. Without loss of generality, we con-

ider for the remainder of this section only the top layer n = 1 and

rop subscripts. 
First, apply the Laplacian to (3) 

 

2 D q 

Dt 
= ∇ 

2 S ∗ + ∇ 

2 (D 

∗ + F ) . (6)

ur assumption that S ∗ is rapidly-decorrelating in space implies

hat it is dominated by small scales rather than by large-scale pat-

erns. This assumption is supported by Fig. 5a in Porta Mana and

anna (2014) . The Laplacian of a field dominated by small scales

s large, and we expect the Laplacian of the forcing term to be

egligible by comparison. Dissipation specifically occurs at small

cales, so it is not clear a priori that the Laplacian of the dissi-

ation term should be smaller than the Laplacian of S ∗. Neverthe-

ess, in our experiments described below this is the case, and in

orta Mana and Zanna (2014 , Fig. 5d) the dissipation term is found

o be much smaller than S ∗. Grooms et al. (2015) provide heuris-

ic arguments and supporting evidence that S ∗ has a Fourier spec-

rum growing as the 5th power of the wavenumber, which is very

trongly dominated by the small scales, evidently more so even

han the dissipation term. Thus, we make the following approxi-

ation, which ignores the Laplacian of the forcing and dissipation

erms in Eq. (6) 

 

2 D q 

Dt 
≈ ∇ 

2 S ∗. (7) 

We now consider the second-order centered finite-difference

pproximation to the Laplacian of S ∗, as used by Porta Mana and

anna (2014) in their diagnostics. Let S ∗
i, j 

be the value of S ∗ at the

ocation ( i �x, j �x ) on an equispaced grid in the top layer. The

econd-order centered finite-difference approximation to S ∗ at the

ocation ( i �x, j �x ) is 

 

2 S ∗| i, j ≈ L i, j = 

1 

�x 2 

[
S ∗i, j+1 + S ∗i −1 , j −4 S ∗

i, j 
+ S ∗

i +1 , j 
+ S ∗

i, j−1 

]
. (8) 

e now seek a linear relationship between ( �x ) 2 L i, j and S ∗
i, j 

that

ill allow us to write (c�x ) 2 L i, j ≈ S ∗
i, j 

, i.e. ( c �x ) 2 ∇ 

2 S ∗ ≈ S ∗. Such

 relationship immediately implies S ∗ ≈ (c�x ) 2 ∇ 

2 D q /Dt . 

The assumption of local homogeneity implies that S ∗
i, j 

is a

andom variable with distribution approximately the same as its

eighbors. The assumption of rapid spatial decorrelation implies

hat S ∗
i, j 

is approximately uncorrelated with its neighbors. We can

nterpret this result by arguing that by taking the Laplacian of S ∗

equivalently of D q /Dt, according to Eq. (7) ), we are introducing in-

ormation from neighboring grid cells, that are approximately un-

orrelated with that grid cell. The introduction of such informa-

ion implies some random-process model for the eddy closure. We

o not expect S ∗
i, j 

to be completely uncorrelated with its neigh-

ors, since that would imply a complete scale separation between

esolved and unresolved scales, which is unrealistic in the eddy-

ermitting regime where resolved and unresolved scales are both

art of an inertial range of scales; nevertheless, to simplify analysis

e assume that the correlations are small enough to be negligible.

The eddy source term S ∗
i, j 

and the scaled finite-difference Lapla-

ian �x 2 L i, j are jointly-distributed random variables, and under

hese assumptions we can derive their covariance matrix, which

as the form 

= Cov 

[(
S ∗

i, j 

�x 2 L i, j 

)
, 

(
S ∗

i, j 

�x 2 L i, j 

)]
= σ 2 

[
1 −4 

−4 20 

]
, (9) 

here σ 2 is the variance of S ∗
i, j 

and its neighbors. The diagonal

ntries are the variances of S ∗
i, j 

and �x 2 L i, j , and the off-diagonal

ntries are the cross-covariance. 

This covariance matrix is associated with an ellipse whose axes

re aligned with the eigenvectors of the covariance matrix. The

ccentricity 0 ≤ ε ≤ 1 of an ellipse quantifies how flat it is: if

 = 0 the ellipse is a circle, and if ε = 1 then the ellipse is simply a
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Fig. 1. (a) A snapshot of q 1 from the eddy-resolving simulation. Contour interval 

is 10 (nondimensional), and contours range from −60 to −10 (dashed) and from 

0 to 60 (solid). (b) Contours of probability density (nondimensional) for the joint 

density of S ∗ and ∇ 

2 D q 1 /Dt . Contours are from 10 −3 to 9 × 10 −3 with an interval of 

10 −3 . The dotted line is S ∗ = −( 0 . 4494�x ) 
2 ∇ 

2 D q 1 /Dt (theory); the dashed line is 

S ∗ = −( 0 . 473�x ) 
2 ∇ 

2 D q 1 /Dt (linear regression). 
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line segment. Zero eccentricity would imply that there is no linear

relationship between S ∗
i, j 

and �x 2 L i, j , whereas unit eccentricity

would imply that the two variables are perfectly correlated. The

eccentricity is related to the ratio of the two eigenvalues of the

covariance matrix, which are σ 2 (21 ± 5 
√ 

17 ) / 2 , and which give an

eccentricity 

ε = 17 

1 / 4 

[
10 

21 + 5 

√ 

17 

]1 / 2 

≈ 0 . 99537 . (10)

Thus, under the above assumptions S ∗
i, j 

is very closely correlated

with �x 2 L i, j . 

