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Abstract
Data assimilation is often viewed as a framework for correcting short-term error growth
in dynamical climate model forecasts. When viewed on the time scales of climate how-
ever, these short-term corrections, or analysis increments, can closely mirror the system-
atic bias patterns of the dynamical model. In this study, we use convolutional neural net-
works (CNNs) to learn a mapping from model state variables to analysis increments, in
order to showcase the feasibility of a data-driven model parameterization which can pre-
dict state-dependent model errors. We undertake this problem using an ice-ocean data
assimilation system within the Seamless system for Prediction and EArth system Re-
search (SPEAR) model, developed at the Geophysical Fluid Dynamics Laboratory, which
assimilates satellite observations of sea ice concentration every 5 days between 1982–2017.
The CNN then takes inputs of data assimilation forecast states and tendencies, and makes
predictions of the corresponding sea ice concentration increments. Specifically, the in-
puts are states and tendencies of sea ice concentration, sea-surface temperature, ice ve-
locities, ice thickness, net shortwave radiation, ice-surface skin temperature, sea-surface
salinity, as well as a land-sea mask. We find the CNN is able to make skillful predictions
of the increments in both the Arctic and Antarctic and across all seasons, with skill that
consistently exceeds that of a climatological increment prediction. This suggests that the
CNN could be used to reduce sea ice biases in free-running SPEAR simulations, either
as a sea ice parameterization or an online bias correction tool for numerical sea ice fore-
casts.

Plain Language Summary

To make predictions of the Earth’s climate system we use expensive computer sim-
ulations, called climate models. These models are not perfect however, as we often need
to approximate certain physical laws in order to save on compute time. On the other hand
we have observational climate data, however these data have limited space and time cov-
erage and also contain errors because of noise and assumptions about how our measure-
ments relate to the quantity we are interested in. Therefore we often use a process called
data assimilation to combine our climate model predictions together with observations,
to produce our ‘best guess’ of the climate system. The difference between our best-guess-
model and our original climate model prediction then gives us clues as to how wrong our
original climate model is. In this work we use some fancy statistics, called machine learn-
ing, where we show a computer algorithm lots of examples of sea ice, atmosphere and
ocean climate model predictions, and see if it can learn its own inherent sea ice errors.
We find that it can do this well, which means that we can hopefully incorporate the ma-
chine learning algorithm into the original climate model to improve its future climate
predictions.

1 Introduction

The influence of structural errors within climate models due to missing physics, im-
perfect parameterizations of subgrid-scale processes, as well as errors in the underlying
numerics, leads to systematic biases across the atmosphere, land, sea ice, and ocean. Sub-
sequently, our ability to diagnose and correct these biases ultimately governs the accu-
racy of numerical weather and climate predictions on different time scales (Stevens &
Bony, 2013). In the context of sea ice for example, much effort has been afforded to the
improvement of model physics and subgrid parameterizations through the development
of e.g., ice thickness distribution (Thorndike et al., 1975; Bitz et al., 2001) and floe-size
distribution theory (Rothrock & Thorndike, 1984; Horvat & Tziperman, 2015), surface
melt-pond (Flocco et al., 2012), ice drift (Tsamados et al., 2013) and lateral melt pa-
rameterizations (M. Smith et al., 2022), as well as sea ice rheology (Hibler, 1979; Dansereau
et al., 2016; Ólason et al., 2022). Such studies have shown how the improved represen-
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tation of sea ice physics produces model simulations which more closely reflect observa-
tions in terms of either their mean sea ice volume, drift, or ice thickness distribution. De-
spite this, however, biases will often persist due to the fact that physical processes must
be approximated in order to meet computational restraints, and that parameterizations
are often based on sparse observations which were collected under a climate regime which
may not generalize to future conditions (Notz, 2012). Sea ice is also strongly coupled to
both the atmosphere and ocean via mechanical and thermodynamic forcing, thus sea ice
biases can also manifest from biases in these components.

Many previous studies have leveraged data assimilation (DA) as a way to either
assess model error or better understand model physics within numerical weather predic-
tion (NWP) systems (Leith, 1978; Klinker & Sardeshmukh, 1992; Dee, 2005; Rodwell
& Palmer, 2007; Palmer & Weisheimer, 2011; Carrassi & Vannitsem, 2011; Mitchell &
Carrassi, 2015; Crawford et al., 2020; Laloyaux et al., 2020). Generally, DA can be con-
sidered a Bayesian framework for combining a model forecast with observations in or-
der to produce an optimal estimate of a given set of climate state variables, often called
the analysis state. The difference between this analysis state and the model forecast prior
to assimilation is then the analysis increment, which represents our ‘best guess’ as to the
appropriate correction to the model forecast when taking into account both model and
observational uncertainty. One caveat to this is that many DA systems do not formally
account for systematic model biases, and so these systems often produce non-zero val-
ues in the time-mean of their analysis increments; indicating consistent discrepancies be-
tween the model and observations. Attributing such errors to their correct source is also
non-trivial (Dee, 2004, 2005), as model biases can manifest non-locally in space and time
(Palmer & Weisheimer, 2011; C. Wang et al., 2014) and involve non-linear interactions
across different model components (Large & Danabasoglu, 2006; Kim et al., 2022). Ob-
servations themselves may also contain systematic errors, such as the design of weather
filters in satellite-derived sea ice area retrievals (Kern et al., 2019) and uncertainties re-
lated to summer ice surface properties (Kern et al., 2020). While some studies have shown
relative success in separating systematic errors between observations and models (Auligné
et al., 2007; Dee & Uppala, 2009), many assimilation systems simply assume that the
observational errors are uncorrelated and Gaussian, and subsequently any systematic pat-
terns within the analysis increments can largely be considered a manifestation of the var-
ious model biases. Under this assumption, the increments can be seen as a reflection of
model error growth associated with missing or imbalanced physical processes occurring
over short time scales, often called fast physics errors, however such errors ultimately
have an impact on the model’s bias patterns over climate time scales as well (J. M. Mur-
phy et al., 2004; Rodwell & Palmer, 2007).

The analysis increments therefore provide useful information on model deficiencies,
which could inform new parameterizations to reduce systematic model biases. Indeed,
variational schemes such as weak-constraint 4D-Var (Wergen, 1992; Zupanski, 1993; Trémolet,
2007; Laloyaux et al., 2020) already aim to account for systematic model error during
DA, and while this is invaluable in NWP, the underlying model physics remains unchanged,
meaning that a free-running model simulation invariably remains biased. An alternative
approach which has been explored in the ocean modeling community (Chepurin et al.,
2005; Balmaseda et al., 2007; Lu et al., 2020) is to use DA to first derive the climato-
logical components of the systematic model biases, and then incorporate these compo-
nents back into the model as an adjustment to the model state tendencies. Lu et al. (2020)
for example designed an ocean DA system which assimilates temperature and salinity
profile data into version 6 of the Modular Ocean Model (MOM6), and from this they de-
rived analysis increments of temperature and salinity at each model grid cell location and
vertical level. They subsequently computed the daily climatology of the increments, which
represent the systematic component of model error for each field on any given day of the
year, and incorporated these as a three-dimensional adjustment to the model temper-
ature and salinity tendencies for subsequent MOM6 ocean simulations. This ‘ocean ten-
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dency adjustment’ was found to reduce ocean model bias and improve the skill of cou-
pled model seasonal predictions of the El Niño Southern Oscillation.

More recently, machine learning (ML) has been put forward as a data-driven frame-
work for targeting model biases. ML, in particular deep learning (DL), algorithms have
become increasingly popular in climate research for a variety of applications ranging from
NWP (Pathak et al., 2022; Bi et al., 2022) to satellite altimetry data processing (Dawson
et al., 2022; Landy et al., 2022). In the context of dynamical climate models, DL algo-
rithms have proven effective tools for deriving model parameterizations directly from nu-
merical simulations. For example, many past studies have focused on learning subgrid
parameterizations from high resolution experiments and/or observations of the ocean (Bolton
& Zanna, 2019; Zanna & Bolton, 2020; Zhu et al., 2022), atmosphere (Brenowitz & Brether-
ton, 2018; Gentine et al., 2018; Rasp et al., 2018; O’Gorman & Dwyer, 2018; Yuval &
O’Gorman, 2020; P. Wang et al., 2022), and sea ice (Finn et al., 2023). In the context
of DA-based approaches, some recent studies have relied on iterative sequences of DA
and ML to infer unresolved scale parameterizations from sparse and noisy observations
(Brajard et al., 2021), or to learn state-dependent model error from analysis increments
(Farchi et al., 2021) and nudging tendencies (Watt-Meyer et al., 2021; Bretherton et al.,
2022), while others have combined DA with equation discovery to extract interpretable
structural model errors (Mojgani et al., 2022). Many of these studies have relied on ide-
alized models to showcase the feasibility of various DA-ML methodologies, however re-
cently Bonavita and Laloyaux (2020) used ML to learn state-dependent model errors from
atmospheric analysis increments produced from a 4D-Var simulation within the the In-
tegrated Forecasting System (IFS) model at the European Centre for Medium-range Weather
Forecasts (ECMWF), and similarly, Laloyaux et al. (2022) attempted to learn atmospheric
temperature errors within the same IFS model using the model bias directly, as a way
to a-priori define the bias model within subsequent 4D-Var simulations. This latter ap-
proach however was unable to outperform the current operational weak-constraint 4D-
Var system at ECMWF.

