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Key Points:

• A data-driven parameterization for both atmospheric and oceanic boundary layer
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wind profiles, especially in convective regimes.
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Abstract
Boundary layer turbulence, particularly the vertical fluxes of momentum, shapes the evo-
lution of winds and currents and plays a critical role in weather, climate, and biogeochem-
ical processes. In this work, a unified, data-driven parameterization of turbulent momen-
tum fluxes is introduced for both the oceanic and atmospheric convective boundary lay-
ers. An artificial neural network (ANN) is trained offline on coarse-grained large-eddy
simulation (LES) data representing a wide range of turbulent regimes in both fluids. By
normalizing momentum flux profiles with their surface values, we exploit a self-similar
structure across regimes and fluids, enabling joint training. The ANN learns to predict
vertical profiles of subgrid momentum fluxes from mean wind or current profiles, cap-
turing key physical features such as upgradient fluxes that are inaccessible to traditional
first-order closure schemes. When implemented online in the Single Column Atmospheric
Model (SCAM), the ANN parameterization consistently outperforms the SCAM base-
line parameterization in replicating the evolution of the boundary layer wind profiles from
the LES, especially under convective conditions, with errors reduced by a factor of 2–3
across regimes. ANN performance remains robust even when the surface momentum flux
is biased by ±30%, and generalization is confirmed by testing on LES cases excluded from
the training dataset. This work demonstrates the potential of machine learning to cre-
ate unified and physically consistent parameterizations across boundary layer systems
in climate models.

Plain Language Summary

In both oceanic and atmospheric boundary layers, the transfer of momentum that
is induced by turbulence has a significant impact on winds, currents, and many large-
scale climatic phenomena. It is therefore essential for coarse-resolution models to accu-
rately parameterize the subgrid effects of turbulence on circulation patterns, yet current
methods still struggle to represent the fluxes of momentum. In this study, we introduce
a novel machine learning approach that utilizes a neural network trained on high-resolution
simulations to predict the subgrid fluxes of momentum in both the atmosphere and the
ocean. By uncovering a common structure in turbulent behavior, the same model can
be applied to both systems. When tested in a single-column climate model framework,
the neural network outperforms traditional methods, especially during convective con-
ditions. This unified approach offers a promising path to improve weather and climate
predictions.

1 Introduction

The oceanic and atmospheric boundary layers exhibit important physical similar-
ities. In both, the transport of heat, momentum, and tracers is dominated by turbulence,
which can be generated either by shear or by surface radiative forcing that generates buoy-
ancy. Boundary layers are typically classified as stable, neutral, or convective, depend-
ing on their stratification. Convective boundary layers (CBLs), specifically, share par-
ticular similarities across fluids and can form well-mixed layers with nearly uniform tem-
perature, winds, or currents. Although the nature of the surface forcing differs — with
convection driven by daytime heating in the atmosphere and by nighttime cooling or pre-
cipitation in the ocean — the resulting turbulent dynamics and vertical structure are com-
parable. In both fluids, vertical turbulent fluxes such as momentum and heat peak at
the surface and decrease throughout the boundary layer (BL), reflecting analogous en-
ergy transfer processes.

Because of poor representation of boundary layer processes, numerical weather fore-
casts and climate models struggle to accurately simulate near-surface atmospheric vari-
ables like temperature and wind (Edwards et al., 2011; Beljaars, 2011), or oceanic mixed
layer depth and sea-surface temperature (Belcher et al., 2012). In the atmosphere, dif-
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ferent biases in temperature and moisture can arise from the choice of BL parameter-
ization, both in stable and convective conditions (X.-M. Hu et al., 2010). The biases in
wind, temperature and clouds also induce important biases in near-surface oceanic vari-
ables including sea surface temperature (SST) in coupled climate runs (I. Richter, 2015).
Specifically, these positive SST biases are partly caused by unrealistically low stratocu-
mulus cloud cover (Z. Hu et al., 2008) and an underestimated near-surface wind speed
that reduces upwelling (Vannière et al., 2014), which highlights the complex interactions
between the atmospheric and oceanic boundary layers. The biases mentioned above could
be reduced by improving the representation of boundary layer turbulence in coarse res-
olution models.

Among the turbulent fluxes, the fluxes of momentum play a central role in shap-
ing the vertical structure of wind and current profiles. In global climate models (GCMs),
BL turbulence needs to be parameterized, and accurately representing momentum fluxes
is critical for reliable weather and climate projections. The misrepresentation of atmo-
spheric momentum fluxes has been shown to lead to biases in surface wind patterns and
resulting Hadley circulation in GCM simulations (J. H. Richter & Rasch, 2008), which
can in turn affect the cloud cover. Boundary layer clouds are commonly poorly simu-
lated in GCMs (Teixeira et al., 2011), and the impact of clouds on future climate is one
of the largest sources of uncertainty within climate model projections (Caldwell et al.,
2016). Accurate parameterization of atmospheric boundary layer (ABL) momentum flux
has been shown to improve the representation of clouds in GCMs (Suselj et al., 2021).
Momentum fluxes are key critical processes in the oceanic boundary layer (OBL) as well.
It is estimated that 90% of the excess heat induced by anthropogenic greenhouse gases
is absorbed by the ocean (Resplandy et al., 2019), and the strength of convectively-driven
mixing partly determines the amount of heat and carbon uptake. Improving represen-
tation of oceanic boundary layer momentum fluxes actually leads to an improvement in
the simulation of global ocean heat uptake (Shimura et al., 2020). Given their impact
on surface exchanges as well as large-scale atmospheric and oceanic processes, it is es-
sential to develop accurate parameterizations of momentum fluxes for GCMs.

