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Data-driven dimensionality reduction and causal inference for spatiotemporal climate fields
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We propose a data-driven framework to describe spatiotemporal climate variability in terms of a few entities
and their causal linkages. Given a high-dimensional climate field, the methodology first reduces its dimension-
ality into a set of regionally constrained patterns. Causal relations among such patterns are then inferred in
the interventional sense through the fluctuation-response formalism. To distinguish between true and spurious
responses, we propose an analytical null model for the fluctuation-dissipation relation, therefore allowing us for
uncertainty estimation at a given confidence level. We showcase the methodology on the sea surface temperature
field from a state-of-the-art climate model. The usefulness of the proposed framework for spatiotemporal climate
data is demonstrated in several ways. First, we focus on the correct identification of known causal relations
across tropical basins. Second, we show how the methodology allows us to visualize the cumulative response of
the whole system to climate variability in a few selected regions. Finally, each pattern is ranked in terms of its
causal strength, quantifying its relative ability to influence the system’s dynamics. We argue that the methodology
allows us to explore and characterize causal relations in spatiotemporal fields in a rigorous and interpretable way.
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I. INTRODUCTION

Earth’s climate is a complex dynamical system composed
by many components, such as the atmosphere and hydro-
sphere, and their interactions [1]. Such linkages give rise
to nontrivial feedbacks, generating self-sustained spatiotem-
poral patterns [2,3]. An example is the El Niño Southern
Oscillation (ENSO), a recurrent pattern of natural variability
emerging from air-sea interaction in the tropical Pacific Ocean
[4,5]. Other examples include the Asian Monsoon, the Indian
Ocean Dipole (IOD), and the Atlantic Niño, just to cite a
few [6–8]. Such patterns, commonly referred to as modes
of variability, interact with each other on a vast range of
spatial and temporal scales [9–11]. Spatiotemporal climate
dynamics can then be thought of as a collection of modes of
variability and their linkages or, as commonly referred to, a
climate network [12,13]. The identification of such a complex
array of interactions and the quantification of its response
to external forcings (e.g., Refs. [14,15]) is a fundamental
(but nontrivial) problem at the root of our understanding of
climate dynamics. It requires hierarchies of models, theories,
observations, and unique tools to analyze and simplify the
description of high-dimensional, complex data [3,16]. In fact,
the exponential growth of data from models and observations,
together with appropriate and rigorous frameworks, promise
ways to explore and ultimately understand climate dynamics
[16]. An important step when learning from climate data
is to infer meaningful linkages among time series, whether
among modes of variability or other features of the system
(e.g., global averages). Traditionally, this has been done by
quantifying pairwise similarities, whether linear or nonlinear
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(for example, Refs. [15,17–19], respectively). Such statistical
similarities cannot quantify what we refer to as causality,
limiting our ability to discover meaningful mechanisms in
high-dimensional dynamical systems such as climate. In the
context of dynamical systems, the main idea of causal in-
ference can be informally summarized as follows: given the
time series x1(t ), x2(t ), ..., xN (t ) of an N-dimensional system
x(t ) ∈ RN , where t is a time index, we aim in quantifying (a)
to what extent and (b) at what timescales changes in a variable
x j (t ) can influence another variable xk (t + τ ) at later times
[20,21].

This paper proposes a scalable framework to (a) coarse
grain a spatiotemporal climate field into a set of a few patterns
and (b) infer their causal linkages. Altogether, the proposed
strategy allows us to study complex, high-dimensional climate
dynamics in an interpretable and simplified way.

Causality is a fundamental topic in science, ranging from
foundational questions in physics and philosophy [22–30] to
practical design and implementation of inference algorithms
[31]. In the last decades, there has been great interest in
developing new methodologies to infer causal associations
directly from data. In the case of time series data, attempts
to infer causal connections start from the work of Granger
[32], who framed the problem of causal inference in terms
of prediction. The main idea of Granger causality was to
draw a causal link between two variables x j and xk if the
past of x j would enhance the predictability of the future
of xk . Another attempt, coming from the dynamical sys-
tem literature, was based on the concept of transfer entropy
[33,34]. Crucially, as noted in Ref. [21], Granger causality and
transfer entropy give similar information and are equivalent
for Gaussian variables [35]. In the last decades, propos-
als coming from the computer science literature, mainly
driven by Pearl [31,36], have given us practical ways to
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design and implement causal tools mainly based on graphical
models. Frameworks of such kind have been recently devel-
oped in climate science with contributions ranging from the
work of Ebert-Uphoff and Deng in Ref. [37] to Runge et al.
[38]; see Ref. [39] for a review. Additionally, the machine
learning (ML) community is actively interested in causality
and applications and we refer to Ref. [40] for details on
developments and open problems in causal ML.

Recently, it has been noted that linear response theory
[41,42] serves as a rigorous framework to understand causal-
ity in physical systems [20,21,43–46]. The main rationale is
that, in physics, causal effects can be identified by observing
the response of the system to external actions [35,45]. In the
limit of infinitesimally small external perturbations, the linear
response formalism provides a strategy to compute changes
in statistical properties of a physical system solely from the
notion of the unperturbed dynamics [46,47]. This allows us to
capture causal relations from data in the interventional sense
[21,30,36,45].

The fluctuation-response formalism [21] differs from many
commonly employed causal algorithms, such as conditional
independence testing [38], Granger causality [32], and trans-
fer entropy [34], by focusing directly on the problem of causal
effect estimation [31,48] rather than causal discovery (i.e.,
direct causal links) [49]. Many causal questions in climate can
be cast into the paradigm of perturbations and responses as
proposed in Ref. [21]. Examples of such questions may in fact
be: How much do changes in fresh water fluxes in Antarctica
affect sea level rise in the North Atlantic? How do changes in
sea surface temperature (SST) anomalies in the Pacific Ocean
affect temperatures in the Indian Ocean (IO)? Answering such
questions often relies on quantifying the time-dependent flow
of information along the underlying causal graph rather than
discovering the graph itself [21,46] (see also Ref. [50] in
the context of information theory). Such a difference with
causal discovery methods is further explored and discussed in
Sec. II D. On the computational side, causal discovery algo-
rithms such as the one based on conditional independence do
not scale to high-dimensional systems [39,40], whereas linear
response theory scales to high-dimensional data and allows us
to write rigorous, analytical relations between perturbations
and responses.

It should be noted that linear response theory is an active
field of research in climate science [2,20,51–59]. Such studies,
quantifying long-term, forced changes in climate observables,
can be broadly grouped in two approaches [60]: the one pio-
neered by Leith [51], making use of the fluctuation-dissipation
formalism, and the more general formalism proposed by
Ruelle [43,61].

Our paper relates to the approach proposed by Leith [51]
and is based on the recent contribution of Baldovin et al.
[21], where the authors presented a clear strategy to infer
causality in multivariate linear Markov processes through the
fluctuation-dissipation relation. The extension of the proposal
of Baldovin et al. [21] for studying spatially extended dy-
namical systems is contingent on two important steps: (i)
a methodology to reduce the dimensionality of the system
and (ii) a framework for uncertainty estimation. Point (ii) is
particularly important when inferring results from real-world
data.

In this paper, we contribute to (a) dimensionality reduction,
(b) linear response theory, and (c) causality in climate in the
following ways:

(1) We introduce a scalable computational strategy to de-
compose a large spatiotemporal climate field into a set of a
few regionally constrained modes. The average time series
inside each pattern quantifies the climate variability of spe-
cific regions around the world. The time-dependent linkages
among such patterns are then inferred through the fluctuation-
dissipation relation. This step allows us to explore how local
(i.e., regional) variability can influence remote locations.

(2) We propose an analytical null model for the
fluctuation-dissipation relation. The model assigns confidence
bounds to the estimated linear responses, therefore distin-
guishing between true and spurious results. The proposed
strategy allows for trustworthy statistical inference from real-
world data. The application of this model is general and not
limited to climate applications.

(3) We showcase the proposed framework on the monthly
SST field at the global scale. For this step, we consider a 300-
year-long, stationary integration of a global coupled climate
model. Long-distance linkages in the SST field have been
characterized in many previous studies. It therefore offers a
good real-world test bed for the methodology. We show how
the proposed framework simplifies the description of such
a complex, high-dimensional system in an interpretable and
comprehensive way.

The paper is organized as follows: in Sec. II, we introduce
the proposed framework. The data analyzed are described
in Sec. III. The methodology is applied to climate data in
Sec. IV. Section V concludes the paper.

II. FRAMEWORK

A. Partitioning climate fields into regionally
constrained patterns

Spatiotemporal chaotic fields can be viewed as dynamical
systems x(t ) ∈ RN living in an N-dimensional state space
[62,63]. The dimensionality N is theoretically infinite but, in
practice, equal to the number of grid cells used to discretize
the longitude, latitude, and vertical coordinates (times the total
number of variables; e.g., temperature, velocities, etc.) [64]. In
the case of dissipative chaotic systems, such high-dimensional
dynamics is confined on lower-dimensional objects known
as inertial manifolds or attractors [63,65,66]. The effective
dimensionality of the system [67] is then finite and given
by the attractor dimension D. This is arguably the case of
large-scale climate dynamics, where recurrent spatiotemporal
patterns, known as modes of variability (e.g., ENSO, monsoon
system, IO modes [8,15,68], etc.) are a manifestation of the
low dimensionality of the climate attractor [64,69].