In this study, we present a DA-based ML approach to learn the systematic biases
of a large-scale sea ice model used for climate simulations. We learn state-dependent sea
ice errors within the Seamless system for Prediction and EArth system Research (SPEAR)
model (Delworth et al., 2020), developed at the Geophysical Fluid Dynamics Labora-
tory (GFDL), by constructing convolutional neural networks (CNNs) which learn a func-
tional mapping from model state variables to sea ice DA increments. Somewhat differ-
ent to previous studies which have been centered around DA and ML in idealized model
contexts (Brajard et al., 2021; Farchi et al., 2021; Mojgani et al., 2022), our application
here is, to our knowledge, the first example of using ML to learn systematic model er-
ror from DA increments in a global ice-ocean model (though similar approaches have pre-
viously been explored within large-scale atmospheric models (Bonavita & Laloyaux, 2020;
Chen et al., 2022)). We also choose to learn sea ice errors from DA increments as op-
posed to learning the model bias directly (e.g., Laloyaux et al. (2022)), as the increments
have inherently accounted for model and observational uncertainty, and they also pro-
vide a full spatio-temporal record of errors for model state variables which are not di-
rect observables, such as subgrid ice thickness distribution category concentrations. It
is also worth noting that while we present this article in the context of using ML to make
offline predictions of sea ice DA increments, we are ultimately working towards an ML
model which can be implemented as an online sea ice parameterization within SPEAR.
Similar to previous works (Grundner et al., 2022; P. Wang et al., 2022), this article is
therefore an initial evaluation into the feasibility of this task, based on offline performance.

This paper is structured as follows: Section 2 provides a brief overview of the SPEAR
ice-ocean model configuration, as well as the sea ice DA setup. Section 3 then highlights
how the climatological sea ice concentration (SIC) bias of a SPEAR ice-ocean model ex-
periment maps closely onto the SPEAR SIC DA increments, motivating the idea of learn-
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ing systematic model error from analysis increments. Section 4 describes the ML prob-
lem setup and documents the CNN architectures and hyperparameter settings. Section
5 then showcases the predictive performance of the CNN, and provides an assessment
of the CNN sensitivity and generalization ability. Section 6 presents a discussion on the
results and outlines considerations for future work relating to sea ice parameterizations
and climate prediction. A final summary is then given in section 7, as well as an out-
look on the broader implications of this work within the climate modeling community.

2 Model configuration

2.1 SPEAR ice-ocean model

SPEAR is a fully coupled ice-ocean-atmosphere-land model, with nominal 1◦ hor-
izontal resolution in the ice and ocean components (Delworth et al., 2020). The SPEAR
ocean component is based on MOM6, with 75 vertical layers, and the sea ice component
on version 2 of the Sea Ice Simulator (SIS2; see Adcroft et al. (2019) for details on both
MOM6 and SIS2). In this work, we consider an ice-ocean model configuration of SPEAR
forced by atmospheric conditions and river runoff from the Japanese 55-year Reanaly-
sis for driving ocean-sea-ice models (JRA55-do; Tsujino et al. (2018)).

The SIS2 ice dynamics are solved using a elastic-viscous-plastic rheology on a tripo-
lar Arakawa C-grid (Bouillon et al., 2009), with advection performed with a modified
upwind scheme (Adcroft et al., 2019). The energy-conserving thermodynamics of the ice
follows that of Bitz and Lipscomb (1999), and uses a vertical structure consisting of four
ice layers and a single snow layer. Following Bitz et al. (2001), five ice thickness distri-
bution categories are implemented in a Lagrangian scheme, with thickness boundaries
of 0.1, 0.3, 0.7, 1.1 metres. The coupling between ice and ocean occurs at a frequency
of 60 minutes, with a temperature coupling coefficient of 240 Wm−2K−1, while faster
coupling with the atmosphere occurs through a surface skin temperature every 20 min-
utes. The model does not contain melt-pond, subgrid ridging, lateral melt, or land-fast
ice parameterizations.

2.2 Sea ice data assimilation and model experiments

An experimental ice-ocean DA system within SPEAR was recently developed by
Y. Zhang et al. (2021), whereby satellite-derived SIC from the National Snow and Ice
Data Center (NSIDC; Cavalieri et al. (1996)) NASA Team algorithm is assimilated into
SIS2 via the Ensemble Adjustment Kalman Filter (EAKF; Anderson (2001)), and MOM6
sea-surface temperatures are nudged towards observations from version 2 of the 1◦ grid-
ded Optimum Interpolation Sea-Surface Temperature (OISSTv2) data set (Reynolds et
al., 2007; Banzon et al., 2016). In this section we give a brief overview of this DA setup,
although the reader is referred to Y. Zhang et al. (2021) for further details.

A single SPEAR ensemble member is initialised in 1958 with World Ocean Atlas
ocean conditions, and a prescribed atmosphere from JRA55-do reanalysis. This single
member is then integrated forward to 1979 in order to ‘spin up’ the ocean and sea ice,
which then provides the initial ice and ocean conditions for a set of 30 ensemble mem-
bers, each with individual perturbed sea ice physics. These perturbations correspond to
independent random draws from a uniform distribution for sea ice model parameters in-
cluding the ice strength parameter (Hibler, 1979), as well as the ice, snow, and pond albedo
parameters (Briegleb & Light, 2007). The distribution for ice strength spans 20,000–50,000
Nm−1, while the distribution for albedo parameters spans -1.6–1.6 standard deviations
(Y. Zhang et al., 2021). The 30 perturbed physics ensemble members are then integrated
forward from 1979 to 1982 in order to spin up the sea ice and generate sufficient spread
across the ensemble. After which, the first sea ice DA update is made on January 6th

1982 and continues every 5 days until December 27th 2017, providing a total of 2618 as-
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similation cycles. This corresponds to 73 cycles per year except for 1982, 1987 and 1988,
which contain 71, 68 and 70 cycles, respectively. There are 71 cycles in 1982 because the
first cycle begins after the initial update on January 6th, and 68 and 70 in 1987 and 1988
due to missing satellite observations between December 3rd 1987 and January 13th 1988
(Cavalieri et al., 1996). Note that, for convenience, the model is run with a ‘no leap’ cal-
endar which excludes leap-year days.

During each assimilation cycle, a model forecast is run until 00:00 hours UTC on
the assimilation day (e.g., Jan 6th), at which point the ice concentration from each of
the model’s five individual ice thickness distribution categories (hereafter SICN; note that
SIC =

∑5
k=1 SICNk) are passed to the EAKF, along with the satellite SIC observations,

and subsequently the SICN forecasts are updated by the filter to produce their analy-
sis states. Given that the aggregate SIC analysis state corresponds to the sum of the SICN
analysis states, it is necessary to post-process SICN after each DA cycle in order avoid
non-physical values in SIC, which is bounded between 0 and 1. This is achieved by ap-
propriately scaling each of the SICN states when SIC is greater than 1, and setting SICN
to 0 when SIC is negative. After post-processing, the analysis increments are then com-
puted for each of the five category concentrations (∆SICN), and for each of the 30 en-
semble members. State variables for each ensemble member are saved as daily mean fields
during model integration, giving 365 days × 36 years = 13140 daily forecasts for each
variable. For the remainder of this article we consider only the ensemble mean fields for
both the model state variables and the analysis increments.

In order to understand the inherent SIC bias patterns within SPEAR, the next sec-
tion includes a comparison of the SIC DA increments (∆SIC) to an additional model ex-
periment without SIC DA, referred to here as FREE. This experiment corresponds to
the same JRA-forced ice-ocean model configuration with sea-surface temperature nudg-
ing, as well as the same perturbed sea ice physics, and initial conditions from the spinup
run as the SIC DA experiment. Therefore the FREE experiment configuration is iden-
tical to the SIC DA run, except for the assimilation of SIC observations.