The linear relationship between S ∗
i, j 

and �x 2 L i, j is given by the

eigenvector of the covariance matrix that is associated with the

major axis of the ellipse (the larger eigenvalue). This eigenvector

is (
19 − 5 

√ 

17 

8 

)
, (11)

which implies the linear relationship 

S ∗i, j ≈
19 − 5 

√ 

17 

8 

�x 2 L i, j . (12)

Making use of the approximation in Eq. (7) leads to 

S ∗ ≈ −( 0 . 4494�x ) 
2 ∇ 

2 S ∗ ≈ −( 0 . 4494�x ) 
2 ∇ 

2 D q 

Dt 
. (13)

The above derivation could be repeated with a finite-difference

approximation to any linear differential or integral operator. But

the assumption of local homogeneity requires the finite-difference

stencil to be local. For example, if the Laplacian were replaced by

a biharmonic operator in the above derivation the stencil would

widen and the local homogeneity assumption would become less

accurate when applied over a wider stencil. Similarly, using a

higher-order approximation to the Laplacian would result in a

wider stencil and a different linear relationship (i.e. a different

constant coefficient) between S ∗ and �x 2 ∇ 

2 D q /Dt, but the as-

sumption of local homogeneity would again be less accurate over

the wider stencil. 

3. Experimental configuration and results 

We test the above analysis in a two-layer, doubly-periodic QG

model on an f -plane forced by an imposed mean shear. The nondi-

mensional governing equations are 

∂ t q 1 + u 1 · ∇q 1 = −ν4 ∇ 

4 q 1 (14)

∂ t q 2 + u 2 · ∇q 2 = −c d curl 
[| (u 2 + 

ˆ x ) | (u 2 + 

ˆ x ) 
]

(15)

−ν4 ∇ 

4 q 2 

q 1 = y + ∇ 

2 ψ 1 + 

1 

2 

(ψ 2 − ψ 1 ) (16)

q 2 = −y + ∇ 

2 ψ 1 + 

1 

2 

(ψ 1 − ψ 2 ) . (17)

The linear components of q and ψ are associated with an im-

posed uniform zonal baroclinic shear. The term multiplied by c d 
in Eq. (15) is a standard quadratic drag where the imposed zonal

velocity in the lower layer − ˆ x has been subtracted from u 2 (which

includes the mean flow) before computing the drag. The equations

have been nondimensionalized using the deformation radius as a

length scale, and the imposed zonal velocity as a velocity scale.

We set c = 0 . 1 and ν = 0 . 08192 . The domain is square and has
d 4 
ondimensional width 32 π . Approximate solutions are computed

sing 256 × 256 nonzero Fourier modes and a fourth-order semi-

mplicit Runge–Kutta method as described by Grooms and Ma-

da (2014) . The time step is 0.01. The grid size is 0.39, so there are

ust more than two grid points per deformation radius, a heuris-

ic rule-of-thumb for eddy-resolving computations. Fig. 1 a shows a

napshot of the upper-layer PV q 1 from the eddy-resolving simula-

ion. Once the simulation has reached a statistical equilibrium, 500

napshots of the simulation with temporal spacing 0.2 are saved

or diagnostic analysis. 

To investigate the eddy source term S ∗ in the upper layer, we

ompute 

 

∗ = u 1 · ∇ q 1 − u 1 · ∇q 1 − ν4 ∇ 

4 ψ 1 + ν4 ∇ 

4 ψ 1 . (18)

he eddy-permitting biharmonic viscosity is set to ν4 = 4 ν4 . The

erms q 1 , ψ 1 , u i · ∇q i and ν4 ∇ 

4 ψ 1 are computed by apply-

ng an equal-weight average over 4 × 4 sets of grid points

rom the eddy-resolving simulation. The term u 1 · ∇ q i is com-

uted using the second-order energy- and enstrophy-conserving

Arakawa, 1966) jacobian, and the term ν4 ∇ 

4 ψ 1 is computed by

terating the standard second-order centered finite difference ap-

roximation. 

The variance of ν4 ∇ 

6 ψ is 2.76 and the variance of ∇ 

2 S ∗ is

87, showing that it is not unreasonable to approximate Eq. (6) by

q. (7) . Fig. 1 b shows the empirical joint probability density of

 

∗ and ∇ 

2 D q 1 /Dt (which is computed using the same discrete

aplacian from Section 2 ). The line S ∗ = −( 0 . 4494�x ) 2 ∇ 

2 D q 1 /Dt

s plotted as a dotted line, and the linear regression S ∗ =
( 0 . 473�x ) 2 ∇ 

2 D q 1 /Dt is plotted as a dashed line. The best-fit re-

ression matches the theoretical prediction reasonably well, and

he elliptical contours of probability density are quite ’thin,’ though

ot so thin as suggested by the theoretically-predicted eccentric-

ty of 0.995. The mismatches between theory and experiment are

ikely due to the neglect of spatial correlations in the eddy source

erm S ∗. 

. Conclusions 

We have provided an a priori derivation of the parameteriza-

ion proposed by Porta Mana and Zanna (2014) using only two sta-

istical assumptions on the eddy source term S ∗: that its variance

hanges minimally from one coarse grid point to the next (local

omogeneity), and that its value at one coarse grid point is ap-

roximately uncorrelated with its value at neighboring grid points

rapid spatial decorrelation). We have further verified the predic-

ions of the theory using an eddy-resolving simulation, thereby in-

ependently reproducing some of the results of Porta Mana and
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anna (2014) . The derivation, being based purely on statistical

rguments, provides no direct connection to the theory of non-

ewtonian fluids. Other studies have however attempted to explain

t a physical and mathematical level why the large scales behave

n a manner analogous to non-Newtonian fluids ( Foia ̧s et al., 2001;

orta Mana and Zanna, 2014; Anstey and Zanna, 2017 ). 
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