Here the goal is to coarse grain an N-dimensional climate
field into a set of very few (order 10) patterns. Crucially, such
components should be regionally constrained in longitude-
latitude space. Requiring for the identification of regional
patterns is a desirable property, as climate variability can often
be thought of as a set of remote responses driven by local per-
turbations. A clear example is given by the climate system’s
response to El Niño events [5]. An El Niño phenomenon is
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characterized by a buildup of warm SST in the eastern Pacific.
Such local warming excites an atmospheric wave response,
resulting in the heating of the whole tropical troposphere
[11,70]. As a result, an El Niño episode in the Pacific causes a
warming in both the Indian and tropical Atlantic basins at later
times. Therefore, when reducing the dimensionality of the
system, it is useful to distinguish between climate phenomena
driven by local dynamics or forced by remote variability. In
this paper, we will do so by first coarse graining the system
in terms of regional modes of variability. At a second step, we
will infer their causal linkages via linear response theory [21].

In this section, we show that adding a simple constraint
to community detection methodologies [71,72] provides a
scalable and practical framework to identify regionally con-
strained modes of variability in climate fields. The strategy
proposed here is based on two main steps: First, given a field
saved as a data matrix x ∈ RN,T , we infer a graph between its
N time series based on both their covariability and distance.
We then identify communities in such a graph, thus partition-
ing the original data into a few components. Communities will
consist of sets of highly correlated time series and will serve
as proxies of climate modes of variability. In Appendix A, we
discuss the strengths and limitations of current dimensionality
reduction methods and further motivate our proposal.

In practice, in this paper x ∈ RN,T will be specified by
the SST field only. Components of the field xi(t ) will then
represent a SST time series at grid point i. N will be the
number of grid points and T the length of each time series
at a given temporal resolution. The framework proposed is,
however, general and can work with multivariate fields.

1. Graph inference

Consider a spatiotemporal field saved as a data matrix
x ∈ RN,T , with N time series of length T . Given a pair of
time series xi(t ) and x j (t ), scaled to zero mean, we compute
their covariance at lag τ = 0, Ci, j = xi(t )x j (t ); where f stands
for the temporal average of function f . An undirected, un-
weighted graph can then be encoded in an adjacency matrix
A ∈ RN,N as

Ai, j =
{

1 − δi, j if Ci, j � k and d (i, j) � η

0 otherwise,
(1)

where the Kronecker delta δi, j allows us to remove self-links.
The parameter k sets the minimum covariance that two time
series must have to be connected. The parameter d (i, j) is
the distance between grid cells i and j, and η is a distance
threshold. The rationale behind this choice is that we consider
two time series xi(t ) and x j (t ) linked to each other if (a) their
covariance is larger than a threshold k and (b) if they are
relatively close in the spatial domain considered. Importantly,
d (i, j) is computed using the Haversine (or great-circle) dis-
tance, determining the angular distance between two points
i and j on a sphere as a function of their longitudes and
latitudes [73].

Both thresholds k and η can be specified by the user. How-
ever, their optimal values will largely depend on the statistics
of the field of interest (e.g., SST, cloud fraction) and by the
spatial domain considered (e.g., regional or global domains).

We therefore propose two heuristics to compute such parame-
ters as a function of the data matrix x ∈ RN,T .

a. Heuristic for parameter k. Given time series xi(t ) and
x j (t ): (a) compute covariances Ci, j , ∀i, j; i �= j and (b) set k
as a high quantile qk of the distribution of all covariances Ci, j .
To make this idea feasible, in practice, we can approximate
such distribution by random sampling Sk pairs of time series
xi(t ) and x j (t ) and then computing their covariances. k is then
estimated as a high quantile qk of the sampled distribution.
A pragmatic choice of qk is qk = 0.95 as we observed in
different applications that is a good compromise between
the identification of a sparse, but not too sparse, graph. The
sampling size considered here is Sk = 106.

b. Heuristic for parameter η. Given time series xi(t ) and
x j (t ) embedded at grid points i and j (a) calculate the Haver-
sine distance d (i, j) and (b) estimate η as a low quantile qη of
the distribution of all distances d (i, j). As for the parameter k,
in practice, the distribution of distances can be approximated
by random sampling Sη pairs of locations i and j and comput-
ing their Haversine distance. We choose qη = 0.15, with no
large sensitivity over such value, and Sη = 106.

2. Detecting patterns

Sets of highly correlated time series (i.e., modes) in the
original field x ∈ RN,T correspond to groups of nodes that
are more interconnected to each other than to the rest of the
graph, in other words, communities [72]. Fast and scalable
community detection algorithms [71] can be leveraged to re-
duce the dimensionality of the graph in Eq. (1). In this paper,
we consider the Infomap methodology [74,75]. Such method
is based on the map equation [76,77] and casts the problem
of community detection as an optimal compression problem
[75]. Mainly, Infomap exploits the community structure to
minimize the description of a random walk on the graph [76].
Such methodology has been found to be the best performing
community detection in different benchmarks [71], and has
shown excellent performance in a previous climate study [78].
In what follows, we are going to refer to the identified com-
munities as patterns, modes, or communities, interchangeably.

The number and size of the identified patterns will depend
on parameters qk and qη introduced in Sec. II A 1. A priori
knowledge of the system can help set the values of parameters
qk and qη. As a rule of thumb, we recommend the interested
practitioner to first gain intuition about the underlying net-
work structure of the system by setting qk = 0.95 but without
constraints on distances (this corresponds to setting qη = 1).
The qη parameter is then used to remove long-distance (in
longitude-latitude space) dependencies. We recommend start-
ing from qη = 0.15 as in this paper. If the resulting patterns
are still not regionally constrained, we suggest lowering qη to
slightly smaller values, e.g., qη = 0.1. Finally, we note that in
different applications, ranging from reducing the dimension-
ality of sea level to outgoing long-wave radiation fields, we
found no need to change the values of parameters qk = 0.95
and qη = 0.15.

3. Defining signals (time series)

Given a set of n patterns c = (c1, c2, c3, ...cn), we study
their temporal variability as the average time series inside.
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Formally, for each c j we can define its respective time series
as

X (c j, t ) = 1∑
i∈c j

cos(θi )

∑
i∈c j

xi(t ) cos(θi ), (2)

where θi is the latitude of xi(t ). The term cos(θi ) allows
us to implement the area-weighted averaging on a uniform
longitude-latitude grid. We note that another way to de-
fine each signal is the area-integrated anomaly X (c j, t ) =∑

i∈c j
xi(t ) cos(θi ). Such definition allows us to rank different

patterns c j with respect to both their variability and their size,
therefore carrying different weights in the linear response
formulas. The definition of signals through area-integrated
anomalies can be useful in climate change experiments per-
formed with linear response theory, and it will be considered
in future studies. In this paper, we adopt the definition in
Eq. (2).

In this paper, the graph inference step in Eq. (1) con-
siders correlations rather than covariances, therefore Ci, j =
xi(t )x j (t ) in Eq. (1) are computed after scaling xi(t ) and x j (t )
to zero mean and unit variance. We used correlations for
qualitative comparison with the δ-MAPS framework [79,80],
but covariances can be considered in future work.

B. Linear response theory and fluctuation-dissipation relation

Baldovin et al. [21], proposed the following physical
definition of causality: given a dynamical system x(t ) =
[x1(t ), x2(t ), ..., xN (t )] with N time series, each of length T
we say that x j causes xk , i.e. x j → xk , if a small perturbation
applied to variable x j at time t = 0, i.e. x j (0) + δx j (0), in-
duces on average a change on variable xk (τ ) at a later time
t = τ . We note that the contribution of Lucarini [20] pursues
close scientific goals to the work of Baldovin et al. [21].

1. General case

Consider a Markov process x(t ) = [x1(t ), x2(t ), ..., xN (t )].
Each time series xi(t ) is scaled to zero mean. The system
is stationary with invariant probability distribution ρ(x). We
perturb the system x(t ) at time t = 0 with a small, impulse
perturbation δx(0) = [δx1(0), δx2(0), ..., δxN (0)]. We aim to
answer the following question: How does this external per-
turbation δx(0) affect the whole system x(τ ) at time t = τ ,
on average? Formally, we are interested in quantifying the
following object:

δ〈xk (τ )〉 = 〈xk (τ )〉p − 〈xk (τ )〉, (3)

where the brackets 〈xk (τ )〉 indicate the ensemble averages of
xk (τ ), i.e., the average over many realizations of the system,
and the subscript p specifies the perturbed dynamics. There-
fore, Eq. (3) defines the difference between the components
xk (τ ) of the perturbed and unperturbed systems in the average
sense. Equation (3) can be used to study changes δ〈O(xk (τ ))〉
of a generic observable O(xk (τ )) (i.e., a measurable quantity,
function of the state space vector x(τ ) at time t = τ ). To
study causality, here we simply consider the identity case
O(xk (τ )) = xk (τ ), see Ref. [21].