3 Analysis increments and model bias in SPEAR

Learning systematic model error from DA increments, with the goal of an even-
tual sea ice parameterization which reduces climate model bias, relies on the assump-
tion that the fast physics errors captured within the DA increments reflect the long-term
systematic biases of the free-running model (Rodwell & Palmer, 2007). In this section,
we examine whether this necessary condition is satisfied, making comparisons of ∆SIC
to the climatological bias of the FREE experiment. The model bias is computed rela-
tive to NSIDC NASA Team satellite SIC observations.

Figure 1 shows seasonal climatologies of the SPEAR FREE SIC model bias and
∆SIC between 1982–2017, for both the Arctic and Antarctic. Here we notice that the
free-running model is, on average, positively biased in both hemispheres, with larger mag-
nitude biases in the Antarctic. Crucially, we find largely consistent patterns between the
model bias and ∆SIC. In the Arctic for example, the large positive biases in the Green-
land, Iceland, Norwegian (GIN) and Barents seas (east Atlantic) are mirrored by over-
all negative increments, hence the DA is acting to remove sea ice in this region. The win-
ter Arctic SIC biases appear to be related to systematic biases in the sea ice edge po-
sition, which is apparent when noticing that the increments in the fully covered ice pack
(north of the 75% observed SIC contour) are relatively small compared to the marginal
ice zones in DJF and MAM. The presence of larger increments in the central ice pack
in JJA and SON are then likely a reflection of local SIC errors in the ice-covered zone
in addition to ice edge position errors. The only notable discrepancy between model bias
and ∆SIC in the Arctic appears to be in the Kara and Laptev shelf seas in JJA, where
both the model bias and increments are positive. This suggests that the assimilation fore-
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(a) DJF
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(b) MAM
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Sea ice concentration bias (%)

(c) JJA
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Sea ice concentration bias (%)

(d) SON

−20 −10 0 10 20
Sea ice concentration bias (%)

(e)

−0.4 −0.2 0.0 0.2 0.4
Analysis increments (% per day)

(f)

−0.4 −0.2 0.0 0.2 0.4
Analysis increments (% per day)

(g)

−0.4 −0.2 0.0 0.2 0.4
Analysis increments (% per day)

(h)

−0.4 −0.2 0.0 0.2 0.4
Analysis increments (% per day)

(i)

−20 −10 0 10 20
Sea ice concentration bias (%)

(j)

−20 −10 0 10 20
Sea ice concentration bias (%)

(k)

−20 −10 0 10 20
Sea ice concentration bias (%)

(l)

−20 −10 0 10 20
Sea ice concentration bias (%)

(m)

−1.0 −0.5 0.0 0.5 1.0
Analysis increments (% per day)

(n)

−1.0 −0.5 0.0 0.5 1.0
Analysis increments (% per day)

(o)

−1.0 −0.5 0.0 0.5 1.0
Analysis increments (% per day)

(p)

−1.0 −0.5 0.0 0.5 1.0
Analysis increments (% per day)

Figure 1. Seasonal climatologies of SPEAR free-running model bias (model minus observa-

tions) and sea ice concentration analysis increments, for both the Arctic (a)–(h) and Antarctic

(i)–(p). Columns from left to right show DJF, MAM, JJA, SON climatologies, computed over the

period 1982–2017. Dashed and solid contours denote the observed climatology marginal ice zone

boundaries over the same period (15 and 75% SIC contours, respectively). Yellow markers in (a)

and (i) are example grid-point locations used for analysis in Figure 2.

casts are negatively biased in this region, which may be related to a residual overshoot-
ing problem in the DA experiment, as highlighted in the original SPEAR sea ice DA study
by Y. Zhang et al. (2021).

Turning to the Antarctic, despite largely positive biases across all seasons, nega-
tive biases dominate many of the coastal regions in the austral summer (DJF), includ-
ing the Weddell Sea, whereby many of these biases become lower in magnitude or even
positive by austral winter (JJA). Interestingly, the isolated negative bias towards the north-
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Figure 2. SPEAR sea ice concentration data assimilation example, shown for one grid cell

as daily climatologies (1982–2017). Examples are presented for the Arctic (a) and Antarctic

(b) through the period December–February. The grid cells for both the Arctic and Antarctic

examples correspond to locations in the GIN Sea and Weddell Sea, respectively (see the yellow

markers in Figures 1a and 1i).

eastern edge of the Ross Sea is a persistent feature from MAM through to SON, reach-
ing its largest magnitude in SON. This may be related to strong deep ocean convection
in this region (Adcroft et al., 2019), which manifests as positively biased sea-surface tem-
peratures which are co-located with the negatively biased SIC zone (see Figure S1 in Sup-
porting Information S1). Overall, the strong spatial and seasonal agreement between the
free-running model bias and ∆SIC supports this study’s plan to use DA increments to
learn a parameterization of sea ice model error.

Visualising the time evolution of the sea ice DA forecasts (Figure 2) shows the re-
lationship between systematic biases and analysis increments more clearly. In the GIN
Sea (Figure 2a), we can see that the model forecasts in each DA cycle (black dots) are
drifting towards the positively-biased free-running model state (dark blue dots) over the
5-day forecast period, and as such the analysis increments (dashed black lines) are sys-
tematically negative to account for this. Similarly, in the Weddell Sea (Figure 2b) the
forecasts are drifting towards the negatively-biased free-running model state, resulting
in systematically positive increments. The forecast drift that is observed in either case
can be quantified by the assimilation forecast tendencies, which for a given assimilation
cycle i, corresponds to the time-derivative of the forecast c at time t, or more simply ċi(t) =
ci(t)− ci(t− 1). The total forecast tendency for a given assimilation cycle is then the
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Figure 3. Schematic of the CNN architectures used to learn functional mappings from state

vectors to analysis increments. The yellow and purple squares represent 3×3 and 1×1 kernels

over which the convolution operations are performed in each layer, respectively, where there is

one kernel for every feature map in each layer. The white pixel is then the sum of convolution

outputs from all features in the previous layer, which has subsequently been passed through a

ReLU activation function. The activation function after the last convolution operation to the

output layer is the identity function.

sum of the individual daily tendencies: ċi(1)+ ċi(2)+ ...+ ċi(5). Klinker and Sardesh-
mukh (1992) showed that the mean total tendencies across a large number of assimila-
tion cycles, referred to as the systematic forecast tendency, is approximately equal to the
negative of the analysis increments, which is also the case in our SPEAR DA experiments
(see Figure S2). Building on this, Rodwell and Palmer (2007) then later described how
the forecast tendencies can be broken down into tendencies associated with the model’s
representation of various resolved and parameterized physical processes, and subsequently
used them to make assessments of model physics errors after a model change had been
made. In our study here, we utilize this inherent link between forecast tendencies and
analysis increments to construct CNNs which use inputs of both state variables from the
DA forecasts, as well as their associated forecast tendencies, in order to predict ∆SICN.

4 Convolutional neural networks

CNNs are a specific class of DL algorithms which are well-suited to problems where
inputs contain local correlation structure in space and/or time (K. Murphy, 2022). For
this reason they have historically been successful in the domains of image recognition
and segmentation (Simonyan & Zisserman, 2014; Zeiler & Fergus, 2014; Dong et al., 2015;
Ronneberger et al., 2015; Krizhevsky et al., 2017), where the aim is to e.g., classify ob-
jects or isolate features within medical images. In Earth system modeling CNNs have
subsequently been utilized for their ability to exploit the two-dimensional structure as-
sociated with turbulent fluids, and hence learn subgrid parameterizations of ocean mesoscale
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Table 1. Details of the convolutional neural networks (CNNs) inputs, outputs, architecture,

and hyperparameters used during training.

Network A Network B

Inputs (* states & tenden-
cies)

SIC*, SST*, SIU*,
SIV*, SIT*, SW*,
TS*, SSS*, Land-
sea mask

∆SICCNN, SICN*,
Land-sea mask

Outputs ∆SIC ∆SICN
Size of input data set 2094×17×328×368 2094×12×320×360
Size of output data set 2094×1×320×360 2094×5×320×360
Normalization Inputs standard-

ized (see main
text)

Inputs standard-
ized (see main
text)

Convolution layers 4 4
Features per layer 32, 64, 128, 1 32, 64, 128, 5
Activation function(s) ReLU, ReLU,

ReLU, Linear
ReLU, ReLU,
ReLU, Linear

Kernel size(s) 3× 3 1× 1
Kernel stride(s) 1 1
Bias parameters False False
Zero-padding None None
Total weights 98,208 11,264
Batch size 10 10
Optimizer Adam Adam
Learning rate 0.001 0.001
Weight decay 1× 10−7 1× 10−7

Epochs 150 125
Seed 711 711

eddies (Bolton & Zanna, 2019; Zanna & Bolton, 2020) and cloud moisture convection
(Han et al., 2020). For this reason, we use them here to learn sea ice model errors, which
also inherently exhibit two-dimensional structure.