Among the most common schemes that have been adopted in ABL and OBL pa-
rameterizations are the first-order eddy-diffusivity schemes. In such models, the momen-
tum flux is expressed as the opposite of the vertical gradient of mean wind (or current)
multiplied by an eddy-diffusivity coefficient; the flux is thus said to be downgradient. How-
ever, these schemes usually fail to represent convective boundary layers, because of the
well-mixed structure of the wind and current profiles. (Brown et al., 2006). Addition-
ally, in reality, upgradient fluxes can occur because of non-local transport or mesoscale
dynamics, and therefore cannot be represented by these approaches (Dixit et al., 2021;
Helfer et al., 2021). Some schemes added a mass-flux term to represent the effect of non-
local mixing on turbulent transport. However, it has been shown that these so-called mass-
flux schemes fail to represent the vertical momentum transport for both shallow and deep
convection (Zhu, 2015). The representation of wind and boundary layer clouds can be
improved by higher order schemes that add prognostic equations for the momentum fluxes
(Larson et al., 2019; Nardi et al., 2022; Graap & Zarzycki, 2024). However, these approaches
remain computationally demanding and add complexity to the models by introducing
additional prognostic equations, tunable parameters, and higher order terms. Climate
models and operational forecasts can be tuned in order to match observations or high
resolution simulations. For instance, artificially reducing the mixing in the stable BL has
been shown to improve the representation of surface wind, however, it can also deteri-
orate large-scale flow and near-surface temperature (Sandu et al., 2013). Cuxart et al.
(2006) also highlighted the sensitivity of the models to the different closure parameters,
and that the simulation accuracy was influenced more by parameter tuning than by the
choice of closure itself. Therefore, increasing the number of tunable parameters might
increase the complexity of the models, while reducing interpretability.

–3–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

In recent years, machine learning–based parameterizations have emerged as a rapidly
developing alternative to traditional approaches. Neural networks have been used to pre-
dict the ABL subgrid turbulent fluxes (Shamekh & Gentine, 2023), subgrid-scale stresses
(Connolly et al., 2025) and deep convective momentum fluxes (Yuval & O’Gorman, 2023).
Machine learning methods have also been used to improve existing eddy-diffusivity mass-
flux (EDMF) schemes by tuning the remaining unknown parameters of the scheme such
as entrainment rate, in an online setup (Christopoulos et al., 2024). In the ocean, data-
driven approaches have been developed to improve existing OBL schemes (Ramadhan
et al., 2023; Sane et al., 2023), and parameterize the effects of mesoscale eddies (Zanna
& Bolton, 2020; Guillaumin & Zanna, 2021; Zhang et al., 2023; Perezhogin et al., 2025).
Yet, no efforts have been made to replace existing boundary layer momentum flux pa-
rameterization by a machine learning-predicted flux. Furthermore, despite the numer-
ous similarities between the ABL and OBL dynamics — and their common numerical
representations within GCMs — a unified parameterization applicable to both BLs has
yet to be developed. Such an approach could provide a novel, physically consistent frame-
work for both BLs, while also bridging a gap between atmospheric and oceanic research
communities. Machine learning methods can also benefit from the multi-fluid framework
by increasing the amount of training data, provided that a proper normalization proce-
dure is applied to make atmospheric and oceanic features comparable. Here for the first
time, we develop a unified data-driven parameterization that predicts vertical profiles
of momentum fluxes in both atmospheric and oceanic CBLs. The parameterization is
implemented in the single-column atmospheric model or SCAM (Gettelman et al., 2019)
and tested in idealized configurations. In section 2, the problem is formulated and the
methods used to train the neural network and test it online are presented. The offline
prediction skills of the artificial neural network (ANN) are then presented in section 3.
In section 4, we demonstrate that the ANN parameterization implemented in SCAM con-
sistently outperforms the existing Cloud Layers Unified by Binormals (CLUBB), which
is a first order scheme for momentum fluxes, in idealized configurations. Sections 5 presents
a conclusion and discussion of the results, with potential improvements and next steps
to make this new data-driven approach operational in more realistic situations.

2 Methods

2.1 Problem formulation

In the boundary layer, the Reynolds-averaged Navier-Stokes horizontal momentum
equations can be expressed as followed (Stull, 1988):

∂u
∂t = −u · ∇u− fv − 1

ρ
∂p
∂x − 1

ρ
∂ρu′w′

∂z + ν ∂2u
∂x2 (1),

∂v
∂t = −v · ∇v + fu− 1

ρ
∂p
∂y − 1

ρ
∂ρv′w′

∂z + ν ∂2v
∂y2 (2),

where u, v and w are respectively the zonal, meridional and vertical wind veloc-
ities, p is the pressure, f the Coriolis parameter, ρ the air density, u′w′ and v′w′ the tur-
bulent fluxes of horizontal momentum and ν the kinematic viscosity. The common Reynolds
notations are used here, where x represent the spatial mean of variable x, and x′ rep-
resents the deviation to the mean, or perturbation. The five terms on the right hand side
of both equations represent respectively the advection of mean wind, the effect of the
Coriolis force, the effect of horizontal pressure gradients, the vertical turbulence terms
and the influence of horizontal viscous stress. In GCMs, the effects of fluid-specific phys-
ical processes (e.g., wave breaking or Langmuir circulation in the ocean, condensation
in the atmosphere) are included in the subgrid turbulent term. Therefore, the momen-
tum equations are identical in both atmospheric and oceanic boundary layers. In the at-
mosphere, molecular diffusion is several orders of magnitude weaker than turbulent mix-
ing, and the viscous terms are therefore usually neglected.
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In GCMs, the components of the momentum flux u′w′ and v′w′ have to be param-
eterized in both boundary layers. In the first-order eddy-diffusivity approach, the terms
are parameterized following:

u′w′ = −K ∂u
∂z (3),

v′w′ = −K ∂v
∂z (4),

where K is an eddy-diffusivity coefficient which varies with height and can depend
on different physical factors such as the turbulent kinetic energy (TKE), or a mixing length
scale (Holtslag & Boville, 1993; Mellor & Yamada, 1974; Bougeault & André, 1986; Go-
laz et al., 2002; Troen & Mahrt, 1986; Priestley & Swinbank, 1947; Han & Bretherton,
2019; Lopez-Gomez et al., 2020). When a prognostic equation is used for the TKE, the
scheme is then said to be 1.5 order. Differing from the traditional methods, a data-driven
approach is adopted in this study, in which an ANN is used to predict the vertical pro-
files of atmospheric (oceanic) momentum flux, given the vertical profiles of mean wind
(current) components. The ANN is trained offline on coarse-grained high resolution ide-
alized LES representing various turbulent convective regimes. Two different LES mod-
els were used to generate samples from both ocean and atmosphere. The trained ANN
is then tested online after implementation in the Single Column Atmospheric Model or
SCAM, and the ANN skill is compared to the existing eddy diffusivity scheme CLUBB.
Note that CLUBB is a higher order scheme for most BL turbulent fluxes, but still uses
a 1.5 order approach to parameterize the momentum fluxes, in its current formulation.
It’s also worth noting that the CLUBB momentum flux is planned to be upgraded to prog-
nostic formulations in the next version of CAM. Subsection 2.2 describes the method-
ology used to train the ANN, which includes the descriptions of the LES setup as well
as the ANN parameters. The single column model framework and the baseline momen-
tum flux parameterization are then described in subsection 2.3.