Under the assumption of a small perturbation δx(0) and
with ρ(x) sufficiently smooth and nonvanishing, the following

result holds:

Rk, j (τ ) = lim
δx j (0)→0

δ〈xk (τ )〉
δx j (0)

= −〈xk (τ )
∂ ln ρ(x)

∂x j
|x(0)〉. (4)

R(τ ) is the linear response matrix and we refer to Sec. II
of Boffetta et al. [81] for a derivation of Eq. (4). Rk, j (τ )
quantifies the response of a variable xk (τ ) at time t = τ given
a small perturbation δx j (0) applied to variable x j (0) at time
t = 0. Equation (4) is known as the generalized fluctuation-
dissipation relation (FDR) and is valid for both linear and
nonlinear systems [42]. Note that in the case of deterministic
systems, the invariant measure ρ(x) is singular almost every-
where on the attractor. Therefore, in practice, one needs to
add Gaussian noise even to deterministic systems to smooth
the probability distribution before applying FDR as proposed
here [54].

Equation (4) is a powerful formula, as it allows us to
compute responses to perturbations solely given the gradients
of the probability distribution ρ(x) of the unperturbed system.
However, the functional form of ρ(x) is not known a priori
and can be highly nontrivial, especially for high-dimensional
systems. To overcome such an issue, applications often focus
on the simpler case of Gaussian distributions (see, for exam-
ple, Refs. [51,60]). This is the case of linear systems, as shown
in the next section.

2. Linear systems and quasi-Gaussian approximation

We now consider an N-dimensional stochastic linear pro-
cess x(t ) = [x1(t ), x2(t ), ..., xN (t )] governed by the following
equation:

x(t + 1) = Mx(t ) + Bξ(t ). (5)

The matrix M ∈ RN,N specifies the deterministic dynamics of

the system. The term ξ(t ) ∈ RN with ξi(t )
iid∼ N (0, 1) repre-

sents a delta correlated white noise [i.e., 〈ξ (t )ξ (s)〉 = δt,s].
The matrix B ∈ RN,N specifies the amplitude of the noise
(i.e., standard deviation). The probability distribution ρ(x) is
Gaussian and Eq. (4) factorizes to

R(τ ) = Mτ = C(τ )C(0)−1, (6)

where the covariance function Ci, j (τ ) = 〈xi(t + τ )x j (t )〉 (xi

is assumed to be zero mean). Equation (6) shows that the
response of a linear system to small external perturbations is
a function of covariance matrices computed for the stationary
(i.e., unperturbed) dynamics [81].

Relevance for nonlinear systems. The form of FDR shown
in Eq. (6) has been the one commonly used in climate
applications and it is commonly referred to as thequasi-
Gaussian approximation [54–57,82]. Importantly, it has been
shown that such a formula performs well for weakly non-
linear systems. For instance, Baldovin et al. [21] showed
remarkably good results when analyzing linear responses in
a Langevin equation with a quartic potential. Gritsun and
Branstator [54] also pointed out how this formula works well
for non-Gaussian systems with second order nonlinearities.
Additionally, Eq. (6) has been shown to give reliable results
in the case of nonlinear deterministic dynamical systems also
in the case of finite perturbations; see Fig. 1 in Boffetta et al.
[81]. Furthermore, we will show in Appendix D that the
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FIG. 1. (a) Graph representing the Markov model in Eq. (10).
This is the same simple system considered in Baldovin et al. [21]
(where here [x1, x2, x3] correspond to their [x, y, z] in Ref. [21]).
(b) Response of variable x3 when perturbing x2, i.e., testing for
link x2 → x3. (c) Response of variable x2 when perturbing x3, i.e.,
testing for link x3 → x2. All time series have been rescaled to zero
mean and unit variance before computing responses. The response
ground truths are shown as solid orange lines. Dashed blue lines are
responses estimated through temporal averages: for this step, we use
a long trajectory of length T = 105 simulated by system in Eq. (10).
Red dots indicate the confidence bounds computed numerically using
B = 104 ensemble members of the null model as shown in Sec. II C 1.
In each panel, the dot-dashed black line is the analytical solution
as in Eqs. (8). Bounds correspond to the ±3σ confidence level. All
estimated responses (i.e., blue curves) in between the confidence
bounds are here considered spurious.

probability distributions considered in this paper can be well
approximated by Gaussians, further justifying the use of this
approximation in our context.

Results presented in this section hold in the sense of en-
semble average; therefore, covariance matrices C(τ ) and C(0)
are computed by averaging over many realizations of the
system. The computation of ensemble averages gives rise to

an additional complication in real-world data for which we
only have access to a single trajectory.

C. A null model for the fluctuation-dissipation relation

In real-world applications, we cannot compute ensemble
averages. The common way to overcome this problem and
reconcile data analysis with theory is through the assump-
tion of ergodicity [83]. If the system x is ergodic, it holds:
O(x) = 〈O(x)〉 in the limit T → ∞; where O(x) is a general
observable, O(x) indicates the time average and T is the
length of the trajectory x.

Ergodicity is the main assumption behind any climate
study using the fluctuation-dissipation theorem (see Ref. [56]
and references therein). Covariance matrices are then esti-
mated using temporal averages, e.g., Ci, j (τ ) = xi(t + τ )x j (t )
(xi is assumed to be zero mean), but again we are left with the
problem of observing the system over a finite time window.
Therefore, we can always expect spurious results when esti-
mating response functions. Spurious results come from two
main contributors: (a) finite samples (i.e., the length T of
the trajectory is finite) and (b) large autocorrelations of the
underlying time series xi(t ).

To the best of our knowledge, an analytical statistical test
to distinguish between spurious and real responses in the
linear response theory formalism has not been proposed in
the literature. Here we fill this gap by proposing a null model
for the fluctuation-dissipation relation and derive its analytical
solution. We start by proposing a null hypothesis for a general
stochastic dynamical system.

a. Null hypothesis. Given a system x(t ) =
[x1(t ), x2(t ), ..., xN (t )] it holds Rk, j (τ ) = 0, ∀ j, k =
1, ..., N ; with j �= k. In the context of causality this implies
that there is no causal link x j → xk, ∀ j, k = 1, ..., N ; j �= k.

b. Null model. Given a process saved as a data matrix x ∈
RN,T , we define a new process x̃ ∈ RN,T simulated by a null
model. Every time series in x and x̃ are rescaled to zero mean.

The null model takes the following form:

x̃(t + 1) = M̃x̃(t ) + B̃ξ(t )

with M̃ =

⎛
⎜⎜⎝

φ1 0 · · · 0
0 φ2 · · · 0
...

...
. . .

...

0 0 · · · φN

⎞
⎟⎟⎠,

B̃ =

⎛
⎜⎜⎝

σ̃1 0 · · · 0
0 σ̃2 · · · 0
...

...
. . .

...

0 0 · · · σ̃N

⎞
⎟⎟⎠,

ξi(t )
iid∼ N (0, 1), ı = 1, ..., N. (7)

Here, φi is the lag-1 autocorrelation of the original time series
xi(t ); σ̃i = σi(1 − φ2

i ) is the standard deviation of the Gaus-
sian noise, where σi is the standard deviation of the original
time series xi(t ). Therefore, each time series x̃i(t ) has the same
mean, variance, and lag-1 autocorrelation of xi(t ), however,
every pair x̃i(t ), x̃ j (t ) is now independent. Note that the null
model in Eq. (7) is largely inspired by the commonly adopted
red noise test in climate analysis [84–87].
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The matrix M̃, defining the deterministic evolution, is di-
agonal; therefore, there is no causal link among variables.
However, for finite time windows, the response matrix esti-
mated through time-averaged covariance matrices as R(τ ) =
C(τ )C(0)−1 will give rise to spurious off-diagonal elements.
The distribution of responses of the null process x̃ defines
confidence bounds of responses of the original process x.

To compute the confidence level of the response Rk, j (τ ) at
each lag τ , we first propose a numerical implementation. We
then solve the problem analytically for the case T 
 1.

1. Confidence bounds of the response matrix:
Numerical estimation

Given a field x ∈ RN,T , our goal is to provide an estimation
of confidence intervals of the response matrix R(τ ) at each
lag τ , with τ = 0, 1, ..., τ∞. Such bounds can be numerically
estimated as follows:

(1) Generate a process x̃ ∈ RN,T using the null model pro-
posed in Eq. (7).

(2) Estimate the response matrix R(τ ) of the null model
x̃(t ) for lags τ ∈ [0, τ∞].

(3) Repeat the two steps above for B times, (B should
be large, B 
 1), therefore creating an ensemble of null re-
sponses.

(4) For each lag τ , we obtain a distribution of possible
responses generated by the null model. Confidence bounds
of responses can be estimated as low and high quantiles of
the distribution or, as chosen in this paper, multiples of its
standard deviation.

2. Confidence bounds of the response matrix:
Analytical derivation

We note that the analytical form of the response matrix in
the null model in Eq. (7) is trivial and given by R(τ ) = Mτ

with entries φτ
k δk, j ; δk, j being the Kronecker delta. However,

estimating responses from time series of finite length,will
give rise to spurious results departing from the expected
value of Mτ .

In this section, we present the analytical form of the prob-
ability distribution of responses estimated by the formula
R(τ ) = C(τ )C(0)−1 in the case of time series generated by the
null model in Eq. (7). We then refer the reader to Appendix B
for the derivation.

