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Climate modelling and analysis are facing new demands to enhance 
projections and climate information. Here we argue that now is the time to 
push the frontiers of machine learning beyond state-of-the-art approaches, 
not only by developing machine-learning-based Earth system models with 
greater fidelity, but also by providing new capabilities through emulators 
for extreme event projections with large ensembles, enhanced detection 
and attribution methods for extreme events, and advanced climate 
model analysis and benchmarking. Utilizing this potential requires key 
machine learning challenges to be addressed, in particular generalization, 
uncertainty quantification, explainable artificial intelligence and causality. 
This interdisciplinary effort requires bringing together machine learning 
and climate scientists, while also leveraging the private sector, to accelerate 
progress towards actionable climate science.

The World Climate Research Programme’s Coupled Model Intercom-
parison Project (CMIP1) brings together multi-model climate projec-
tions to understand past, present and future climate changes. These 
simulations are performed with global coupled Earth system models 
(ESMs) that simulate the physical climate as well as biogeochemical 
cycles under a wide range of forcings, yet large uncertainties remain, 
for example in precipitation2. This limits the models’ ability to accu-
rately project global and regional climate changes, as well as climate 
variability, extremes and their impacts on ecosystems on decadal and 
multi-decadal timescales. In addition, the ever-increasing volume  
of data makes the detection and understanding of patterns of variability 
and extreme events difficult. New machine learning (ML) methods 
promise great potential to address these challenges.

ML for Earth system science is rapidly expanding, with ML methods 
already being applied to a wide range of weather prediction applica-
tions3,4, a broad swath of additional climate change questions5, and in 

diverse solution domains, including mitigation, adaptation, tools for 
individual and collective action, education, and finance6.

For climate modelling and analysis, we argue that breakthroughs 
with ML can be achieved in multiple ways, in particular by (1) the devel-
opment of hybrid ESMs where physical modelling is integrated with 
ML to maintain physical consistency and harvest ML versatility7–9; 
(2) ML-based emulation, where ML can provide fast and robust cli-
mate information including extreme event projections, allowing us 
to assess the envelope of recent weather possibilities; (3) ML-based 
detection and attribution of extreme events, where ML can advance 
understanding of the physical processes that underlie extreme occur-
rences; and (4) ML-enhanced climate model analysis and understanding 
of the Earth system, where ML can deliver powerful tools for analysing 
high-dimensional datasets, which are especially prevalent in Earth sci-
ences, including the development of benchmarks10,11. Although ML has 
already made substantial contributions to all of these grand challenges, 
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proposed to be able to address many of the long-standing systematic 
biases and challenges faced by classical climate models7,8,17. Hybrid 
ESMs can be an integral part of initiatives like CMIP and can enhance 
classical models at all scales as proposed previously9.

ML-based hybrid modelling and subgrid-scale parameterizations 
have been developed for different Earth system components, with first 
promising results for the atmosphere, ocean and land already being 
achieved. Here, we provide some examples.

For the atmosphere, the largest sources of uncertainties in  
climate projections stem from the representation of clouds, aerosols 
and their interaction, with significant structural biases remaining for 
example for the simulation of precipitation18. Advances in computing 
now allow for global storm-resolving model simulations of months to 
a few years19, but not century-long projections, while low-level clouds 
and aerosols will continue to depend on parameterizations for their 
representation9. In this context, ML-based parameterizations have been 
developed to represent subgrid-scale physics as simulated by higher 
resolution model simulations20,21, including stochastic parametriza-
tions22. Hybrid modelling has also shown remarkable success in correct-
ing structural errors stemming from unresolved atmospheric processes 
in the bias-correction setting, producing stable, accurate multi-year 
simulations across a range of climates23. Several challenges of these 
approaches were identified early on, such as poor out-of-climate gen-
eralization24, instabilities caused by interactions with the resolved 
dynamics of the parent model, disparities between offline skill (ML 
parameterization performance on the test set) and online skill (that is, 
hybrid model performance)25, and the violation of conservation laws24. 
Solutions to several of these problems have since been proposed, 
including architecture-based constraints to ensure conservation laws26, 
incorporating symmetry to improve generalization27, coupled online 

substantial advances in ML methods are required to fully exploit the 
potential of ML for climate modelling and analysis. These particu-
larly include physical consistency of hybrid models that demonstrate  
the ability to realistically extrapolate to unseen climate regimes12, 
uncertainty quantification13, explainable artificial intelligence 
(XAI) to move away from ML as a black box14, and causal inference  
methods that allow even more information to be extracted from  
Earth system data on how processes interact causally15,16.

In this Perspective, we focus on these key grand challenges in  
climate modelling and analysis that can be substantially improved  
with ML and discuss the fundamental advances in ML techniques  
that are required to advance across these grand challenges as  
schematically displayed in Fig. 1 and summarized in Table 1. We also 
provide a perspective on remaining gaps, opportunities and promis-
ing future directions. We argue that to achieve the full potential of  
ML for improved climate modelling and analysis, collaboration 
between academia and the private sector will be essential (Box 1).

ML for climate modelling and analysis
ML has great potential to substantially enhance our understanding of 
the Earth system and to reduce uncertainties in climate projections. 
In this section, we discuss key approaches in which climate modelling 
and analysis could be substantially enhanced with ML, in particular 
hybrid Earth system modelling, emulation of climate model simula-
tions, extreme event detection and attribution, and climate model 
analysis and benchmarking (Table 1).