2.2 ANN training from coarse-grained high-resolution simulations

2.2.1 Large-eddy simulations

High-resolution simulations of dry atmospheric BL ranging from neutral to highly
convective conditions were performed using the LES code MicroHH (Van Heerwaarden
et al., 2017). Simulations were ran under idealized conditions, with constant surface heat-
ing and geostrophic wind forcing. The model domain has 256 grid cells in both horizon-
tal direction with a resolution of twenty-four meters, covering a distance of 6,120 me-
ters. There are 384 vertical levels with a resolution of six meters, the top of the domain
reaching 2,301 meters of altitude. A sponge layer is included at the top in order to pre-
vent the reflection of upward-propagating waves. The domain is doubly periodic in the
horizontal direction. The initial potential temperature is set to be constant at 300 K be-
low the boundary layer top (set at an initial 800 m), and increases with a rate of 5 K/km
above. We run fifteen simulations with different combinations of geostrophic wind Ug

and surface heat flux forcing Q, spanning a wide range of turbulent regimes: from quasi-
neutral to highly convective. The turbulent regimes are quantified using the stability pa-
rameter ζ = −zi/L, where zi is the PBL height and L is the Monin-Obukhov length,
which is defined as L = u3

∗.θ/(kgw
′θ′), with u∗ being the friction velocity, θ the poten-

tial temperature, k the Von Karman constant, and w the vertical velocity. Low values
of ζ represent quasi-neutral regimes where the turbulence is mainly shear-generated, while
high values of ζ correspond convectively-driven turbulent regimes.

Oceanic high-resolution simulations were conducted using the ocean modeling soft-
ware Oceananigans (Wagner et al., 2025). OBL convection simulations were obtained
by applying a constant surface cooling and wind forcing. The model domain has 256 grid
cells with a 2 meter grid spacing in both horizontal directions. The vertical axis has 128
grid cells with a 2 meter grid spacing, starting at one meter below the surface and reach-
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ing a depth of 255 meters. Similarly as in Ramadhan et al. (2023), the domain is initial-
ized with a stratified fluid at rest with weak stratification in the surface layer (initially
50 meters deep) and the deep ocean, separated by a strongly stratified thermocline with
a width of 25 meters. At the beginning of each simulation, surface cooling is applied via
a negative surface buoyancy flux, and wind forcing is applied to generate mixing and deep-
ening of the OBL. Both forcing are applied and remain constant throughout the whole
simulation length. Twelve oceanic LES simulations are ran with different combination
of surface wind stress and cooling. Table 1 and 2 in the Appendix summarize the atmo-
spheric and oceanic LES simulations settings and their corresponding stability param-
eter.

2.2.2 Neural network training

In order to train the neural network to predict subgrid momentum fluxes, a coarse-
graining procedure is applied to the high-resolution data. This process involves averag-
ing the data horizontally, effectively reducing the resolution from a fine 256x256 grid to
a coarser 2x2 grid. Four coarse-grained samples (i.e., vertical profiles) of each variable
are thus obtained after coarse-graining, at each time step. The subgrid momentum fluxes
are then computed following: x′w′ = xw−x w, where x can be either one of the hori-
zontal wind components. For atmospheric LES runs, the simulations are ran for two hours
and an average of 395 samples per simulation are kept for training, resulting in 5,920 sam-
ples. The ocean LES simulations are ran for four days and 334 samples per simulation
are kept on average, resulting in 4,004 samples. Considering both fluids, this results in
a total of 9,924 samples.

An ANN with two hidden layers, each containing 128 neurons, is trained to pre-
dict both vertical profiles of the turbulent momentum fluxes u′w′ and v′w′. In order to
prevent overfitting, a 0.2 dropout is applied at each layer, as well as a 10−3 weight de-
cay. Two different training scenarios are used for offline and online. For offline predic-
tions, vertical profiles of u, v and TKE are used as inputs. For both fluids, the vertical
profiles of inputs and outputs are interpolated on the normalized z axis z/zi, ranging
from z/zi = 0.05 to z/zi = 1.20, with a vertical spacing of ∆z = 0.02 (2% of zi), re-
sulting in 58 vertical levels. For the ANN implemented online, a simplified scenario is
used. Only the vertical profiles of u and v are used as inputs, and the ANN is trained
on the resolution of the host model SCAM (additional details are provided in the next
subsection). This simplified setup prevents any bias arising from the prediction of TKE
and boundary layer height by the host model.

Neural networks typically perform poorly when predicting data outside the train-
ing range. To mitigate the risk of out-of-distribution predictions, the normalization pro-
cedures were carefully designed. Aligning distributions through statistical or physical trans-
formations has been shown to enhance the generalizability of neural networks (Beucler
et al., 2024; Perezhogin et al., 2025; Connolly et al., 2025). Therefore, normalization was
implemented to ensure that the input and output distributions remained consistent across
all of the different turbulent regimes. Each vertical profile of u′w′ and v′w′ is normal-
ized by its surface values, and the resulting dimensionless fluxes u′w′/u′w′

surf and v′w′/v′w′
surf

exhibit self-similarity across turbulent regimes, appearing nearly identical regardless of
the conditions (Fig. 1). The momentum fluxes show close resemblance in atmospheric
and oceanic BLs. In the atmosphere, horizontal momentum is on average transferred down-
ward, from the high quasi-geostrophic wind speeds of the free troposphere to the sur-
face, where the wind is weaker because of surface friction. The momentum from the wind
stress at the ocean surface is also transferred downward, from the surface to the deep
ocean. For both fluids, this results in a vertical profile of momentum flux that is max-
imum in magnitude at the surface, and progressively decreasing quasi-linearly until the
limit of the BL. It’s important to note that in GCMs, the surface fluxes are usually com-
puted outside of the BL parameterization by the surface model following Monin-Obukhov
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theory, and given as inputs to the atmospheric and oceanic boundary layer schemes (Monin
& Obukhov, 1954), which makes the reverse normalization procedure achievable in prac-
tice within a GCM. The same type of normalization is used for the TKE offline, and each
vertical profile of TKE is divided by its surface value. The vertical profiles of the inputs
u and v, on the other hand, are normalized using a statistical approach, by subtracting
the mean and dividing by the standard deviation of each vertical profile.