The main assumption is that null responses Rk, j (τ )
follow a normal distribution. Therefore, the expected
value E[Rk, j (τ )] = 〈Rk, j (τ )〉 and variance V ar[Rk, j (τ )] =
〈(Rk, j (τ ) − 〈Rk, j (τ )〉)2〉 uniquely define the probability dis-
tribution ρ(Rk, j (τ )). We have

E[Rk, j (τ )] = φτ
k δk, j,

V ar[Rk, j (τ )] = φ2τ
k − 1

T
+ 2

T

(
1 − φτ

k φτ
j

1 − φkφ j

)

− 2φτ
k

T

(
φk

φτ
j − φτ

k

φ j − φk

)
. (8)

Finally, in the case φk = φ j , we substitute the term φk
φτ

j −φτ
k

φ j−φk

with the limit

lim
φ j→φk

φk

φτ
j − φτ

k

φ j − φk
= φτ

k τ. (9)

Equations (8) assume that each time series has been previ-
ously normalized to zero mean and unit variance. Inthe case
of nonstandardized time series, Eqs. (8) become (σ 2

k /σ 2
j )×

Eq. (8); σ 2
i being the variance of time series xi(t ) (see also

Eq. (15) in Ref. [21]).
In this paper, confidence bounds are always defined by

E[Rk, j (τ )] ± 3
√
V ar[Rk, j (τ )] (i.e., ±3σ confidence level).

Finally, we note that the analytical confidence bounds
proposed in Eqs. (8) overcome an important problem in cli-
mate applications of linear response theory. Previous studies
such as Refs. [54,55,57] focused on evaluating the integral∫ ∞

0 dτ R(τ ). In practice, the upper bound of the integral needs
to be specified by a τ∞ much larger than the characteristic time
of the response. However, responses at larger lags are affected
by spurious results and τ∞ has been set to values as low as
30 days in some studies (e.g., Refs. [54,88]) or it has been
tuned to have the best performance of FDR by others [57].
The confidence bounds proposed in this section can then be
leveraged to neglect spurious terms, study responses at longer
timescales, and obtain results largely independent of τ∞.

D. A simple example

We test the confidence bounds proposed in Sec. II C in
the context of a simple linear Markov model. We choose the
same test model used in Ref. [21] to compare results and show
differences between approaches. The system considered is the
following:

x(t + 1) = Mx(t ) + Bξ(t ),

with M =
⎛
⎝a ε 0

a a 0
a 0 a

⎞
⎠,

B =
⎛
⎝b 0 0

0 b 0
0 0 b

⎞
⎠,

ξi(t )
iid∼ N (0, 1), ı = 1, 2, 3. (10)

As in Ref. [21], we set a = 0.5 and b = 1; we then set
ε = 0.04. Note that here [x1, x2, x3] correspond to [x, y, z] in
Ref. [21]. In this simple model, a small perturbation applied
on variable x2 would propagate through the system and cause
a change first at variable x1 and then at x3 [21]. However,
a perturbation in x3 cannot reach either x1 or x2; this is
clear by looking at the underlying graph in Fig. 1(a). We
first focus on the true responses Rk, j (τ ), here computed as
Rk, j (τ ) = σ j

σk
[Mτ ]k, j and shown in Fig. 1. The links x2 → x3

[i.e., R3,2(τ )] and x3 → x2 [i.e., R2,3(τ )] are correctly cap-
tured: the first nonzero response R3,2(τ ) is identified at lag
τ = 2 and responses R2,3(τ ) are found to be zero for any lag
τ [see Figs. 1(b) and 1(c)]. Note that such results cannot be
inferred with correlations only. For example, the estimation
of the link x3 → x2 via correlations will give nonzero values
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because of the confounder x1. We refer to Baldovin et al. [21]
for a thorough comparison with correlation analysis.

Let us briefly note here the main conceptual difference
between the fluctuation-response formalism and methods for
causal discovery. Causal discovery methods used in climate
and based on conditional independence such as Ref. [38]
aim at discovering the underlying causal graph in Fig. 1(a)
given time series data. Therefore, the link x2 → x3 would not
be identified as a causal link. The same holds for Granger
causality and transfer entropy [32,34] as shown in Ref. [21].
However, in a physical experiment, an intervention over
variable x2 would cause a change in variable x3. Such an
“interventional” view of causation is the one considered here
and can be correctly captured by linear response theory in a
straightforward way, see Fig. 1(b). We refer to Sec. III A of
Ref. [21] for an in-depth discussion.

In real-world cases, we deal with time series of finite
length. We then simulate the system in Eq. (10) for T = 105

time steps and estimate the causal links x j → xk using the
response formalism Rk, j (i.e., formula (6) after standardizing
each xi to unit variance) using temporal averages. As ex-
pected, in this case our results are affected by spurious terms,
see blue dashed lines in Fig. 1. The null model proposed in
Eq. (7) is then leveraged to assign confidence bounds to the
estimated responses. In Figs. 1(b) and 1(c), we report both
the numerically estimated and analytically derived [Eqs. (8)]
confidence bounds. Responses inside the confidence bounds
in Fig. 1 can be considered spurious. The confidence bounds
correctly identify the nonzero responses R3,2(τ ) for τ = 1
and large lags as spurious results; see Fig. 1(b). Additionally,
the test allows us to disregard the spurious link x3 → x2; see
Fig. 1(c). Responses Rk, j (τ ), i.e., links x j → xk , and confi-
dence bounds for every j and k are reported in Appendix C.

E. Metrics

The framework allows us to identify any causal interac-
tion x j → xk given the definition of causality presented in
Ref. [21]. Given N time series, this means N2 links at each
time-lag τ . Analyzing all interactions in such a network gets
infeasible with larger N . We then introduce a few metrics to
analyze such causal graphs. In Ref. [21], the authors pro-
posed a simple “cumulative degree of causation” of each
link x j → xk as a Kubo formula [89]. Here we consider the
same formula while summing over the statistically significant
responses Rk, j (τ ∗), defined at lags τ ∗. We compute responses
Rk, j (τ ) up to a maximum lag τ∞; theoretically, the summation
would be up to ∞; in practice, we choose a τ∞ much longer
than the characteristic time of the response. The cumulative
degree of causation considered here is then defined as follows:

D j→k =
τ∞∑
τ ∗

Rk, j (τ
∗). (11)

Since responses can be negative and positive, the degree of
causation such as in Eq. (11) can be zero even in the presence
of causal links. It can therefore be useful to consider a mod-
ified version of Eq. (11) by summing over the absolute value
of responses as follows:

D∗
j→k =

τ∞∑
τ ∗

|Rk, j (τ
∗)|. (12)

Equations (11) and (12) quantify the cumulative response
of any variables xk to perturbations at x j , i.e., the strength of
the causal link x j → xk .

Finally, we rank each variable x j by defining its causal
strength as follows:

D j =
N∑

k=1

D∗
j→k; j �= k. (13)

Equation (13) allows us to rank nodes in the climate network
with regard to their ability to causally influence other nodes.
Informally, large values of D j would mean that perturbations
in x j will be able to affect a large portion of the system.

Note that in case of comparisons with other data sets,
D j→k , D∗

j→k can be normalized by 1/τ∞; D j can be normal-
ized by the number of variables as 1/(N − 1). These steps are
not needed in this paper.

Link and strength maps. Finally, for a given pattern j
identified by the dimensionality reduction strategy proposed
in Sec. II A, it is possible to plot the cumulative causal links
D j→k and D∗

j→k [Eqs. (11) and (12) with any other pattern k
as a map. Given a pattern j, we will often refer to such map
as link map D j→k for simplicity. Similarly, the causal strength
D j of each node j as defined in Eq. (13) can be plotted as a
map, referred to as the strength map.

III. DATA

To explore and showcase the proposed causal framework,
we consider a long, stationary integration of the state-of-
the-art coupled climate model GFDL-CM4 [90]. The ocean
component of CM4, named MOM6, has a horizontal grid
spacing of 0.25◦ and 75 vertical layers [91]. The atmospheric–
land component is the AM4 model [92,93] with horizontal
grid spacing of roughly 1◦ and 33 vertical layers. We consider
the SST field on a global scale. The simulation considered,
referred to as piControl, is a 650-year-long, stationary inte-
gration with constant CO2 forcing set to a preindustrial level.
In this paper, we consider the last 300 years of this simulation.
Even with stationary CO2 forcing, the climate system can
display variability at a vast range of timescales coming from
the internal dynamics of the system. Importantly, especially at
higher latitudes, the system can display significant oscillations
up to 10–100-year timescales, i.e., multidecadal oscillations
[94]. Even in a 300-year-long run, such low-frequency oscilla-
tions are sampled only a few times. Therefore, to simplify the
interpretation of the results, in this paper we high-pass filter
every time series with a cutoff frequency of f = 1/(10 years)
and focus on interannual variability only. Importantly, as
shown in Appendix D, the distributions obtained after high-
pass filtering each time series are well approximated by
Gaussians, justifying the methodology proposed in Sec. II B 2.
Furthermore, the analysis will focus on SST anomalies after
removing the seasonal cycle (i.e., subtracting to each month its
climatology). In this paper, we consider a temporal resolution
of one month as a reasonable timescale to observe propagation
of signals among modes of variability on a global scale.
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IV. CAUSALITY IN CLIMATE FIELDS

A. Applicability of fluctuation-response theory in climate studies

The main theoretical ideas justifying the application of
methods in Sec. II B in climate, trace back at least to the
work of Hasselmann [95]. The main intuition of Hasselmann’s
program [3] relies on thinking of processes with enough
timescale separation between short and long timescales in
terms of Brownian motion. Frankignoul and Hasselmann
[96] showed that the statistical properties of SST variabil-
ity can, in fact, be explained (at first order) by linear
stochastic models with white noise representing the fast at-
mospheric variability. Such ideas were further explored and
convincingly demonstrated by Penland [97] and Penland and
Sardeshmukh [98] and motivated recent work on coupling
functions as in Refs. [99,100].