4.1 Architecture

Generally speaking, a CNN can be seen as a series of linear weighted sums in which
a rectangular weight matrix, or kernel, slides over an input image in order to produce
a new feature representation of that same input. By sequentially repeating this proce-
dure on each new feature map, and adding nonlinear activation functions between net-
work layers, the network is then able to extract increasingly complex behaviour from the
inputs, before a final operation which maps the last set of features to each pixel of the
output image. Figure 3 shows this procedure in the present context of learning ‘images’
of sea ice DA increments. In this case we develop two independent CNNs, where each
can be classified as a ‘fully CNN’ as the outputs of each layer are produced only by con-
volution operations. Network A is used to learn the aggregate (∆SIC) increments from
various atmosphere, ocean and sea ice model states and forecast tendencies, while net-
work B uses the predictions of ∆SIC from network A in order to learn a mapping from
∆SIC to ∆SICN. We find this two-step approach yields significantly lower prediction er-
ror than using a single network to predict ∆SICN directly. Table 1 summarizes the ar-
chitectural choices made for Networks A and B.
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Each of the inputs of a given CNN have independent kernels that connect to ev-
ery feature map in the subsequent layer of the network, hence with 3×3 kernels in each
layer, 17 input variables, and features per layer of 32, 64, 128, and 1, network A has a
total number of weights given by (3×3×17×32)+(3×3×32×64)+(3×3×64×128)+
(3× 3× 128× 1) = 98, 208. Meanwhile, with 1×1 kernels in each layer, 12 input vari-
ables, and features per layer of 32, 64, 128, and 5, network B has a total number of weights
given by (1 × 1 × 12 × 32) + (1 × 1 × 32 × 64) + (1 × 1 × 64 × 128) + (1 × 1 ×
128× 5) = 11, 264. An advantage of the CNN approach is that a single kernel matrix
is used for the entire spatial domain of a given input, meaning that structures which ex-
hibit similar characteristics, but occur at different locations within the input, will be equally
resolved. This property of translational invariance is not guaranteed in e.g., typical feed-
forward (artificial) neural networks which use the whole domain at once as input (Gardner
& Dorling, 1998). Non-linearities within the system can also be exploited by passing each
feature map through a non-linear activation function, such as the rectified linear unit
(ReLU) function, which is the identity function for positive values and zero for negative
values. In both networks in our application, the first three convolution operations are
followed by ReLU activation functions, while the final convolution to the output layer
is simply linear.

The inputs to network A correspond to the 5-day means of the model states and
5-day forecast tendencies from each DA cycle, for each of SIC, sea-surface temperature
(SST), zonal and meridional components of ice velocities (SIU and SIV, respectively),
sea ice thickness (SIT), net shortwave radiation (SW), ice-surface skin temperature (TS),
sea-surface salinity (SSS), and finally a land-sea mask containing zeros over land grid
cells and ones over ocean grid cells. Note that SIU and SIV are vector fields with val-
ues located at C-grid cell edges, while the other scalar fields have values centered within
each grid cell (see e.g., Griffies et al. (2004)). This means that SIU and SIV contain one
additional matrix column and row, respectively, compared to the scalar fields. We there-
fore compute a 2-point average along the columns of SIU and rows of SIV, so that the
these variables are defined on the same tracer grid as the scalar fields. The inputs to net-
work B correspond to the ∆SIC predictions from network A, along with the model states
and forecast tendencies of SICN, as well as a land-sea mask. It should also be noted that
the inputs of each network (excluding the land-sea mask) are standardized by subtract-
ing their respective mean and normalizing by their respective standard deviation, where
both mean and standard deviations are computed over ocean grid cells poleward of 40◦

latitude, across all training samples (see section 4.2). This provides a single value of the
mean and standard deviation for each network input. Furthermore, given that, in our
network architecture, each convolution operation in network A reduces the size of the
input image by 2 pixels in both matrix dimensions, the final outputs are 8 pixels smaller
than the original inputs (hence a 9×9 centered stencil is required to make a local pre-
diction at any grid point). To ensure we utilize the appropriate information at the im-
age boundaries, we therefore pad the input data by 4 pixels on each side in the follow-
ing way: the last 4 columns of the image are padded in front of the first column (zonal
periodicity), the original first 4 columns are padded to the last column (zonal period-
icity), a copy of the first 4 rows is flipped 180◦ counter-clockwise and padded in front
of the first row (symmetry across the model’s Arctic bipolar fold, see Griffies et al. (2004);
the sign of the ice velocities in the first 4 rows is also flipped during this process), and
finally the last row is padded with 4 rows of zeros (the final row corresponds to the Antarc-
tic continental land mass).

4.2 Training

In order to generate accurate predictions, the weights of each CNN must be opti-
mized. This is typically achieved by minimizing an appropriate loss function L which
describes the similarity between the final outputs of the network and the target variable
(i.e., the analysis increments). For network A the loss function (LA) is the mean-squared
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error (MSE) of the ∆SIC predictions, while for network B the loss function (LB) is the
sum of the MSE of each of the five ∆SICNs, as well as an additional term to impose a
soft constraint that the sum of the five ∆SICNs are equal to ∆SIC:

LA =
1

NS

NS∑
i=1

(
∆SICCNN

i −∆SICTrue
i

)2
, (1)

LB =

5∑
k=1

1

NS

NS∑
i=1

(
∆SICNCNN

ki
−∆SICNTrue

ki

)2
+ λ

(
1

NS

NS∑
i=1

( 5∑
k=1

∆SICNCNN
ki

−
5∑

k=1

∆SICNTrue
ki

)2)
.

(2)

Here, N = 320 × 360 = 115, 200 is the number of model grid points, which cor-
responds to the entire globe. S = 10 is the batch size (randomly shuffled temporal sam-
ples), and λ = 5 is a scaling constant. The loss function is minimized using the Adam
stochastic gradient descent method (Kingma & Ba, 2014) within the PyTorch Python
library (Paszke et al., 2019), which accommodates graphical processing unit (GPU) and
batch processing facilities for significant computational speed-ups and efficient memory
handling, respectively. Recall Table 1 for a full list of the details of each CNN.

As well as optimizing the weights of each CNN, there are other factors which in-
fluence the predictive performance that also need to be considered. For one, there is the
physical architecture of each CNN, which includes e.g., the number of layers within each
network, the type of activation function, and the size of the convolution kernels. Then
there are also specific hyperparameters, which include e.g., the learning rate of the Adam
optimizer, and the number of training epochs. Choosing the optimal architectures and
hyperparameters is referred to as model selection and is generally approached by select-
ing the model which produces the lowest error score on unseen validation data (i.e., data
that were not used to optimize the CNN weights). In order to ensure that the valida-
tion error is representative of the model’s predictive performance across all samples it
is often necessary to perform K-fold cross-validation, where the data are split into K equal-
sized temporally contiguous chunks. The model is then trained on K−1 chunks, and
predictions are validated on the remaining chunk. We opt for temporally contiguous chunks
here, as opposed to random sampling of training and validation points, due to inherent
temporal auto-correlation within the data, which would likely lead to data leakage is-
sues during the validation stage. In any case, this process is repeated K number of times
where each time a different chunk is chosen to be the validation set. The average val-
idation error across all K tests is then the generalization error of that particular CNN
model. To arrive at the final CNN architectures and hyperparameters detailed in Table
1, we performed 5-fold cross-validation at each model selection step, hence for a given
architecture and set of hyperparameters the model was trained 5 times, where each time
the 2618 temporal samples were split into different combinations of 2094 training and
524 validation points. Specific architectures and hyperparameters were subsequently cho-
sen based on the model which showed the lowest average 5-fold cross-validation score.
Ideally, one would perform model selection by scanning all possible combinations of hy-
perparameters and CNN architectures and finding which combination produces the low-
est cross-validation score. For large data sets however, this is computationally imprac-
tical and as such we proceeded with model selection by testing one hyperparameter and/or
architecture at a time and taking the model with the lowest 5-fold cross-validation score
forward to the next test (see Figure S3 for example learning curves from various model
selection tests). The results in the next section are based on predictions on validation
data from the final CNN models, as described in Table 1. Note that, for convenience,
hereafter we refer to networks A and B together as our final network architecture.
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5 Results