a b

dc

e f

g h

Figure 1. Vertical profiles of turbulent momentum fluxes computed from the atmospheric

LES (a and b) and oceanic LES (e and f). The fluxes normalized by their surface value are

shown in panels c, d, g and h. The common vertical levels used for joint training are labeled as

vertical level indices. Each thick line represents the average flux from a single LES simulation,

noted as ζx, with x being the stability parameter of the corresponding run. The shaded area

corresponds to the flux standard deviation of the simulation. The atmospheric vertical profiles

have been interpolated on the SCAM momentum levels. The oceanic vertical profiles have been

interpolated on the same number of vertical levels, evenly spaced. The ocean fluxes have also

been flipped in the normalization process in order to match the shape of the atmospheric fluxes.

2.3 Online implementation in SCAM

SCAM (Gettelman et al., 2019) is a single column model version of the Commu-
nity Atmosphere Model (CAM), the atmospheric component of the coupled Community
Earth System Model (CESM). It predicts temperature, humidity and momentum within
a column using large-scale (forcing terms) and local tendencies (parameterized physics),
using the same physics and same parameterizations as CAM. In this study, SCAM is used
to replicate the spatially averaged BL wind profiles obtained from the fifteen atmospheric
LES.

To train the implemented ANN, both atmospheric inputs and outputs are inter-
polated on the SCAM vertical resolution. In its current implementation, SCAM only al-
lows for a single vertical resolution. The wind components are computed on model lev-
els, while momentum fluxes are computed on interface levels. Therefore, before train-
ing, the u and v LES vertical profiles are interpolated on the SCAM model levels falling
within the vertical extent of the LES domain (eight levels) and the vertical profiles of
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u′w′ and v′w′ on the SCAM interface levels (nine levels, see Fig. 1). In this study, the
neural network is trained on the same resolution as the host model, and the sensitivity
of the ANN to different host model resolution is not treated. Note that the ANN trained
for implementation in SCAM still includes the oceanic features. For the vertical reso-
lution of those features, we also interpolate u and v (u′w′ and v′w′) on eight (nine) ver-
tical levels evenly spaced located between -3 and -155 meters depth.

The trained ANNs are imported from PyTorch (Paszke et al, 2019) to the SCAM
Fortran code using the FTorch library (Atkinson et al., 2025). To replicate the LES runs
using SCAM, the model is initialized with the initial LES vertical profiles of u, v, and
potential temperature θ (averaged horizontally across the LES domain). The same forc-
ing conditions (geostrophic wind and surface heating) are also used. The large-scale ad-
vection of mean wind (equation (1) and (2), first term) is neglected here, consistent with
the doubly periodic LES domain. By replacing the horizontal pressure gradients term
with the geostrophic wind (ug, vg) and neglecting viscosity, equations (1) and (2) thus
simplify to:

∂u
∂t = −f(vg − v)− 1

ρ
∂ρu′w′

∂z (1b),

∂v
∂t = +f(ug − u)− 1

ρ
∂ρu′w′

∂z (2b).

In such setup, the temporal evolution of the wind profiles is thus only affected by
the Coriolis force and turbulence. Therefore, by comparing the wind profile temporal evo-
lution predicted by SCAM with the LES wind profiles, the turbulence parameterization
accuracy is assessed. Furthermore, to test whether the ANN parameterization can per-
form well on unseen turbulent regimes, we train a new ANN excluding one LES simu-
lation, and use SCAM to reproduce the vertical profile evolution of that excluded case.
Finally, the performance of the ANN parameterization is compared to the CLUBB scheme.
In the CLUBB runs, we also initialize the TKE using the profiles obtained after two hours
of spin-up. Therefore, for each one of the fifteen LES runs, three SCAM simulations are
conducted:

• One with the ANN trained on all of the LES runs.
• One with an ANN trained after excluding the LES run from the training process.
• One with CLUBB (baseline).

This yields a total of 45 SCAM simulations. In coupled GCMs, the surface values
are inputs to the BL schemes, therefore, the LES surface values are prescribed in all of
the SCAM runs, at each time step. Note that the surface values are prescribed at each
of the CLUBB substep instead of the SCAM time step, which has been shown to improve
representation of surface winds (Gentile et al., 2024). Although in this case, values are
prescribed and not computed using bulk formulas. In both cases however, the BL scheme
prediction partly depends on the prediction of the surface fluxes by other components
of the model. In the case of CAM, it has been shown that the simulated surface momen-
tum fluxes matched observations during daytime convective BL quite well, but could slightly
underestimate them during nighttime (Burns et al., 2018). Friction velocities can also
be overestimated when an additional turbulent mountain stress is included (Lindvall et
al., 2013). Therefore, in order to assess the different parameterizations sensitivity to the
predicted surface values, additional sensitivity analyses were performed. For each one
of the above-mentioned runs, six additional SCAM simulations were conducted after ap-
plying biases to the prescribed surface momentum flux values (-30%, -20%, -10%, +10%,
+20% and +30%).
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3 Offline prediction

3.1 Prediction of a random test set

Initially, the 9,924 samples are randomly split into training (80%), validation (10%)
and testing (10%) datasets. The testing set thus includes both oceanic and atmospheric
samples. The ANN prediction skills are assessed by computing the prediction R2, de-

fined as: R2 = 1−
∑n

i=1
(yi−ŷi)

2∑n

i=1
(yi−ȳ)2

, where ŷi are the predicted flux values, yi are the true

values, and y the mean of the true fluxes. The prediction skills of both atmospheric and
oceanic test samples are very good (Fig 2), with an overall R2 value of 0.94 and 0.93,
respectively. Here, the R2 are computed by considering the values of the fluxes at each
vertical level, and for both components u′w′ and v′w′ jointly. The mean vertical profiles
of ANN-predicted fluxes closely match the mean true fluxes in both fluids (Fig. 2 a, b,
d and e, thick lines), and the ANN also captures the variability of the fluxes in the test-
ing set (shaded areas). Note that the unnormalized fluxes are shown here (i.e., after mul-
tiplying each predicted flux by its surface value).