The aforementioned studies justify the application of con-
cepts introduced in Sec. II B to explore causality in climate
fields. Specifically, this paper will focus on the SST fields.
Physically, this means that we will make the (rather strong)
simplification of considering SST variability as a determin-
istic process and treat higher-frequency phenomena (e.g.,
atmospheric variability) as noise, as done in Ref. [95]. Fo-
cusing only on SST is, however, a limitation of this paper and
should be taken into account when analyzing the results. The
extension to a multivariate framework is left for future work.

B. Relation to previous climate studies

We briefly present the main relationship between
fluctuation-dissipation response studies investigated in the cli-
mate literature [47,51,54,55,57] and the causality framework
explored here. Climate studies focused on studying the re-
sponse δ〈x(t )〉 of a dynamical system x perturbed by a small
time-dependent forcing f as follows:

δ〈x(t )〉 =
∫ t

0
dτ R(τ ) f (t − τ ), (14)

where R(t ) is the linear response operator. In this paper, we
consider stationary fields and impulse perturbations and there-
fore the forcing can be written as a delta function δ(t − τ ). In
such case, Eq. (14) reduces to

δ〈x(t )〉 =
∫ t

0
dτ R(τ )δ(t − τ ) = R(t ), (15)

and the operator R(t ) alone allows us to study causal links.
In what follows, responses in Eq. (15) are computed by (a)

using the quasi-Gaussian approximation as shown in Eq. (6)
and (b) by first standardizing every time series to zero mean
and unit variance. The operator R(t ) itself will be nondimen-
sional.

C. Application to global sea surface temperature

1. Dimensionality reduction and causal inference

We now focus on SST variability on a global scale. We
consider the latitudinal range 60 ◦S–60 ◦N at 1◦ resolution
accounting for N = 31 141 time series. The SST field is saved
as monthly averages for 300 years for a total of T = 3612
time steps. As a first step, we aim at reducing the dimen-
sionality of the field from N = 31141 to fewer components.

FIG. 2. Sea surface temperature (SST) patterns in the latitude
range (60◦S–60◦N] and at monthly temporal resolution. (a) An undi-
rected graph is inferred through Eq. (1) but without the proposed
constraint d (i, j) � η. Then the community detection method In-
fomap is applied; see Sec. II A. (b) Same as (a) but the undirected
graph is inferred through Eq. (1). (c) Causal strengths as defined by
Eq. (13). As expected, the ENSO region is the strongest mode in
the inferred causal network. Its strength is reported in the plot title.
The response functions are computed up to τ∞ = 10 years. Only
the statistical significant responses contribute to the strength metrics
shown in Eq. (13). Confidence bounds are quantified through Eqs. (8)
at the ±3σ level.

First, we apply the community detection algorithm without
constraining for the identification of regionally constrained
patterns; in other words, the graph in Eq. (1) is inferred
solely by the correlations between each time series xi(t ) and
x j (t ) [i.e., term Ci, j � k in Eq. (1)]. Applying the community
detection algorithm without constraining on distances results
in patterns that are not regionally constrained as shown in
Fig. 2. Figure 2(a) shows the IO, eastern Pacific, and part of
the Southern Ocean as part of the same pattern. The regional
variability of such distant regions is indeed linked by physical
processes (i.e., teleconnection patterns); for example, at in-
terannual timescales, IO variability is forced by the tropical
Pacific through an atmospheric wave response to El Niño
events [11]. Consequently, the SST variability in such regions
is often grouped under the same cluster by dimensionality
reduction algorithms. The constraint on distances proposed
here, d (i, j) � η in Eq. (1), allows for the identification of
local patterns as shown in Fig. 2(b), so the IO, eastern Pacific,
and part of the Southern Ocean are now all captured as differ-
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FIG. 3. x: ENSO mode. y: South Tropical Atlantic. z: Indian Ocean. (a)–(c) Causal link x → y and y → x. (b), (d) Causal link x → z and
z → x. Response functions have been computed up until τ∞ = 10 years. Confidence bounds are quantified through Eqs. (8) at the ±3σ level.
Responses in between the confidence bounds are here considered spurious.

ent clusters. Therefore, the additional constraint d (i, j) � η

introduced in Eq. (1) is a simple but important step when
coarse graining the system. The proposed dimensionality re-
duction method allows us to reduce the dimensionality from
N = 31 141 to N = 19 time series. The patterns identified are
regionally constrained, therefore allowing us to answer the
following question: How does the climate system respond to
local perturbations? To answer such a question, we leverage
the tools presented in Sec. II B.

We consider the fluctuation-dissipation relation in its
quasi-Gaussian approximation as shown in Eq. (6). In
Appendix D, we show that the time series of each pattern (i.e.,
mode) follows approximately a Gaussian distribution, there-
fore justifying the quasi-Gaussian approximation. We infer
causality up to a τ∞ = 10 years and show the causal strength
D j [Eq. (13) in Fig. 2(c)]. The strongest mode of variability
at interannual timescales is in the tropical Pacific, as expected
[5]. Physically, results in Fig. 2(c) imply that the variability
in the tropical Pacific is able to influence a larger part of the
world compared to other regions with smaller strengths. In
what follows, we are going to refer to this region as the ENSO
region.

2. Investigation of causal interactions

We further analyze the links between three components of
the system. Specifically, we focus on the interaction of ENSO,
the IO, and South Tropical Atlantic (STA). ENSO is known to
drive climate variability outside the tropical Pacific through
teleconnection patterns and has been studied in many con-
tributions. The way in which Indian and Atlantic variability
drive SST in the Pacific has been less appreciated in the past

and is currently debated in the community [101]. Quantifica-
tion of such linkages is important to better understand climate
variability and to improve seasonal forecasting.

During an El Niño phase, the anomalous temperature in
the tropical Pacific excites waves in the atmosphere. Such
waves, known as eastward-propagating Kelvin and westward-
propagating Rossby waves, drive changes in temperature in
the whole tropical band [11]. Such causal links are identified
in Figs. 3(a) and 3(b), with positive responses of both the IO
and STA regions to perturbations in the ENSO regions. As
expected, such a positive lead of ENSO is the strongest in
magnitude and much larger than the other responses in Fig. 3.
Interestingly, we find a (weak) negative link between ENSO
and IO in Fig. 3(b) around τ = 30 months, suggesting the
emergence of positive anomalies in the IO ∼3 years after La
Niña events, and vice versa for El Niño events. The positive
response around 10 years in Fig. 3(b) is considered a false
positive.

Figure 3(c) shows that the anomalies in the STA region,
mainly linked to the dynamics of the Atlantic Niño [102]
(see also discussion in Ref. [16]), lead on average to the
development of anomalies of the opposite sign in the eastern
Pacific as recently argued in the literature [103–105].

The IO pattern in our paper (see pattern z in Fig. 3) mainly
identifies what is known as the Indian Ocean Basin (IOB)
mode [68]. The IOB mode has been traditionally consid-
ered as simply forced by ENSO. Nonetheless, recent studies
have revealed how the IOB can also drive ENSO variability.
Specifically, it has been demonstrated how a strong IOB
warming can, in fact, contribute to central Pacific cooling
further driving a transition to a La Niña state [101,106,107].
Such a negative link is correctly identified by the proposed
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FIG. 4. Link maps D j→k for all k, as computed in Ref. [11] and considering only up to τ∞ = 6 months. Regions j considered are ENSO
region, Indian Ocean, South and North Tropical Atlantic in (a)–(d), respectively. The first EOF roughly corresponds to the ENSO link map in
(a). Only the statistical significant responses contribute to the causal link maps. Confidence bounds are quantified through Eqs. (8) at the ±3σ

level.

framework [see Fig. 3(d)] but does not show up in correlation-
only analyses (see, for example, Fig. 11(b) in Ref. [80]). As
discussed also in Ref. [101], these results suggest an increase
in potential predictability of ENSO variability when consider-
ing the nonlocal interactions with the IO and tropical Atlantic
basins. We note that the results shown here come from a
climate model which, as any model, is far from perfect. The
causal links shown in Fig. 3 agree with the existing literature
in terms of directionality of the links and sign, however, the
leading of the tropical Pacific to the Indian and Atlantic basins
in this model may be overestimated as shown in another
climate model (by correlation analysis-only) in Falasca et al.
[80]. Future work may focus on the proposed framework to
compare model and reanalyses data, similar to what was done
in Falasca et al. [80].

Finally, in Fig. 4 we show the cumulative response of
the whole system to the climate variability in four regions:
ENSO region, IO, South and North Tropical Atlantic (STA
and NTA, respectively). Such link maps, introduced at the end
of Sec. II E, allow us to visualize the cumulative degree of
causation D j→k [Eq. (11)] up to a time lag τ∞, here chosen
as τ∞ = 6 months. Figure 4(a) quantifies the cumulative re-
sponse of any region given perturbations in the ENSO region.
We notice that such a map is qualitatively similar to the first
EOF of global SST (see, for example, Fig. 4 in Ref. [108]).
The framework allows us to examine causal linkages to and
from any region of the system. Figures 4(b)–4(d) show the
cumulative degree of causation respectively from IO, STA,
and NTA regions to any other region in the world. In other
words, such link maps allow us to summarize the cumulative
response of the whole system, given small, local perturbations

to any region x j of choice, offering a useful and simplified
approach to explore climate dynamics from data.