Before presenting the results of the CNN predictions, we first introduce the error
metrics which are used to evaluate the model’s performance. For a given spatial map of
the SIC increments on any given day, ∆SICTrue, and the equivalent CNN prediction on
the same day, ∆SICCNN, the regional uncentered spatial pattern correlation (Barnett &
Schlesinger, 1987) between these two fields is given as:

ρ =

∑n
i=1 ∆SICCNN

i ∆SICTrue
i

‖∆SICCNN‖2‖∆SICTrue‖2
, (3)

where ‖·‖2 is the `2 vector norm, and n = 100×360 = 36, 000 for either pan-Arctic or
pan-Antarctic regions (approx. 45◦N and 30◦S, respectively). We opt for this metric over
the standard (centered) linear correlation coefficient as the subtraction of the mean to
compute the covariance in the centered case may result in differences between ∆SICTrue

and ∆SICCNN at open-ocean grid cells (e.g., Legates and Davis (1997)). Similar to the
centered pattern correlation, an uncentered pattern correlation value of 1 represents a
perfect agreement between the true and predicted increments on day t, while a value of
−1 represents a perfect out-of-phase agreement. A value of 0 subsequently represents no
agreement.

We also introduce the regional root-MSE (RMSE) as:

RMSE =

√√√√ 1

n

n∑
i=1

(
∆SICCNN

i −∆SICTrue
i

)2
. (4)

This metric captures the average deviation of the predictions from the true increments,
hence an RMSE value of 0 represents perfect predictions.

5.1 Predictions

In this section we show the predictions of ∆SIC as the sum of the five predicted
∆SICNs, on the held-out data that were not used to optimize the network weights dur-
ing training. We therefore generate 2618 predictions spanning the 1982–2017 period, which
correspond to combining the 5 individual held-out chunks from the cross-validation ex-
periment of the final model, into a continuous time series record. We focus on ∆SIC here,
as opposed to ∆SICN, as the former is the direct observable quantity and as such lends
to more intuitive interpretation of the results, although the reader is referred to Figures
S4–S8 for comparable versions of Figure 4 for each ∆SICN.

Figure 4 shows the seasonal climatologies of the ∆SIC predictions, where we no-
tice that, in both hemispheres, the CNN is able to predict the average spatial pattern
of the increments very well. In the Arctic, the network performs best in DJF, with av-
erage daily spatial pattern correlations of 0.73, and a spatial pattern correlation of 0.98
between the climatologies of the daily DJF predicted and true increments. The poor-
est predictions in the Arctic are in JJA and SON with average daily spatial pattern cor-
relations of 0.64 and 0.62, respectively, and correlations of 0.96 and 0.98, respectively be-
tween the climatologies. In JJA for example, while the network reproduces the average
spatial pattern well, the magnitude of the increments to the north of Greenland and in
the Canada basin is generally too low. Similarly, in the Antarctic, the CNN also performs
best in DJF with average daily spatial pattern correlations of 0.80, however the average
magnitude of the predicted increments is generally too low in regions such as the Wed-
dell Sea. The poorest predictions in the Antarctic are in MAM with average daily spa-
tial pattern correlations of 0.64, perhaps owing to the network’s inability to fully resolve
the relatively small-scale heterogeneities in e.g., the Ross and Weddell seas. The large-
scale patterns are generally in good accordance however. These initial results suggest
that the network is able to learn the mean bias patterns of the model with considerable
skill.
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Figure 4. Seasonal climatologies of the (true) SPEAR aggregate sea ice concentration anal-

ysis increments and the equivalent CNN predictions, for both the Arctic (a)–(h) and Antarctic

(i)–(p). Columns from left to right show DJF, MAM, JJA, SON climatologies, computed over

the period 1982–2017. Values with the superscript [1] are the average of daily spatial pattern

correlations between ∆SICTrue and ∆SICCNN in each respective season, while values with [2] are

the spatial pattern correlations between the respective climatologies of the true and predicted

increments.

Moving beyond assessments of climatologies, Figure 5 shows randomly sampled snap-
shots of the predictions for individual days across each season, as a way to assess how
the CNN performs at capturing the fast physics errors (for an animation of the CNN per-
formance on additional daily snapshots, see Supporting Information S2). Broadly speak-
ing, we find that the CNN is able to capture the large-scale structure of the increments,
but often fails to capture smaller-scale features. The February prediction in the Arctic
(Figure 5e) shows high skill with a spatial pattern correlation of 0.74, however at this
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Figure 5. Daily snapshots of the (true) SPEAR aggregate sea ice concentration analysis in-

crements and the equivalent CNN predictions, for both the Arctic (a)–(h) and Antarctic (i)–(p).

Columns from left to right show random days in DJF, MAM, JJA, and SON over the period

1982–2017. Spatial pattern correlations are reported for each prediction.

time of year the increments are primarily associated with sea ice edge errors, while the
increments in the central ice pack (i.e., the majority of the Arctic domain) are effectively
zero. Nonetheless, the CNN is able to predict these ice edge errors very well, particu-
larly in the Labrador, GIN, Barents, Okhotsk, and Bering seas. As the melt season pro-
gresses, the prediction skill generally drops, where it is lowest in September (Figure 5h),
with a spatial pattern correlation of 0.43. The true July and September increments (Fig-
ures 5c and 5d, respectively) exhibit significant variability within the core ice pack which,
in some regions, the network is unable to reproduce. For example, the large negative in-
crements in the Beaufort and Chukchi seas in July. The CNN does however manage to
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Figure 6. Prediction skill metrics for independent sensitivity tests to network inputs, pre-

sented as daily climatologies of predictions on held-out samples, computed over the period 1982–

2017, for the Arctic (left column) and Antarctic (right column). The shaded region reflects the

improvement in skill of the final network (solid black curve) over the benchmark climatology

prediction (dashed black curve).

capture some amount of the variability in July, such as the large positive increments in
the Kara and Laptev shelf seas.

The prediction skill in the Antarctic is generally higher than in the Arctic, and com-
paring Figures 5i and 5m, we can see that the CNN accurately predicts a significant amount
of the variability in summer, with a spatial pattern correlation of 0.84. The subsequent
predictions in April, July and November (Figures 5n-p) show slightly lower skill than in
January, with the lowest skill in April with a spatial pattern correlation of 0.62. At these
times the increments are largely related to sea ice edge errors, and the CNN is gener-
ally able to capture the large-scale patterns, as well as some of the localized features, such
as the positive increments at the north-eastern edge of the Ross Sea in November (Fig-
ure 5p), and the band of positive increments along the northern edge of the Weddell Sea
in April (Figure 5n).

From the daily snapshots we can infer that the CNN captures large amounts of the
fast physics errors, although there is some seasonal variation to the skill, where the pre-
dictions in the Arctic are generally best over the winter period and poorest in the sum-
mer. Meanwhile in the Antarctic the predictions appear most skillful in the summer and
poorest in the early growth season (April). In the next section we provide an assessment
of the CNN’s sensitivity to various inputs, as well as its sensitivity to the geographic train-
ing domain. In doing so, we subsequently highlight this seasonal skill variation in more
detail.

5.2 Sensitivity analysis

5.2.1 Network inputs

In this section we perform sensitivity tests to determine which model states and
forecast tendencies contribute most to the prediction skill of ∆SIC (again, as the sum
of the five predicted ∆SICNs on held-out samples), at different times of the year. The
sensitivity analysis is performed by training a series of initial networks which each con-
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tain a single variable as inputs (e.g., SIC states and forecast tendencies), and assessing
which of these networks results in the highest prediction skill of ∆SIC in both hemispheres.
The input variable of this network is then assumed to be the most physically-relevant
predictor of ∆SIC. The testing then continues by training a second series of networks
which contain two input variables: the best predictor from the first test, as well as any
one of the remaining input variables. The network which results in the largest improve-
ment in skill relative to the best network from the first test is then taken forward, and
so on. For 7 network input variables (classifying SIU and SIV as a single input), we there-
fore trained 28 independent network configurations in order to establish a hierarchy of
predictors.