Since surface values are computed by other components of GCMs and provided to
the BL schemes as inputs, we first consider that there is no error on the surface value
and use the true LES surface values to unnormalize the fluxes. The prediction thus al-
ways matches the true flux at the surface. However, in realistic simulations, errors might
exist in the prediction of the surface momentum flux values by surface parameterizations
used in models. In order to ensure that the prediction skills of the model are not signif-
icantly degraded when the prediction of the surface value is biased, the R2 were recom-
puted after applying biases to the surface values used to unnormalize the predictions.
In CAM, biases on the surface values are usually relatively small compared to observa-
tions, but can reach extreme values of about 30% in certain cases (Lindvall et al., 2013;
Burns et al., 2018). Therefore, biases ranging from -30% to +30% (in 5% increments)
have been applied to the predictions before recomputing the R2. It is found that even
with largest biases (plus or minus 30%), the overall prediction is not significantly degraded,
and the prediction R2 remains above 0.80 (Fig. S1).

3.2 ANN captures upgradient fluxes

As mentioned in the introduction, one of the setbacks of first-order parameteriza-
tions is that by definition, they are unable to capture upgradient fluxes (Helfer et al.,
2021). However, in realistic situations, upgradient fluxes exist, usually arising from mesoscale
dynamics, low-level jets and non-local transport (Larson et al., 2019; Dixit et al., 2021).
Upgradient fluxes occur when the vertical gradient of mean wind or current is of the same
sign as the momentum flux. In that case, turbulence acts to amplify vertical gradients
rather than reducing them. Counter-gradient momentum fluxes shape the vertical pro-
files of wind and constitute a substantial part of the momentum transport in organized
convection (Savazzi et al., 2023). They also have a strong impact on jet dynamics, in-
cluding their location, formation and sustainability (Farrell & Ioannou, 2007; Birner et
al., 2013; Dixit et al., 2021). Capturing these fluxes is therefore essential to accurately
model these dynamics.

Examples of such upgradient fluxes can be found in the testing set. We define up-
gradient fluxes as cases where, within a BL segment, the momentum flux (u′w′ or v′w′)
has the same sign as the vertical gradient of the corresponding mean flow component (u
or v). For a sample to be counted as upgradient, this criteria must occur over a contin-
uous layer at least 100 meters deep in the atmosphere or 10 meters deep in the ocean.
To avoid near-zero values, only fluxes and gradients exceeding 5% of their respective max-
imum magnitudes within the upgradient layer are considered. Therefore, an atmospheric
sample (x, x′w′), where x can be either u or v, is considered upgradient is there exists
a layer of at least a hundred meters deep where:
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a b

c

d e

f

Figure 2. Offline predictions of the testing set. The testing samples were split between the

atmospheric (left) and oceanic (right) features. The top panels (a,b, d, e) show the average true

vertical profiles of momentum fluxes in m2/s2(orange thick lines) and average ANN predictions

(thick blue lines). The shaded areas correspond to the standard deviations of the samples. The

unnormalized fluxes are shown here. The bottom panels (c, f) show the density plots of predicted

versus true fluxes, the values at each vertical level is considered for every test sample.

x′w′
layer > 0.05 ∗Max(x′w′) and (∂x∂z )layer > 0.05 ∗Max(∂x∂z )

or

x′w′
layer < −0.05 ∗Max(x′w′) and (∂x∂z )layer < −0.05 ∗Max(∂x∂z ).

For ocean samples, this criterion must be verified within a layer of at least 10 me-
ters deep. It is found that among 1,984 vertical profiles in the testing set (992 samples,
considering both components u and v), 210 of them contained upgradient fluxes, or ap-
proximately 10%. Out of the 210 upgradient fluxes identified in the testing set, it is found
that the ANN also predicts an upgradient flux in 199 of them (95%), with an average
RMSE of 0.040 m2/s2 for atmospheric samples and 1.33.10−5m2/s2 for oceanic samples.

Examples of such upgradient fluxes captured by the ANN are shown on Fig. 3. In
the atmospheric example (Fig. 3, a and b), the vertical gradient of mean wind u is neg-
ative from about z/zi=0.42 to z/zi=0.70 . In that layer, the momentum flux is also neg-
ative, i.e., the momentum flux is upgradient. In the oceanic example, both the vertical
gradient of mean current and momentum flux are negative between about z/zi=-0.35
to z/zi=-0.70, resulting in upgradient fluxes. In both atmospheric and oceanic cases, the
ANN manages to capture the upgradient fluxes, and the predicted and true fluxes closely
match, with root mean squared errors (RMSE) of 0.017 m2/s2 and 4.97.10−6m2/s2, re-
spectively. The results presented here therefore highlight potential significant improve-
ments in comparison to eddy-diffusivity approaches.
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𝜕𝑢
𝜕𝑧

< 0 𝑢!𝑤′ < 0

𝜕𝑢
𝜕𝑧 < 0 𝑢!𝑤′ < 0

a b

c d

Figure 3. Upgradient momentum fluxes from the testing set. Two different samples of mean

zonal wind (a) and current (c) are shown, as well as the corresponding momentum fluxes (b,

d, thick orange lines) computed from the LES. The ANN-predicted momentum fluxes are also

shown (b, d, thick blue lines). The gray shaded areas represent the parts of the boundary layers

where the fluxes are upgradient.

3.3 On the benefits of the unified framework

As previously mentioned, having a single parameterization for both boundary lay-
ers can provide a unified physically consistent framework for the climate modeling com-
munity. An important subsequent consideration is whether the machine learning model’s
performance can also benefit from this unified framework. To test if it is the case, an ocean
data-limited regime augmented with atmospheric data is replicated. Specifically, two dif-
ferent ANNs are trained using two different training sets.