V. CONCLUSIONS AND DISCUSSION

This paper introduces a framework for causal inference
in spatiotemporal climate fields. The method relies on two
independent steps: dimensionality reduction and causal infer-
ence. The causal inference step, based upon ideas of Baldovin
et al. [21], frames the problem of causality in the formalism
of linear response theory [89]. Here, we further developed
these ideas by proposing an analytical null model for the
fluctuation-dissipation relation. The model allows us to distin-
guish between true and spurious response functions estimated
from finite data, with applicability not restricted to climate.
Causality is inferred after reducing the dimensionality of the
system into a few regional patterns, i.e., proxies of modes of
variability. Such modes are defined as regionally constrained
sets of time series with large average pairwise correlation. The
dimensionality reduction and the causal inference steps allow
us to study how local perturbations can propagate through the
system and impact remote locations.

We discuss a few important limitations and caveats that
may hinder interpretations of results in future studies.

a. The case of hidden variables. The fluctuation-
dissipation formalism identifies causal links when we
have access to the whole state vector x. However, often
in real-world cases we can access only a few variables.
A solution is to include the proper variables for the
phenomena we want to explain [21]. In this paper, we
based our analysis on SST building on ideas proposed
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by Hasselmann (1977) [3,96], where the fast atmospheric
variability can be considered as noise, forcing the slower
deterministic ocean dynamics. Therefore, given the SST field,
the size of the spatial patterns considered and their temporal
resolution (i.e., �T = 1 month), we assume the system to
be approximately Markovian. However, the focus on SST
only is a great simplification and should be considered when
interpreting results. The question of how many variables
are enough to consider the system Markovian is an old
problem with warnings discussed at least since Onsager and
Machlup (1953) [109]; see also Sec. IV B in Ref. [21]. Quite
interestingly, Ref. [21] also showed that applying Takens
theorem [110] to reconstruct the state space vector may not
always help. The main reason is that Takens embedding
theorem, proven for deterministic systems [110], fails for
general stochastic processes [21]. More recent versions of
Takens theorem have been proved for stochastic systems
and could be potentially explored in future studies; see, for
example [111,112]

b. Computation of the inverse covariance matrix C(0)−1.
Consider a dynamical system x ∈ RN,T —N is its dimension-
ality and T is the length of each time series xi(t ). If N > T ,
the covariance matrix C(0) ∈ RN,N will not be full rank, and
therefore it will not have an inverse. Generally, the covariance
matrix can be ill conditioned and the computation of the in-
verse C(0)−1 will result in large errors [54,57,113]. Therefore,
the proposed framework should be applied for systems x ∈
RN,T with T 
 N , i.e., the number of samples much larger
than the dimensionality of the system. As a simple test, when
computing responses with the quasi-Gaussian approximation
R(τ ) = C(τ )C(0)−1, we recommend to check R(0) = I (at
least up to a certain numerical accuracy), I being the iden-
tity matrix. In general, dimensionality reduction schemes (as
proposed in this paper) reduce the number of time series
N to values much smaller than T , allowing for trustworthy
computations of C(0)−1 [54].

c. Quasi-Gaussian approximation. The fluctuation-
dissipation relation used in this paper is valid for linear
systems and has been shown to also work well for weakly
nonlinear systems; see discussion in Sec. II B 2. However,
before applying the methodology proposed here, we suggest
careful analysis of the data distribution to avoid misleading
results. An example is the work shown in Ref. [114],
where the authors analyzed the causal link between CO2,
temperature (T ), and insolation in the last 800 kyr using the
Fluctuation-Response formalism [21]. Distributions of both
CO2 and T in the last 800 kyr are strongly non-Gaussian.
The solution was to high-pass filter the data and focus
on high-frequency variability, with the hypothesis of slow
timescales being linked to the external forcing and faster
timescales to the internal variability of the system. The
temporal filtering was shown to be enough to recover
Gaussian distributions [114]. In this paper, we also high-pass
filtered the data with a cutoff frequency of f = 1/(10 years).
The probability distributions obtained after the filtering can
be reasonably approximated by Gaussians (see Appendix D),
justifying the application of the methodology shown in
Sec. II B. A generalization to nonlinear systems is provided
by formula 4, as long as the probability distribution ρ(x) is
known. In specific cases, we note that it is possible to apply

transformations to strongly non-Gaussian fields and still use
the quasi-Gaussian approximation explored here. An example
is the precipitation field, where a logarithmic scaling can help
recover Gaussian-like distributions [115].

The methodology proposed here can be applied to study
the dynamics of any climate field, at least given the as-
sumptions and limitations listed above. It serves as a useful,
rigorous framework to simplify the description of complex,
high-dimensional dynamical systems in terms of a few entities
and their linkages, aiming to better understand the system’s
dynamics. Unlike other methods for causal discovery adopted
in climate, the proposed scheme scales to high-dimensional
data sets; in fact, fluctuation-dissipation formulas have been
shown to scale to thousands of time series in climate ap-
plications (e.g., Ref. [54]). Moreover, the causal inference
method and the proposed null model have a clear physical
interpretation—they are formalized via analytical formulas
and they can be easily implemented without the need for many
heuristics and parameters.

The application explored in Sec. IV C allowed us to detect
well-known links in climate, such as the influence of tropical
Pacific variability onto other basins, as well as other linkages,
such as the lead of SST variability in the IO to the Pacific
basin, which has received less attention in the literature [101].
Additionally, we showed how the strength maps and link maps
as shown in Figs. 2(c) and 4 summarize cumulative causal
interactions across time and space in a comprehensive and
interpretable way.

We focused on the SST field as the statistics of modes of
variability, and their linkages in this field have been inves-
tigated in many previous studies, therefore offering a good
test-case for the methodology. Importantly, climate studies
often focus on a few modes at a time (e.g., Ref. [101] and
references therein). Here we showed that the methodology
allows us to study causal linkages among regions in a compre-
hensive framework, where all modes of variability and their
interactions are studied simultaneously.

Examples of future work range from studying the evolution
of climate modes and their linkages in paleoclimate simu-
lations, with time-dependent orbital and trace-gases forcings
(e.g., Ref. [15]), to replacing expensive Green’s function ap-
proaches to diagnose relationships among variables and their
sensitivity to external forcings [116]. Finally, the proposed
framework also offers a way to evaluate climate models in
terms of their emergent causal structure; for example, by
assessing the impact of subgrid parametrizations onto the
large-scale dynamics.

Codes and materials are available at Ref. [117].
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APPENDIX A: DIMENSIONALITY REDUCTION
IN CLIMATE. LIMITATIONS OF CURRENT METHODS

AND PROPOSAL

1. Two goals in dimensionality reduction studies

We note that the use of dimensionality reduction in appli-
cations of linear response theory can be leveraged with at least
two different goals in mind. In the case of very high dimen-
sional systems as a general circulation model, applications of
the fluctuation-dissipation response formalism are practically
impossible. The usual solution in the climate literature has
been to construct response operators in a low-dimensional
space spanned by many EOFs (or principal components)
[118]; usually, order 103 EOFs to explain at least 90% of the
total variance. Results computed in the low-dimensional space
are then transformed back to the original space [54,55,57].
This computational strategy has been shown to be successful
in many applications (see Refs. [54,55]). A second possible
goal of dimensionality reduction is to simplify the problem at
hand in terms of very few components and apply the linear
response formalism directly on those entities. In this case, we
are interested in directly studying the coarse-grained version
of the system. This adds to interpretability and to a first-order
understanding of the system’s dynamics. This second case is
the one considered in this paper.

2. Few limitations of common methods and proposal

Traditionally, dimensionality reduction in climate studies
is done through principal component analysis (PCA) [118].
PCA, or EOF analysis [119] is a useful, first-order way to
reduce the dimensionality of the system based on the sin-
gular value decomposition (see, e.g., Ref. [120]) of the data
matrix. However, the resulting patterns suffer from a few
drawbacks: First, EOFs are orthogonal by definition. Such
constraint hampers their interpretation and makes it difficult
to distinguish between physical or purely statistical modes
[78,121]. A possible solution has been to rotate the EOFs,
such as in Ref. [122]. Rotated-EOFs have been found to be
sensitive to the rotation criterion, normalizations, and number
of loadings (see Refs. [78,119]).

Another drawback comes from linearity. Manifold learn-
ing algorithms aim at addressing this issue by identifying
low-dimensional representations of a high-dimensional sys-
tem accounting for nonlinearities (curved manifolds) [123].
Examples range from the Isomap algorithm [124] to the more
recent t-SNE [125], UMAP [126], to the PHATE algorithm
[127], and ROCK-PCA [128]. Finally, deep learning tools
such as autoencoders can be explored for dimensionality re-
duction [129] and have found applications in climate science
[130].