Figure 6 shows daily 36-year climatologies of spatial pattern correlation and RMSE
error metrics, for sensitivity tests in both the Arctic and Antarctic domains. The hier-
archy of predictors in terms of largest skill contribution proceeds as: SIC, SST, SIU and
SIV, SIT, SW, TS, and finally SSS. Hence for the SIC curves, the network inputs to gen-
erate these predictions are only SIC states and forecast tendencies, while for the SST curves,
the network inputs are SIC and SST states and forecast tendencies, and so on. The SSS
curve then represents the predictions from the final model (i.e., the network architecture
presented in section 4.1). The climatology prediction (black dashed curve) refers to us-
ing the daily 36-year climatology of the true ∆SIC increments to predict the true ∆SIC
increment on any given day. This is an offline-equivalent to the ‘ocean tendency adjust-
ment’ approach by Lu et al. (2020), as discussed in section 1, and as such serves as our
benchmark here, where we can see that each sensitivity test provides improvement in skill
over this climatological tendency benchmark. From this analysis we can also see that,
relative to the benchmark climatology, SIC is responsible for a significant fraction of the
overall network skill (approx. 66% in both hemispheres). SST, SIU and SIV then account
for an additional 20%, with the remaining variables SIT, SW, TS and SSS making up
the last 14%. Furthermore, while SIC, SST, SIU and SIV are essential inputs in all months
of the year, the contributions from other variables such as SW and TS are generally lim-
ited to the summer months.

In terms of spatial pattern correlation, the maximum skill of the final network in
the Arctic occurs at the beginning of March, after which the skill declines somewhat con-
tinuously until the end of July, and then more rapidly to its minimum in early Septem-
ber. Meanwhile in the Antarctic, the points of maximum and minimum skill are sepa-
rated by approximately 1.5 months, with the maximum occurring at the end of January,
and the minimum at the beginning of March. Although the skill variation in the Arc-
tic appears to somewhat correlate with the climatological sea ice area, the rate of change
in sea ice area in the melt and growth season is generally not consistent with that of the
CNN prediction skill. Furthermore, in the Antarctic the skill is increasing between Novem-
ber and January, while the sea ice area is decreasing. This therefore suggests that the
skill variation is not directly tied to the seasonal cycle of sea ice area. When also con-
sidering the standard deviation of the increments, we can see that the low spatial pat-
tern correlation scores coincide with times when the standard deviation of the increments,
and hence the RMSE, are relatively low. This may initially suggest that the lower spa-
tial pattern correlation at these times is either a consequence of low signal variance, or
that the network training does little to optimize these points as they inherently have lower
MSE than e.g., the winter months. If however the spatial pattern correlation scores were
a direct reflection of the increment standard deviation, we would expect to see similarly
low spatial pattern correlations in e.g., April in the Arctic or November in the Antarc-
tic, however this is not generally the case. What is noticeable, is that the climatology
benchmark also exhibits the same seasonal variation in spatial pattern correlation and
RMSE as the CNN predictions, highlighting that the lower skill in the late summer in
both hemispheres is not likely due to any shortcomings in the ML model, but rather a
feature of the increments themselves. In particular, the climatological prediction is less
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Figure 7. Prediction skill metrics for independent sensitivity tests to the network training

domain, presented as daily climatologies of predictions on held-out samples, computed over the

period 1982–2017, for the Arctic (left column) and Antarctic (right column).

skillful in the low-CNN-skill months, suggesting that these months are inherently more
challenging to predict.

5.2.2 Training domain

The network in this study is trained on data from the entire globe, meaning that
it must find the optimal set of weights which generalize to make accurate predictions of
the analysis increments in both the Arctic and the Antarctic. Given that the bias pat-
terns, and hence characteristics of the increments, are somewhat different between the
two hemispheres, we conduct further sensitivity tests to determine how well the network
has generalized. As before, error metrics are shown in terms of the sum of the five pre-
dicted ∆SICNs on held-out samples that were not used to train the model.

Figure 7 shows daily climatologies of spatial pattern correlation and RMSE error
metrics, for three variations of the network training setup. One where the network is trained
on the entire globe (i.e., our proposed network in section 4.1), one where the network
is trained on just the Arctic domain, and one where the network is trained on just the
Antarctic domain. Here we notice that the network which is trained on global data is
able to make just as skillful predictions of ∆SIC in the Arctic, as the network which is
trained only on Arctic data. The same is also true for the Antarctic case. Interestingly,
we can also see that the network which is trained only on the Arctic are still able to make
relatively skillful predictions of the Antarctic increments, even performing better than
the benchmark climatology predictions between the months of December and February.
Meanwhile, the network which is trained on Antarctic data is not able to generalize as
well to the Arctic, although still shows some small amount of skill between July and Au-
gust. This analysis therefore confirms that training on global data is vital for general-
izing across domains while still matching the skill of networks trained on each individ-
ual domain.
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Figure 8. Generalization performance of CNN predictions for the extended period between

January 2018 and December 2021. Error metrics for the black curves are shown at the frequency

of the data assimilation system (5-daily), while the blue curve is the daily climatology skill of the

final network over the 1982–2017 period.

5.3 Final validation

Due to the fact that we perform model selection by choosing specific CNN archi-
tectures and hyperparameters which minimize the average cross-validation score on data
that were not used to optimize the CNN weights, there is an inherent risk of over-fitting
the model to these validation data. As such, it is often necessary to retain an additional
data set which has not been used for validation at any point during the model selection
process. For this, we extend the Y. Zhang et al. (2021) sea ice DA experiment from De-
cember 27th 2017, through to December 27th 2021, providing an additional 291 valida-
tion data points. We subsequently evaluate the performance of our CNN model by train-
ing on all 2618 samples between 1982–2017, and validating on the extended data period
between 2018–2021. It should be noted that this extended DA experiment is identical
in configuration to that which was outlined in section 2.2, except that in this extended
case the atmospheric forcing from JRA55-do reanalysis corresponds to version 1.5, while
previously it was version 1.3. This version change relates to a correction in the sign and
rotation of tropical cyclones, and as such we do not expect this to result in significant
differences in the representation of sea ice in the extended DA simulations.

Figure 8 shows daily spatial pattern correlation and RMSE error metrics over the
2018–2021 period for both the Arctic and Antarctic domains (black curves). We also over-
lay the daily climatology skill of the final network architecture from the cross-validation
experiments between 1982–2017, hence the blue curves here are identical to the ‘Train
global’ curves in Figure 7, and are simply repeated for each of the 4 validation years pre-
sented. The predictions appear to generalize well to the future data, where spatial pat-
tern correlation values are generally in accordance with the 1982–2017 period, partic-
ularly in the Antarctic, and are still out-performing the climatology prediction in both
hemispheres. On average, the RMSE over the 2018–2021 period is slightly higher than
the 1982–2017 climatology, which is due to the fact that there is a non-stationary com-
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ponent to the increments, whereby the variance increases over the course of the time se-
ries record (see Figure S9). Therefore naturally the climatological RMSE of the CNN
predictions increases over time as well (see Figure S10). In any case, the generalization
ability of the predictions suggests that the CNN has not simply over-fitted to the train-
ing and/or validation data during model selection.

6 Discussion

The ability of the proposed CNN to make skillful predictions of the sea ice concen-
tration analysis increments, using only information on local model state variables and
their tendencies, provides interesting avenues for future work. The fact that the predic-
tions show improvements in skill relative to a daily increment climatology (e.g., Lu et
al. (2020)), generalize well to each hemisphere, and show skill on a separate validation
data set, strongly suggests that the CNN could be used to reduce sea ice biases within
SPEAR, either as an online sea ice model parameterization, or as a bias correction tool
for numerical sea ice prediction. Ultimately, one could argue that there is still room for
improvement in the CNN performance, particularly in the late summer months. Con-
sidering the inherent complexity of the problem at hand, and the likely influence of both
non-linear and non-local processes, it is conceivable to push the limit of predictive skill
further by increasing the complexity of the network, both in terms of the total number
of weights, and the 9×9 grid cell domain of influence on a local prediction. Indeed, such
changes could be implemented through increasing the width and/or depth of the net-
work, as well as incorporating non-local connections (in space) through e.g., fully-connected
layers. On the other hand, the architectures here been developed specifically with the
goal of a sea ice model parameterization in mind, and as such, factors including com-
putational cost and practicality of implementation in parallelized high-performance com-
puting environments have been considered throughout the development. In the follow-
ing sections we provide a discussion on the directions for future work relating to both
sea ice parameterization and seasonal sea ice prediction.