Initially, 100 oceanic samples are randomly picked within one of the twelve ocean
LES runs and used to train the first neural network. Another hundred oceanic samples
are randomly picked from the remaining eleven LES runs and used to test the predic-
tion accuracy of the ANN. Once this is done, a second ANN is trained from scratch af-
ter adding 1000 atmospheric samples to the initial training set (which already includes
100 oceanic samples). The prediction accuracy of this second ANN is tested on the same
testing set as the first one, which contained only ocean samples. The operation is repeated
for each of the twelve LES runs, such that each one of the ocean runs is sampled once
for training. At each iteration, the 1000 atmospheric samples remain unchanged. For most
iterations, it is found that adding atmospheric features improves the performance of the
ANN (Fig. 4). On average, the normalized RMSE is reduced by about 8% due to this
data augmentation, and reaches 16% when training samples are taken out of the sim-
ulation ζ112.8.

It is essential to note that the BL wind and current profiles are not exactly sim-
ilar, as the directional shear is more important in the ocean. Therefore, the inclusion of
TKE as an input was essential in order for this data augmentation to significantly im-
prove the prediction score, as TKE exhibits important similarities across fluids. This high-
lights the importance of carefully selecting predictive input features and performing ad-
equate normalization procedures to build an effective fluid-independent model. These
results suggest that given the similarity of the physical processes in the atmospheric and
oceanic BLs, a model can benefit from any additional sample independently of the fluid
it comes from, if care has been taken to ensure that the inputs and outputs are similar
across fluids. In particular, one can leverage data from a fluid to enhance performance
in another fluid, which is particularly interesting in a data-limited regime, where reli-
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able model outputs and observations are scarce. In Geophysics, this often occurs because
oceanic observations are typically limited, while atmospheric observations are much more
abundant. The ocean parameterization might therefore benefit from the atmospheric part,
in this kind of data-limited regime.

Figure 4. Improvement of the normalized RMSE after inclusion of atmospheric samples, in

an ocean-data limited regime. A first ANN is trained using 100 oceanic samples randomly picked

in one of the twelve LES runs, and tested on a different set of 100 oceanic samples after com-

puting the prediction RMSE (blue diamonds). The testing samples are randomly picked in the

remaining eleven LES runs. A second ANN is trained from scratch after adding 1000 atmospheric

samples to the initial training set, and tested on the same initial testing set (green diamonds).

The uncertainty induced by the random weight initialization of the ANN is computed by training

ten separate ANNs with the same samples, and computing the mean (diamonds) and standard

deviations (error bars) of the normalized RMSE. The operation is repeated for the twelve LES

runs. Here, the oceanic samples change at each iteration (in both the training and testing set),

but the added 1000 atmospheric samples are kept unchanged.

4 Implementation in SCAM

4.1 Assessment of the parameterization skills

The ANN parameterization was tested online after implementation in SCAM. For
each one of the fifteen LES runs, three SCAM simulations are conducted: one with the
ANN trained on all of the LES runs, one with another ANN trained from scratch after
excluding the replicated LES run from the training process, and one with CLUBB, which
acts as the baseline. The motivation of the second ANN run is to test the parameter-
ization extrapolation efficiency and verify that it would still perform well on regimes ex-
cluded from the training set. SCAM is therefore run 45 times initially (fifteen LES sim-
ulations, three different parameterizations). For each one of these runs, the parameter-
ization accuracy is assessed by comparing the SCAM-simulated wind vectors with the
LES wind vectors. The normalized distance between wind vectors D is computed at each
vertical level and each time step, following:

D =
√

(uLES − uSCAM )2 + (vLES − vSCAM )2/ | ULES |,
where | ULES |=

√
u2
m,LES + v2m,LES corresponds to the average wind speed for that

specific LES run.
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The ANN parameterization is stable for the two hours of simulation and outper-
forms CLUBB for each one of the fifteen LES run (Fig. 5, bottom panel), with average
normalized errors consistently lower in the ANN runs (blue and yellow dots) than in the
CLUBB runs (brown dots). Here, the normalized errors are averaged over all vertical lev-
els and over the two hour length of simulation. For all of the fifteen replicated LES runs,
the errors are almost identical for the two ANN parameterizations (i.e., whether the repli-
cated simulation is included in the training process or not). This result confirms that
the relatively good skill of the ANN parameterization is not due to having seen the repli-
cated profiles during training, which also implies that the model is not overfitting and
generalizes well to different turbulent regimes.

Neutral Convective

Figure 5. Stability parameters (top panel) and parameterization errors (bottom panel) for

all of the fifteen replicated LES runs. The run names on the x axis correspond to the values of

geostrophic wind forcing Ug and surface heating Q used in the simulations, and are classified in

increasing order of convective strength from left to right. The error metric used is the normalized

distance between the wind vectors simulated by SCAM and the LES wind vectors, averaged over

every vertical levels and time steps. The blue and yellow dots correspond to the average error

computed after running SCAM with the ANN parameterizations, with the replicated LES in-

cluded and removed from training, respectively. The brown dots correspond to the average error

of the baseline parameterization CLUBB. The small transparent dots show the errors computed

after applying biases (ranging from -30% to +30%) to the surface flux values during the SCAM

runs.

The different LES runs are classified according to their stability parameter (increas-
ing convective strength going from left to right). Only the most neutral simulation (Ug25Q0.02)
shows relatively similar errors for both the ANN and CLUBB parameterizations, with
average normalized errors of 0.041 and 0.048 in the ANN runs, and 0.053 in the CLUBB
run. The ANN errors remain relatively constant across the different turbulent regimes,
while the CLUBB errors visibly increase when convection is active, and the ANN param-
eterization still manages to capture the evolution of the BL wind in highly convective
situations. Except for the two quasi-neutral LES runs (on the far left of the figure), the
normalized error is at least divided by a factor 2 with the ANN parameterization, com-
pared to CLUBB. The LES runs are split into three different categories of turbulent regimes
according to their stability parameters: quasi-neutral (0 < ζ < 5), moderately con-
vective (5 < ζ < 10) and highly convective (ζ > 10). For the quasi-neutral simula-
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tions, the ANN parameterization reduces the error by a factor 2.2 on average compared
to CLUBB (considering the average errors of the two ANN runs). For the moderately
and highly convective simulations, the ANN parameterization reduces the error by a fac-
tor 3.1 and 3.0, respectively.