Depending on the goal in mind (see Appendix A 1), a
possible limitation shared by all these tools when applied to
global climate data is that they decompose a field in terms
of global (in longitude-latitude maps) modes. However, phys-
ically, climate dynamics can often be thought of as a set
of remote connections driven by local phenomena (perturba-
tions). Given so, common practice in climate science has been
to define climate indices as time series averaged in specified
regions (i.e., boxes). Known examples are the Niño3.4, the
IOD index, etc. However, a framework for automated identi-
fication of proxies of such indices is needed as the locations
of such regions, or boxes, may be not relevant for the study
of future (or past) climates. An example can be found in
Refs. [15,131,132], where the authors showed the emergence
of an El Niño-like variability in the IO during the Last Glacial
Maximum, the last 6000 years, and in future projections. In
this sense, known indices identified in the current climate are
potentially less meaningful in past and future climates.

A method proposed to automatically identify proxies for
climate indices is δ-MAPS [79]. Given a climate fields, δ-
MAPS identifies spatially contiguous clusters. The method
has proven to be useful in climate studies, with applications
ranging from model evaluation [80,133], shifts in climate
modes in the last 6000 years [15,18], sea level budget at the
regional scale [134], marine ecology [135], and ecosystem dy-
namics [136]. In the case of relatively low-dimensional fields
(e.g., global fields at 2◦ by 2◦ spatial resolution), δ-MAPS
shows excellent performance. However, a known drawback is
that it does not scale well with high-dimensional data sets (i.e.,
large number of grid cells). Additionally, exploratory tests are
needed to explore the sensitivity to parameter choices in the
domain identification step.

When working with very high-dimensional fields, it is
often useful to consider fast and scalable algorithms. In the
last two decades, climate data analysis has focused on fast
methodologies stemming from the complex network litera-
ture [72]. An example is the work of Ref. [78], where the
authors focused on the community detection method Infomap
[74,75,137] to identify communities in the HadISST [138]
SST data set. Such methods allow us to find patterns that are
not necessarily orthogonal. Furthermore, they are fast, mem-
ory efficient, and scale well with the dimensionality of the data
set. The main issue is that, similar to manifold learning algo-
rithms, community detection algorithms are not constrained
to be spatially contiguous [79].

In this paper, we showed that adding a simple constraint
on spatial distances is enough to enforce the identification
of local patterns (see Sec. II A 1). This allows us to leverage
computationally fast and robust methods such as community
detection for dimensionality reduction strategies in climate.
Differently from δ-MAPS [79], the identified patterns cannot
overlap with each other. We find, however, that conclusions
found in previous studies using δ-MAPS (see Ref. [80],
for example) may not be strongly dependent on clustering
overlapping, at least when focusing on the SST field. The
framework proposed here in Sec. II A is then leveraged as a
much simpler (and therefore more robust), practical frame-
work to the problem of identification of regionally constrained
modes.
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APPENDIX B: A NULL MODEL FOR THE
FLUCTUATION-DISSIPATION RELATION. ANALYTICAL

DERIVATION OF THE CONFIDENCE BOUNDS

This paper proposes a null model for the Fluctuation-
Dissipation relation [see Eq. (7)]. In the null model, every
variable x j and xk is independent, and therefore the expected
value of each response E[Rk, j (τ )] = 0 for j �= k by con-
struction. Nonetheless, estimating such responses by R(τ ) =
C(τ )C(0)−1 (see Sec. II B 2) using time series of finite length
T simulated by the null model will give rise to spurious results
diverging from the expected value E[Rk, j (τ )]. In Eqs. (8) of
the main text, we showed the analytical probability distribu-
tion of Rk, j (τ ). The main assumption in this derivation is that
responses Rk, j (τ ) follow a normal distribution. Therefore, the
expected value E[Rk, j (τ )] and variance V ar[Rk, j (τ )] uniquely
define the probability density ρ(Rk, j (τ )). Here we present the
derivation of such formula.

1. Notation adopted in this section

To simplify and ease the derivation, it is useful to adopt
a simpler and more appropriate statistical formalism. The
symbols adopted in this section relate to the ones used in the
previous ones as follows: E[X ] = 〈X 〉 represents the expected
value of a random variable X . This is equal to the ensemble
average considered in the previous sections. Consequently,
V ar[X ] = E[(X − E[X ])2] represents the variance of a ran-
dom variable X . Finally, Cov[X,Y ] = E[(X − E[X ])(Y −
E[Y ])] represents the covariance of two random variables
X and Y . We are going to refer to the null process as x =
[x1(t ), x2(t ), ..., xN (t )] [rather than x̃ as in (7)]. Finally, each
time series x j (t ) is here considered to be scaled to zero mean
and unit variance. This step greatly simplifies the derivation.
At the end of this section, we provide the general formula for
processes that are not unit variance.

2. Analytical derivation

Consider a long trajectory x ∈ RN,T defined by the forward
iteration of the null model in Eq. (7). The true mean and co-
variances at lag τ of each individual time series in x are given
by E[x j (t )] = 0 and E[xk (t + τ )x j (t )] = φτ

k δk, j , respectively,
where φk is the lag-1 autocorrelation of time series xk (t ) and
the Kronecker delta δk, j differs from zero only in the case
j = k.

We note that the numerical estimation of both C(τ ) and
C(0)−1 will lead to spurious terms in R(τ ). We then rewrite the
covariance matrix C(τ ) estimated through time averages as a
sum of the expected value E[C(τ )] plus some small Gaussian
residual Ĉ(τ ) as

C(τ ) = E[C(τ )] + Ĉ(τ ) = Dτ
φ + Ĉ(τ ), (B1)

where Dτ
φ is a diagonal matrix with component (i, j) defined

as (Dτ
φ )i, j = φτ

i δi, j . The decomposition [Eq. (B1)] applies to

the matrix C(0) as well with D0
φ = I, where I is the identity

matrix. The main difficulty is that we are not interested in C(0)
but in its inverse C(0)−1. By assuming relatively small residu-
als (true for time series with T 
 1), we can approximate an
inverse of the estimated covariance matrix C(0)−1 using the
Neumann series [139] as

C(0)−1 = (I + Ĉ(0))−1 ≈ I − Ĉ(0), (B2)

where we only retained the first term in the Neumann series.
An estimator of the null response R(τ ) = C(τ )C(0)−1 can
then be written as

R(τ ) = C(τ )C(0)−1 ≈ C(τ ) + Dτ
φ (I − C(0)), (B3)

where we neglected the term Ĉ(τ )Ĉ(0), a reasonable step in
the presence of small residuals, true for time series with length
T 
 1. To derive the statistical properties of the estimator in
Eq. (B3), it is useful to rewrite such formula in terms of each
component j and k:

Rk, j (τ ) ≈ Ck, j (τ ) + δk, jφ
τ
k − φτ

k Ck, j (0). (B4)

The final step is to derive the expected value E[Rk, j (τ )] and
V ar[Rk, j (τ )] of Eq. (B4), thus uniquely defining the probabil-
ity distribution of Rk, j (τ ), under the assumption of Gaussian
statistics.

a. Expected value and variance of the response estimator

The expectation of the response estimator proposed in (B4)
can be derived as

E[Rk, j (τ )] = E[Ck, j (τ )] + δk, jφ
τ
k − φτ

k E[Ck, j (0)]

= δk, jφ
τ
k + δk, jφ

τ
k − φτ

k δk, j

= δk, jφ
τ
k . (B5)

The variance of the response estimator proposed in (B4) can
be derived as

V ar[Rk, j (τ )] = V ar[Ck, j (τ ) − φτ
k Ck, j (0)]

= V ar[Ck, j (τ )] + φ2τ
k V ar[Ck, j (0)]

− 2φτ
k Cov[Ck, j (τ ),Ck, j (0)]. (B6)

We remind the reader the following useful equality: the co-
variance Cov[X,Y ] of two random variables X and Y can
be rewritten as Cov[X,Y ] = E[XY ] − E[X ]E[Y ]. We now
compute the variance of the response estimator in Eq. (B6).
To do so, we first need to provide an expression to terms
V ar[Ck, j (τ )] and Cov[Ck, j (τ ),Ck, j (0)]. Such terms can be
computed as follows:

V ar[Ck, j (τ )] = E[Ck, j (τ )Ck, j (τ )] − δk, jφ
2τ
k

= 1

T 2

T∑
t ′,t ′′=1

E[xk (t ′ + τ )x j (t
′)xk (t ′′ + τ )x j (t

′′)] − δk, jφ
2τ
k
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= 1

T 2

T∑
t ′,t ′′=1

(E[xk (t ′ + τ )xk (t ′′ + τ )]E[x j (t
′)x j (t

′′)]

+E[xk (t ′ + τ )x j (t
′)]E[xk (t ′′ + τ )x j (t

′′)] + E[xk (t ′ + τ )x j (t
′′)]E[x j (t

′)xk (t ′′ + τ )]) − δk, jφ
2τ
k

= 1

T 2

T∑
t ′,t ′′=1

(
φ

|t ′−t ′′ |
k φ

|t ′−t ′′ |
j + δk, jφ

2τ
k + δk, jφ

|t ′+τ−t ′′|
k φ

|t ′−τ−t ′′|
j

) − δk, jφ
2τ
k

= 1

T 2

T∑
t ′,t ′′=1

(
φ

|t ′−t ′′ |
k φ

|t ′−t ′′ |
j + δk, jφ

|t ′+τ−t ′′ |
k φ

|t ′−τ−t ′′ |
j

)
, (B7)