6.1 Considerations for parameterization

ML models have been shown to be successful at parameterizing subgrid-scale pro-
cesses within dynamical models, including ocean mesoscale eddies (Guillaumin & Zanna,
2021), atmospheric convection (Yuval & O’Gorman, 2020), and sea ice dynamics (Finn
et al., 2023). Common to each of these studies is that the ML models target specific phys-
ical processes, with the aim of replacing pre-existing knowledge-based parameterizations,
or deriving new parameterizations for physical processes which are not currently repre-
sented. On the other hand, our proposed CNN is trained to predict sea ice increments
which reflect numerous interacting model errors across various model components. To
subsequently disentangle these coupled model physics errors a-posteriori and then ap-
ply them as parameterizations to their respective components, is not straightforward.
In our goal of constructing a sea ice model parameterization, it is critical to ensure that
the parameterization is not acting to correct coupled model errors that originate in other
model components (e.g., an ocean heat transport bias or atmospheric circulation bias
that imprints upon the sea ice). Our DA-ML methodology attempts to mitigate this pos-
sibility, as the ice-ocean DA system is driven by atmospheric reanalysis and also nudges
SST and SSS towards observed values. These observational constraints on the atmosphere
and ocean allow us to interpret the DA increments as isolated sea ice model physics er-
rors, however this assumption is not perfect as the ocean component of the DA system
can still imprint some errors on the sea ice state (e.g., Figure S1). Future investigation
will be required to determine how the CNN generalizes in a fully coupled setting with
fully-interactive atmosphere-ice-ocean feedbacks (see section 6.2).
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Another major consideration for a sea ice parameterization is how to appropriately
conserve mass, heat, and salt. In the context of the ocean, Lu et al. (2020) achieved global
conservation of heat and salinity when implementing the climatological ocean DA incre-
ments into MOM6 by ensuring that the global integral of the correction to each variable
was zero. In the case of sea ice, assuming the parameterization enters the thermodynamic
solver, then appropriately coupling this parameterization with the upper ocean would
mean that a predicted negative sea ice concentration increment would remove sea ice (column-
wise) by adding mass and salt to the ocean mixed layer, while also removing heat. This
step is likely to come in the form of a mass, heat, and salt budget assessment between
the ice and ocean after evaluating the amount of local sea ice mass change associated
with a given predicted SIC increment, rather than adapting the CNN architectures them-
selves to respect conservation.

Although we have considered implementation cost in the design of our network, some
investigation will be required to quantify this cost in terms of both matrix computations
and additional memory load. Regarding memory load, our parameterization will not re-
quire any additional memory in terms of the number of grid cells stored on any one cen-
tral processing unit (CPU), as our 9×9 network stencil requires the same number of ‘halo’
grid points as the default SPEAR configuration, which uses a halo size of 4. There will
be some small amount of memory cost for storing the network weights on each CPU how-
ever. Looking to similar studies, Guillaumin and Zanna (2021) found that implement-
ing a fully CNN with 8 convolutional layers as a stochastic parameterization into an ide-
alized shallow water model resulted in a 25% increase in the run time, compared to an
unparameterized simulation. C. Zhang et al. (2023) also found that the cost of doing in-
ference with this same network as a parameterization in MOM6 was 10 times more ex-
pensive than the CPU cost of the simulation itself. Although we effectively have 8 con-
volutional layers when considering both networks A and B, we can still expect much lower
computational overheads given that ours is a deterministic model (i.e., we predict a sin-
gle output at each grid point for each ∆SICN, rather a, potentially larger, number of pa-
rameters which describe a distribution of values), and that our kernel size for network
B is 1×1 in each layer, while the Guillaumin and Zanna (2021) network uses variable size
kernels throughout, ranging from sizes 3×3 to 5×5. Like in this study, they also did not
use zero-padding, though in their case given the larger kernel sizes, they required a sten-
cil of 21×21 grid points to make a local prediction.

Finally, the increments in this study represent error growth over a 5-day period,
and the input states and tendencies of the CNN are given as 5-day means. After imple-
mentation, the CNN predictions will need to produce a correction which reflects error
growth over a given model timestep, and similarly the input states and tendencies will
need to be adjusted accordingly. This will therefore require further sensitivity tests to
determine how to appropriately perform this scaling.

6.2 Considerations for sea ice forecasting

Some of the initial concerns over implementation of the CNN as a sea ice model
parameterization can be alleviated by assessing how the network performs as an online
bias correction tool within the context of seasonal sea ice forecasting. In previous work,
Y. Zhang et al. (2022) showcased the benefits of using SIC assimilation to initialize the
sea ice conditions for SPEAR retrospective forecasts (hereafter reforecasts) of the Arc-
tic sea ice cover between 1992–2017. In Y. Zhang et al. (2022), the same ice-ocean SPEAR
model configuration and initial conditions as outlined here in section 2.2, were used to
perform DA between 1982 and the first day of each month, for all years between 1992
and 2017. Whereby the first day of each month represented the initialization point, af-
ter which the model would run in fully coupled mode to generate forecasts out to 1-year
lead time. Assimilation in Y. Zhang et al. (2021, 2022) was performed by passing the
prior model state variables and observations to the Data Assimilation Research Testbed
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(DART; Anderson et al. (2009)), which then computes the set of analysis states offline,
providing the new set of initial conditions with which to begin the next assimilation cy-
cle. Given that our CNN is inherently independent of the observations, we propose that
it would be relatively straightforward to bias correct the sea ice within the fully coupled
reforecast period by replacing the standard call to DART with our CNN. In this scenario,
we could perform seasonal reforecasts (up to 12-month lead times) to assess how the net-
work generalizes to the fully coupled SPEAR model, while not requiring strict conser-
vation properties due to the shorter time scales. Furthermore, we could continue in the
same 5-day cycle configuration so that the network predictions would not need to be scaled
for different temporal sampling. If the reforecasts then have improved skill relative to
the SPEAR DA-initialized reforecasts from Y. Zhang et al. (2022), they may be fit-for-
purpose as a model parameterization.

7 Concluding remarks

7.1 Summary

In this study we have shown that deep learning (DL), specifically convolutional neu-
ral networks (CNNs), can be used to make skillful predictions of sea ice model errors,
in the form of data assimilation (DA) increments, using only information from model state
variables and tendencies (the time derivative of the model state variables). We devel-
oped a CNN using an ice-ocean DA system which assimilates satellite observations of
sea ice concentration (SIC) into the Seamless system for Prediction and EArth system
Research (SPEAR) model every 5 days between 1982–2017. SPEAR has a 5-category
ice thickness distribution, hence concentration increments are produced for each subgrid
category, where the observable (aggregate) SIC increment corresponds to the sum of 5
categories. We therefore developed a two-step CNN architecture, in which the first step
learns the physical mapping from various local sea ice, ocean and atmosphere state vari-
ables and forecast tendencies to the aggregate SIC increments. The second step then learns
the mapping from the aggregate concentration error to each of the subgrid terms. We
subsequently showed that our DL architecture is able to make skillful predictions of the
SIC increments in both the Arctic and the Antarctic and across all seasons. Spatial pat-
tern correlations between the climatologies of the observed and predicted increments are
high, with values of at least 0.96 for both the Arctic and Antarctic, demonstrating that
the CNN is able to skillfully capture the mean model bias. The CNN also has skill at
predicting the state-dependent model errors, with daily pattern correlation values rang-
ing from 0.64–0.80 and 0.62–0.73 in the Antarctic and Arctic, respectively. This shows
that the CNN is able to predict the fast physics errors and systematic bias patterns of
the SPEAR model with considerable skill, which is also confirmed by the fact that the
predictions show improved skill over a model which simply predicts the climatological
mean increment on any given day of the year. Sensitivity analysis revealed that SIC as
an input to the network is responsible for approximately 66% of the overall network skill,
followed by sea-surface temperature (SST) and ice velocities which account for 20%, and
finally ice thickness, net shortwave radiation, ice-surface skin temperature and sea-surface
salinity which account for the remaining 14%.