For all of the colored dots, the LES surface momentum fluxes are used at each time
step as boundary conditions. In the ANN runs, the surface value is used to unnormal-
ize the prediction and in the CLUBB runs, the value at the first atmospheric layer is taken
to be equal to the LES flux value. The smaller transparent dots on the figure show the
average errors computed after applying six additional biases to the ”true” LES surface
values during the SCAM runs (-30%, -20%, -10% , +10%, +20% and +30%). The ANN
parameterizations are thus compared to CLUBB a total of 210 times (fifteen LES runs
replicated, two different ANN parameterizations and seven surface value configurations
per parameterization). Considering all of the SCAM runs conducted, the ANN param-
eterization outperforms CLUBB 207 out of the 210 runs. The three runs where CLUBB’s
errors are lower than the ANN’s correspond to the quasi-neutral simulation Ug25Q0.02,
when extreme negative biases on the surface value were applied. In a majority of cases,
for the ANN runs, applying biases slightly increases the errors of the single column model.
However for the CLUBB runs, the errors is reduced in the convective runs when a neg-
ative bias is added to the surface momentum flux values. The reason for that error re-
duction comes from the fact that in convective situations, the vertical profiles of wind
exhibit a strong gradient near the surface, but almost zero gradient in the mixed layer.
Therefore, being a down-gradient approach, CLUBB predicts an important near-surface
momentum flux, along with a quasi-zero momentum flux in the mixed layer, resulting
in a strong vertical gradient of momentum flux near the surface (see 4.2). This unreal-
istically strong gradient induces the surface wind to decelerate too fast, and reducing this
vertical gradient by adding negative bias on the surface value yields a more realistic evo-
lution of the wind profiles. Therefore in those cases, the error on the surface value com-
pensates the error in the representation of the vertical gradient of momentum flux and
leads to an overall error reduction.

4.2 Boundary layer wind profiles evolution

Temporal evolution of BL wind profiles have subsequently been analyzed for two
simulated cases of interest. The first case is the replicated LES simulation Ug25Q0.02,
the quasi-neutral simulation that showed similar performance between the ANN param-
eterization and CLUBB. The second case is the replicated LES simulation Ug10Q0.05,
which corresponds to the case that showed the most significant improvement when us-
ing the ANN parameterization instead of CLUBB, with the error reduced by a factor 4.2
(Fig. 5). Doing so allows us to understand and analyze the benefits of the data-driven
approach in convective situations. During the two hours of the LES runs, the zonal wind
magnitude decreases while the meridional wind increases (Fig. 6 and 7, panels a and b)
due the rotation of the wind induced by the Coriolis force. In the first replicated case
(Ug25Q0.02), convection is very weak and we are in a shear-driven scenario. In that case,
both the ANN parameterization and CLUBB capture a correct temporal evolution of
the wind profiles (Fig. 6, e, f, i and j). In most of the boundary layer, the wind speed
decreases as we get closer to the surface, and the momentum flux is downgradient (Fig.
6, c and d), which explains why a first order approach like CLUBB performs relatively
well and predict momentum flux that are close to the LES values (Fig. 6, k and l).

In the convective run Ug10Q0.05, however, SCAM manages to predict a correct tem-
poral evolution of the wind profiles when the ANN parameterization is active, but not
when CLUBB is used (Fig. 7, top panels). In this replicated LES, the vertical profiles
exhibit characteristics of mixed layer winds, meaning that u and v are somewhat con-
stant within at least part of the BL due to convective mixing. As a result of these weak
vertical gradients, CLUBB predicts initial momentum fluxes that are close to zero in the
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a b

c d

e f

g h

i j

k l

Figure 6. Temporal evolution of the boundary layer wind profiles from the LES run

Ug25Q0.02 (a and b) and corresponding SCAM runs using the ANN (e and f) and CLUBB pa-

rameterizations (i and j). The corresponding vertical profiles of momentum flux computed from

the LES (c and d) and predicted by the ANN (g and h) and CLUBB (k and l) are also shown.

On each panel, initial vertical profiles are shown in blue and the profiles are plotted every twenty

minutes.

–15–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

a b

c d

e f

g h

i j

k l

Figure 7. Temporal evolution of the boundary layer wind profiles from the LES run

Ug10Q0.05 (a and b) and corresponding SCAM runs using the ANN (e and f) and CLUBB pa-

rameterizations (i and j). The corresponding vertical profiles of momentum flux computed from

the LES (c and d) and predicted by the ANN (g and h) and CLUBB (k and l) are also shown.

On each panel, initial vertical profiles are shown in blue and the profiles are plotted every twenty

minutes.

mixed layer (Fig. 7, k and l, blue lines), but stronger near the surface, which does not
match the true shape of momentum flux profiles (Fig. 7, c and d). This important near-
surface vertical gradient in the momentum flux profile induces a fast decrease in the zonal
and meridional wind speeds at the surface, while the speed slightly increases towards the
top of the BL (Fig. 7, i and j). After two hours of simulation, the resulting profiles (pink
lines) do not exhibit the properties of a convective mixed layer, as the curves have flat-
tened - thereby confirming the inadequacy of downgradient approaches to simulate con-
vective BL winds. The flattening of the vertical profiles becomes evident when exam-
ining the evolution of the total horizontal wind speed profiles U =

√
u2 + v2, whereas

the ANN parameterization conserves a physically consistent mixed-layer wind structure
(Fig. S2).

5 Summary and Discussion

The atmospheric and oceanic boundary layers exhibit important similarities in terms
of the physical processes that shape their behavior, as well as their parameterization within
climate models. Yet, no unified approach has been developed to leverage these similar-
ities and bridge the gap between the usually separate atmosphere and ocean communi-
ties. In this study, we introduce a unified data-driven parameterization of subgrid-scale
momentum fluxes for both atmospheric and oceanic convective boundary layers. The pa-
rameterization is based on an ANN trained offline on coarse-grained output from LES
runs spanning a wide range of turbulent regimes in both the ocean and atmosphere. The
training dataset generated includes varying combinations of surface buoyancy flux and
wind forcing to represent both shear-driven and convectively-driven turbulent regimes.
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The ANN takes vertical profiles of mean wind for the atmosphere or current for the ocean
as input and predicts the corresponding profiles of turbulent momentum fluxes. In this
approach, the target fluxes are normalized by their surface values, revealing a self-similar
structure across fluids and regimes that enables joint training and robust generalization
to various turbulent regimes for both fluids. The unification of the two parameteriza-
tions provides a new framework with a limited number of tunable parameters, and re-
sults show that the overall model performance can be enhanced by the inclusion of fea-
tures from both fluids.