Cov[Ck, j (τ ),Ck, j (0)] = E[Ck, j (τ )Ck, j (0)] − δk, jφ
τ
k

= 1

T 2

T∑
t ′,t ′′=1

E[xk (t ′ + τ )x j (t
′)xk (t ′′)x j (t

′′)] − δk, jφ
τ
k

= 1

T 2

T∑
t ′,t ′′=1

(E[xk (t ′ + τ )xk (t ′′)]E[x j (t
′)x j (t

′′)]

+E[xk (t ′ + τ )x j (t
′)]E[xk (t ′′)x j (t

′′)] + E[xk (t ′ + τ )x j (t
′′)]E[x j (t

′)xk (t ′′)]) − δk, jφ
τ
k

= 1

T 2

T∑
t ′,t ′′=1

(
φ

|t ′+τ−t ′′ |
k φ

|t ′−t ′′ |
j + δk, jφ

τ
k + δk, jφ

|t ′+τ−t ′′ |
k φ

|t ′−t ′′ |
j

) − δk, jφ
τ
k

= 1

T 2

T∑
t ′,t ′′=1

(
φ

|t ′+τ−t ′′ |
k φ

|t ′−t ′′ |
j + δk, jφ

|t ′+τ−t ′′ |
k φ

|t ′−t ′′ |
j

)
. (B8)

The computation of Eqs. (B7) and (B8) requires us to compute the following three terms:
∑T

t ′,t ′′=1 φ
|t ′−t ′′|
k φ

|t ′−t ′′|
j ,∑T

t ′,t ′′=1 φ
|t ′+τ−t ′′ |
k φ

|t ′−τ−t ′′ |
j , and

∑T
t ′,t ′′=1 φ

|t ′+τ−t ′′|
k φ

|t ′−t ′′|
j . To solve such terms, we point out that a summation of type∑T

t ′,t ′′=1(φkφ j )|t
′−t ′′ | will result in T points with value (φkφ j )0, 2(T − 1) points with value (φkφ j )1 up to 2(T − t ) points with

value (φkφ j )t . The summation can be then rewritten as
∑T

t ′,t ′′=1(φkφ j )|t
′−t ′′| = T + ∑T −1

t=1 (φkφ j )t 2(T − t ). Similar reasoning can
be applied for all the terms above.

b. Computation of each summation

Sum(I) :
T∑

t ′,t ′′=1

φ
|t ′−t ′′ |
k φ

|t ′−t ′′ |
j = T +

T −1∑
t=1

(φkφ j )
t 2(T − t ) = T − T (φkφ j )2 + 2(φkφ j )(φT

k φT
j − 1)

(−1 + φkφ j )2
. (B9)

Sum(II) :
T∑

t ′,t ′′=1

φ
|t ′+τ−t ′′|
k φ

|t ′−τ−t ′′ |
j =

T −1∑
t=1−T

φ
|t+τ |
k φ

|t−τ |
j (T − | t |) =

T −1∑
t=1

φ
(t+τ )
k φ

|t−τ |
j (T − t )

︸ ︷︷ ︸
Sum(a)

+
0∑

t=1−T

φ
|t+τ |
k φ

(−t+τ )
j (T + t )

︸ ︷︷ ︸
Sum(b)

.

(B10)

Both summation Sum(a) and Sum(b) can be further split in sums of simple geometric series:

Sum(a) :
T −1∑
t=1

φ
(t+τ )
k φ

|t−τ |
j (T − t ) = φτ

k φτ
j T

τ∑
t=1

(
φkφ

−1
j

)t − φτ
k φτ

j

τ∑
t=1

(
φkφ

−1
j

)t · t

+ T φτ
k φ−τ

j

T −1∑
t=τ+1

(φkφ j )
t − φτ

k φ−τ
j

T −1∑
t=τ+1

(φkφ j )
t · t . (B11)
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Sum(b) :
0∑

t=1−T

φ
|t+τ |
k φ

(−t+τ )
j (T + t )

= T φ−τ
k φτ

j

−τ∑
t=1−T

(
φ−1

k φ−1
j

)t + φ−τ
k φτ

j

−τ∑
t=1−T

(
φ−1

k φ−1
j

)t · t + T φτ
k φτ

j

0∑
t=−τ+1

(
φkφ

−1
j

)t + φτ
k φτ

j

0∑
t=−τ+1

(
φkφ

−1
j

)t · t .

(B12)

Sum(a) and Sum(b) are composed by geometric series and can be easily solved:

Sum(III) :
T∑

t ′,t ′′=1

φ
|t ′+τ−t ′′ |
k φ

|t ′−t ′′ |
j =

T −1∑
t=1−T

φ
|t+τ |
k φ

|t |
j (T − | t |) =

T −1∑
t=1

φt+τ
k φt

j (T − t )

︸ ︷︷ ︸
Sum(c)

+
0∑

t=1−T

φ
|t+τ |
k φ−t

j (T + t )

︸ ︷︷ ︸
Sum(d)

. (B13)

Sum(c) and Sum(d) are composed by geometric series and can be easily solved:

Sum(c) :
T −1∑
t=1

φt+τ
k φt

j (T − t ) = T φτ
k

T −1∑
t=1

(φkφ j )
t − φk

T −1∑
t=1

(φkφ j )
t · t . (B14)

Sum(d) :
0∑

t=1−T

φ
|t+τ |
k φ−t

j (T + t ) = T φ−τ
k

−τ∑
t=1−T

(
φ−1

k φ−1
j

)t + φ−τ
k

−τ∑
t=1−T

(
φ−1

k φ−1
j

)t · t

+ T φτ
k

0∑
t=−τ+1

(
φkφ

−1
j

)t + φτ
k

0∑
t=−τ+1

(
φkφ

−1
j

)t · t . (B15)

Sum(c) and Sum(d) are composed by geometric series and can be easily solved.

c. Final result

We aim at computing the variance of the response estimator
V ar[Rk, j (τ )] as shown in Eq. (B6). We rewrite the expression
in function of the three summations Sum(I), Sum(II), and
Sum(III) solved in the previous section:

V ar[Rk, j (τ )] = 1

T 2

(
Sum(I) + φ2τ

k

· Sum(I)(τ = 0) − 2φτ
k · Sum(III))

+ δk, j

T 2

(
Sum(II) + φ2τ

k Sum(II)(τ = 0)

− 2φτ
k · Sum(III)), (B16)

where Sum(I)(τ = 0) and Sum(II)(τ = 0) evaluate Sum(I)
and Sum(II) in τ = 0.

We focus on the asymptotic case T 
 1 and remind the
reader that |φkφ j | < 1. The leading order of the solution is

as follows:

V ar[Rk, j (τ )] = φ2τ
k − 1

T
+ 2

T

(1 − φτ
k φτ

j

1 − φkφ j

)

− 2φτ
k

T

(
φk

φτ
j − φτ

k

φ j − φk

)
. (B17)

Finally, we note that in the case of φk = φ j in Eq. (B17) we

substitute the term φk
φτ

j −φτ
k

φ j−φk
with the limit

lim
φ j→φk

φk

φτ
j − φτ

k

φ j − φk
= φτ

k τ. (B18)

Equation (B17) assumes that each time series has been previ-
ously normalized to zero mean and unit variance. In case of
non-standardized time series, Eq. (B17) becomes (σ 2

k /σ 2
j )×

Eq. (8); σ 2
i being the variance of time series xi(t ) (see also

Eq. (15) in Ref. [21]).
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FIG. 5. Comparing the confidence bounds estimated numerically as in Sec. II C 1 and the analytical solution as shown in Eqs. (8) for the
simple linear Markov model shown in Eq. (10). Each panel shows the response Rk, j representative of the causal link x j → xk . All time series
have been rescaled to zero mean and unit variance before computing responses. The response ground truths are shown as solid orange lines.
Dashed blue lines are responses estimated through temporal averages: for this step, we use a long trajectory of length T = 105 simulated by
the system in Eq. (10). Red dots indicate the confidence bounds computed numerically using B = 104 ensemble members of the null model as
shown in Sec. II C 1; see Sec. II C 1. In each panel, the dot-dashed black line is the analytical solution as in Eqs. (8). Confidence bounds are set
to ±3σ . All estimated responses (i.e., blue curves) in between the confidence bounds are here considered as spurious.

APPENDIX C: CONFIDENCE BOUNDS
NUMERICAL VS ANALYTICAL

We consider the system in Eq. (10) and show all the esti-
mated responses Rk, j , their ground truths, and the confidence
bounds in Fig. 5. Importantly, we compare the analytical
confidence bounds presented in Eqs. (8) with their numerical
estimation as shown in Sec. II C 1. All bounds are set to ±3σ .

APPENDIX D: HISTOGRAMS OF EACH MODE
xi(t ) IN THE GLOBAL SST FIELD

In Fig. 6, we show the histogram of each signal X (i, t )
corresponding to pattern i in Fig. 2(b). Each X (i, t ) has been
computed as in Eq. (2) and it has been then centered to zero
mean and standardized to unit variance. A Gaussian distribu-
tion with same mean and variance of each X (i, t ) is shown
in red. The plot shows that the quasi-Gaussian approximation
shown in Sec. II B 2 is indeed relevant for the system studied.
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FIG. 6. Probability distributions of each sea surface temperature signal xi(t ) for each pattern i shown in Fig. 2(b). Each signal xi(t ) is first
centered to zero mean and standardized to unit variance; therefore, the x axis represents degC per standard deviation. Each pattern (i.e., mode)
is here referred to as mode i. A Gaussian fit is shown in red on top of each histogram.
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