7.2 Outlook

Recent studies have highlighted how DA provides a unique opportunity to lever-
age sparse and/or noisy observations, in order to facilitate machine learning of structural
model errors (Bonavita & Laloyaux, 2020; Brajard et al., 2021; Farchi et al., 2021; Mo-
jgani et al., 2022; Chen et al., 2022). Building on this, we have shown here how DA also
provides the ability to learn errors within unobserved model state variables, and hence
provides a new framework for learning subgrid-scale parameterizations for climate mod-
els. In section 6 we subsequently outlined how the strong predictive performance of the
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CNN and its generalization ability suggests that the network has the potential to reduce
sea ice biases in free-running climate simulations, as a sea ice model parameterization
within SPEAR. Irrespective of this eventual goal however, the findings in this work ul-
timately have wider implications for the climate modeling and numerical weather pre-
diction (NWP) community in general. With regards to NWP, previous studies have al-
ready shown that ML techniques can be used to learn state-dependent fast physics er-
rors within large-scale atmospheric models, subsequently leading to improved online pre-
dictions by using the ML model as a bias correction tool (Bonavita & Laloyaux, 2020;
Chen et al., 2022). In our study, we have shown that the concept of learning state-dependent
fast physics errors is transferable to a global ice-ocean model, which could further aid
NWP when considering that coupling the atmosphere with an ice-ocean model has pre-
viously shown to improve short-term weather predictions (G. Smith et al., 2018).

Turning to longer-term simulations, the fact that the systematic errors are also pre-
dictable suggests that a parameterization built from DA increments has the potential
to reduce persistent climate model biases and improve the fidelity of climate change pro-
jections. On the other hand, while we have shown that state variables such as SIC and
SST explain a significant fraction of the variance in the analysis increments, our current
framework does not allow us to attribute these correlations to a specific model deficiency,
for example an incorrectly parameterized or missing physical process. One additional av-
enue for future work could therefore involve designing a perfect model experiment in which
a single ensemble member is run with a specific parameterization that has been tuned
or turned on (e.g., sea ice ridging or melt-pond formation). This member would then be
treated as the ground truth and assimilated into the original model. The resultant anal-
ysis increments would then be a manifestation of the systematic bias within the origi-
nal model, associated with this specific incorrect/missing parameterization, and hence
one could more confidently isolate which state variables within an ML model contribute
most to predicting this particular structural error.

8 Open Research

All data for training each CNN are openly available at the following locations:

• Inputs (DA forecast states and tendencies): ftp://sftp.gfdl.noaa.gov/perm/
William.Gregory/seaice DA-ML inputs 1982-2017.nc

• Outputs (DA increments): ftp://sftp.gfdl.noaa.gov/perm/William.Gregory/
seaice DA-ML outputs 1982-2017.nc

Python code to pre-process the input data and train the CNNs can also be found at https://
github.com/m2lines/seaice DA-ML. The optimized weights of the CNNs and standard-
ization statistics for the inputs are also saved within the same repository.
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Figure S1. Seasonal climatologies of the SPEAR free-running model bias. Inside the clima-

tological sea ice extent contour (black dashed line) are the aggregate sea ice concentration biases

(model minus observations). Outside the contour are the sea-surface temperature biases (model

minus observations). a) Arctic biases (December–February), b) Antarctic biases (September–

November).
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Figure S2. Comparisons of the climatological aggregate sea ice concentration analysis in-

crements (a,c), and the aggregate sea ice concentration forecast tendencies (b,d). The spatial

pattern correlation between panels a) and b) is -0.99. Similarly, the spatial pattern correlation

between panels c) and d) is also -0.99.
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Figure S3. Learning curve examples for various CNN model selection tests. Each curve is the

mean 5-fold cross-validation error on ∆SIC predictions (solid lines = error on training samples,

transparent curves = error on validation samples). (a) Tests of the network sensitivity to the

inputs (i.e., using just state variables, or just tendencies, or both). (b) Tests of the network depth

(number of convolutional layers). (c) Tests of the network width (features per convolutional

layer). (d) Tests of the optimizer learning rate. (e) Tests of the activation function used after

each convolution operation. (f) Tests of the size of the convolution kernel used in each layer.
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Figure S4. Seasonal climatologies of the (true) SPEAR category 1 sea ice concentration anal-

ysis increments and the equivalent CNN predictions, for both the Arctic (a)–(h) and Antarctic

(i)–(p). Columns from left to right show DJF, MAM, JJA, SON climatologies, computed over

the period 1982–2017. Values with the superscript [1] are the average of daily spatial pattern

correlations between ∆SICNTrue and ∆SICNCNN in each respective season, while values with [2]

are the spatial pattern correlations between the respective climatologies of the true and predicted

increments.
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Figure S5. Seasonal climatologies of the (true) SPEAR category 2 sea ice concentration anal-

ysis increments and the equivalent CNN predictions, for both the Arctic (a)–(h) and Antarctic

(i)–(p). Columns from left to right show DJF, MAM, JJA, SON climatologies, computed over

the period 1982–2017. Values with the superscript [1] are the average of daily spatial pattern

correlations between ∆SICNTrue and ∆SICNCNN in each respective season, while values with [2]

are the spatial pattern correlations between the respective climatologies of the true and predicted

increments.
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Figure S6. Seasonal climatologies of the (true) SPEAR category 3 sea ice concentration anal-

ysis increments and the equivalent CNN predictions, for both the Arctic (a)–(h) and Antarctic

(i)–(p). Columns from left to right show DJF, MAM, JJA, SON climatologies, computed over

the period 1982–2017. Values with the superscript [1] are the average of daily spatial pattern

correlations between ∆SICNTrue and ∆SICNCNN in each respective season, while values with [2]

are the spatial pattern correlations between the respective climatologies of the true and predicted

increments.

–35–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

(a)
True

DJF

−0.2 −0.1 0.0 0.1 0.2
Analysis increments (% per day)

(b)
True

MAM

−0.2 −0.1 0.0 0.1 0.2
Analysis increments (% per day)

(c)
True

JJA

−0.4 −0.2 0.0 0.2 0.4
Analysis increments (% per day)

(d)
True

SON

−0.2 −0.1 0.0 0.1 0.2
Analysis increments (% per day)

(e)
CNN

0.13[1]

0.5[2]

−0.2 −0.1 0.0 0.1 0.2
Analysis increments (% per day)

(f)
CNN

0.2[1]

0.53[2]

−0.2 −0.1 0.0 0.1 0.2
Analysis increments (% per day)

(g)
CNN

0.21[1]

0.27[2]

−0.4 −0.2 0.0 0.2 0.4
Analysis increments (% per day)

(h)
CNN

0.1[1]

0.23[2]

−0.2 −0.1 0.0 0.1 0.2
Analysis increments (% per day)

(i)
True

−1.0 −0.5 0.0 0.5 1.0
Analysis increments (% per day)

(j)
True

−0.4 −0.2 0.0 0.2 0.4
Analysis increments (% per day)

(k)
True

−0.5 0.0 0.5
Analysis increments (% per day)

(l)
True

−0.5 0.0 0.5
Analysis increments (% per day)

(m)
CNN

0.3[1]

0.82[2]

−1.0 −0.5 0.0 0.5 1.0
Analysis increments (% per day)

(n)
CNN

0.19[1]

0.44[2]

−0.4 −0.2 0.0 0.2 0.4
Analysis increments (% per day)

(o)
CNN

0.4[1]

0.92[2]

−0.5 0.0 0.5
Analysis increments (% per day)

(p)
CNN

0.4[1]

0.93[2]

−0.5 0.0 0.5
Analysis increments (% per day)

Figure S7. Seasonal climatologies of the (true) SPEAR category 4 sea ice concentration anal-

ysis increments and the equivalent CNN predictions, for both the Arctic (a)–(h) and Antarctic

(i)–(p). Columns from left to right show DJF, MAM, JJA, SON climatologies, computed over

the period 1982–2017. Values with the superscript [1] are the average of daily spatial pattern

correlations between ∆SICNTrue and ∆SICNCNN in each respective season, while values with [2]

are the spatial pattern correlations between the respective climatologies of the true and predicted

increments.
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Figure S8. Seasonal climatologies of the (true) SPEAR category 5 sea ice concentration anal-

ysis increments and the equivalent CNN predictions, for both the Arctic (a)–(h) and Antarctic

(i)–(p). Columns from left to right show DJF, MAM, JJA, SON climatologies, computed over

the period 1982–2017. Values with the superscript [1] are the average of daily spatial pattern

correlations between ∆SICNTrue and ∆SICNCNN in each respective season, while values with [2]

are the spatial pattern correlations between the respective climatologies of the true and predicted

increments.
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Figure S9. The standard deviation of the true aggregate sea ice concentration analysis incre-

ments (∆SICTrue), computed over each of the 5 cross-validation periods used for validating the

CNN predictions. Shown as daily climatologies.
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Figure S10. As in Figure 8 from the main article, except now highlighting the effect of

non-stationarity within the increments by also including the climatological prediction skill for

cross-validation chunks corresponding to the beginning of the time series record (1982–1989), as

well as the end of the time series record (2010–2017).
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