The ANN demonstrates high predictive skill in offline tests, achieving R2 values
above 0.9 for both atmospheric and oceanic cases, and successfully capturing nontriv-
ial features, such as upgradient fluxes—present in approximately 10% of the testing sam-
ples—which traditional first-order schemes fail to capture. In 95% of upgradient cases,
the ANN correctly predicts the flux sign and vertical structure. Note that predicting up-
gradient fluxes is essential in order to simulate large-scale features such as organized con-
vection or jet dynamics (Savazzi et al., 2023; Farrell & Ioannou, 2007; Birner et al., 2013;
Dixit et al., 2021), the ANN parameterization therefore shows potential in improving the
representation of large-scale dynamics in climate models, which remains to be further
tested online. Furthermore, the ANN maintains good performance even when the sur-
face momentum flux used for rescaling is biased by up to ±30%, with prediction skill (R2)
remaining above 0.8.

To evaluate performance in an online setting, the ANN was implemented in the Sin-
gle Column Atmospheric Model (SCAM) and compared to the CLUBB parameteriza-
tion. SCAM was used to replicate the wind profiles obtained from the 15 atmospheric
LES runs, under different parameterization settings. To do so, the SCAM simulation was
initialized with the LES profiles and forced with constant surface heating and geostrophic
wind, similar to that in the LES. Results show that the ANN consistently outperforms
CLUBB for all cases tested, providing substantially lower errors in reproducing the evo-
lution of boundary layer wind profiles, especially in moderately and strongly convective
regimes. For these cases, the ANN reduces the normalized wind vector error by a fac-
tor of 3 on average compared to CLUBB. Additionally, training the ANN from scratch
while excluding the tested LES case confirms the model’s ability to generalize beyond
its training data, i.e., to turbulent regimes that were excluded from the training set.

A detailed analysis of specific cases, which showcased either relatively low or sig-
nificant improvements compared to the eddy diffusivity approach, has subsequently been
conducted. Unlike first order approaches, the ANN accurately reproduces the tempo-
ral evolution of both wind and flux profiles in both shear-driven (quasi-neutral) and highly
convective boundary layers, preserving physically consistent mixed-layer characteristics.
These results highlight the limitations of purely downgradient approaches in convective
regimes, in agreement with previous studies (Brown et al., 2006; Large et al., 2019), and
demonstrate the ability of data-driven models to learn more general turbulent transport
patterns from high-resolution simulations.

To the best of our knowledge, this study is the first to develop a single ANN-based
momentum flux parameterization that performs effectively offline in both the atmospheric
and oceanic boundary layers. Its successful implementation in SCAM suggests that such
unified schemes could be implemented and potentially improve climate models. Although
higher order schemes show potential to improve the representation of momentum fluxes
(Larson et al., 2019; Graap & Zarzycki, 2024), they also add significant complexity and
computation demands by adding a considerable number of prognostic equations. Mass-
flux schemes provide a cheaper alternative and are able to capture some of the non-local
aspect of momentum transport, but they still fail to represent some of the convective trans-
port (Zhu, 2015). Data-driven approach, therefore, seems like a legitimate alternative
to explore in order to improve GCM parameterizations, and the results presented here
are promising steps in that direction. An interesting perspective would be to compare
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ANN parameterizations such as the one proposed in this study with higher order mod-
els, both in terms of skills and computation time. Although the results of this study are
promising, the configuration remains idealized, and further efforts are needed to validate
the parameterization in coupled GCM runs. Future work will extend this framework to
include realistic and fluid-specific processes, such as condensation and precipitation in
the atmosphere, or salinity, Langmuir circulation and wave-breaking in the ocean. The
sensitivity of the parameterization to different vertical resolutions also has to be tested
before potentially being implemented in fully coupled Earth system models under real-
istic boundary conditions.

6 Appendix

Name Geostrophic
Wind Ug
(m/s)

Surface Heating
Q = w′θ′surf

(K.m/s)

Stability
Parameter
ζ = −zi/L

Ug25Q0.02 25 0.02 0.55

Ug16Q0.01 16 0.01 0.60

Ug12Q0.01 12 0.01 1.2

Ug16Q0.03 16 0.03 1.7

Ug20Q0.05 20 0.05 1.9

Ug16Q0.06 16 0.06 2.8

Ug16Q0.10 16 0.10 4.5

Ug12Q0.05 12 0.05 5.2

Ug8Q0.03 8 0.03 6.3

Ug5Q0.01 5 0.01 6.4

Ug10Q0.05 10 0.05 7.3

Ug8Q0.06 8 0.06 11.9

Ug12Q0.20 12 0.20 14.0

Ug10Q0.20 10 0.20 19.9

Ug8Q0.20 8 0.20 31.4

Table 1. List of atmospheric LES runs with the geostrophic wind and surface heating forcing

used. The stability parameter, defined as the opposite of the ratio of the boundary layer height zi

over the Monin-Obukhov length L, is also shown.
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Name Wind
Forcing U
(m/s)

Surface Cooling
Q = w′θ′surf

(K.m/s)

Stability
Parameter
ζ = −zi/L

U15Q−0.02 15 -0.02 0.35

U15Q−0.06 15 -0.06 1.5

U8Q−0.02 8 -0.02 2.3

U10Q−0.04 10 -0.04 2.8

U15Q−0.13 15 -0.13 3.4

U10Q−0.08 10 -0.08 6.2

U8Q−0.06 8 -0.06 8.0

U10Q−0.16 10 -0.16 15.0

U8Q−0.13 8 -0.13 18.8

U5Q−0.04 5 -0.04 21.8

U5Q−0.08 5 -0.08 48.4

U5Q−0.16 5 -0.16 112.8

Table 2. List of oceanic LES runs with the surface wind and heating forcing used. The sta-

bility parameter, defined as the opposite of the ratio of the boundary layer height zi over the

Monin-Obukhov length L, is also shown.
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