Hybrid Earth system modelling
Approaches in which ML methods are combined and integrated into 
classical climate models, so called hybrid models (Fig. 2), have been 
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Fig. 1 | How ML can advance climate modelling and analysis. Each of these key sectors are discussed in this Perspective. While progress has been made, the full 
potential of ML for climate modelling and analysis remains to be reached.
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Table 1 | The challenges and potential ML-based solutions for hybrid Earth system modelling, emulation of climate model 
simulations, extreme event detection and attribution, climate model analysis and benchmarking, and cross-cutting ML 
method developments

Challenges Potential of ML-based solutions

Hybrid Earth system modelling

Long-standing systematic errors and large 
uncertainties in climate projections in state-of-the-art 
climate and Earth system models

• �Development of hybrid models, where physical modelling is integrated with ML to maintain physical 
consistency and harvest ML versatility7–9

Inhibitive computational expense of global 
storm-resolving model simulations, and dependence 
of coarser models on empirical parametrizations

• �ML-based hybrid modelling and subgrid-scale parameterizations learning from higher-resolution 
model simulations and Earth observations20,21

Poor out-of-climate generalization of hybrid models • Incorporation of symmetries to improve generalization27

• Data-driven equation discovery29,30

• Transfer learning and climate-invariant inputs to improve generalization12

• Symbolic expressions generated by the equation discovery model or sparse regression32,36

• Architecture-based physical constraints to ensure conservation laws26

Instabilities caused by interactions between ML 
parameterizations and resolved dynamics

• Causally informed deep learning to respect the underlying physical processes16

Disparities between offline and online skill • Coupled online learning to prevent instabilities and biases28

Violation of conservation laws • Architecture-based physical constraints to ensure conservation laws26

• Data-driven equation discovery with physical constraints29

• Custom losses that penalize physically inconsistent predictions79

Incorporation of the effects of mesoscale onto the 
large scale

• Momentum-conserving CNNs32,34,35

Data availability, sparsity and observational 
uncertainties/biases

• Meta-learning to learn new tasks from sparse data efficiently46

Constraints on processes across a range of time scales • Combination of ML with physical constraints to simulate and project processes8,40

Accurate simulation of extreme events • �More comprehensive analyses and metrics regarding the performance beyond time-averaged errors 
(for example, on extremes)

• Interpretable and explainable ML for understanding
• Custom losses to weigh extremes more without compromising mean predictions77

• Custom frameworks that normalize data using extreme value theory78

Emulation of climate model simulations

Uncertainty quantification • �Solutions to the trade-off between computational efficiency and prediction accuracy with multi-fidelity 
modelling, such as Gaussian or neural processes47,48 to combine simulation outputs and accelerate 
learning

• �Use of ML emulators to generate a massive ensemble of weather forecast and climate projection 
members to better capture internal weather and climate variability

Separation of different sources of uncertainty • Identification of physical conditions that affect prediction uncertainty based on a deep CNN forecast49

Sampling of very rare extreme or regional-scale events • Larger ensembles generated with emulators10,51–53

Improvement in projections and predictions • Transfer learning54,55

Extreme event detection and attribution

Objective and rapid searches through petabytes of 
climate model projections for detecting extremes

• Deep learning approaches for rapid detection58:
  ∘ Human-labelled datasets combined with deep learning61 and CNNs62

  ∘ Convolutional long–short term memory methods64

• Quantifiable and objective measures with threshold-free methods:
  ∘ Bayesian detection methods calibrated with Markov chain Monte Carlo60

  ∘ Topological data analysis combined with support vector machines63

Harmonization of highly diverse methods of extreme 
event detection

• ML methods to study a wide variety of severe weather59

Generalization from present-day to future climatic 
conditions

• �Derivation of insights from ML into the physical drivers of extreme phenomena and how these drivers 
will change in future projections65

• �Extensive hyperparameter grid searches to find appropriate model hyperparameters can enable 
certain applications of deep learning methods to generalize from present-day to future climatic 
conditions66

Difficulty of sampling LLHI extremes from observations 
due to insufficient duration, or under-resolved or highly 
parameterized physical processes

• �Emulation of classical downscaling methods with ML to enhance the horizontal spatial resolution of 
climate model simulations67

• ML methods to considerably accelerate projections of extremes in warmer climates68,69

Climate model analysis and benchmarking

Exhibition of surprising failure modes by ML models 
that perform well in offline test set evaluations when 
coupled within a climate model

• �Evaluation of ML-based online climate model simulations against Earth observations and other climate 
models, using tools like for example ESMValTool70

• �Development of metrics, datasets and tools to benchmark ML performance in more rigorous and 
consistent ways10,11

• �Data-centric AI to improve ML results by identifying ways to increase the quality and diversity of training 
data

http://www.nature.com/natureclimatechange
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learning to prevent instabilities and biases28, input restrictions to 
improve stability23, causally informed deep learning to respect the 
underlying physical processes16, data-driven equation discovery29,30, 
and the use of transfer learning and climate-invariant inputs to improve 
generalization12. Results from these efforts are extremely promising. 
For example, ref. 16 showed that a coarse-scale hybrid model aqua-
planet simulation could accurately represent the Intertropical Conver-
gence Zone and latitudinal patterns of precipitation and net radiation 
as represented by the high-resolution simulation (Fig. 3).

For the ocean, large uncertainties remain due to mesoscale eddies 
and other turbulent processes that are not fully resolved in most cli-
mate models31. Mesoscale eddies are turbulent features that play a key 
role in tracer transport, ocean heat uptake and thermosteric sea level 
changes2. To correctly capture the effect of ocean turbulence forcing 
on the large-scale and reduce associated uncertainties in climate pro-
jections, hybrid modelling approaches have been introduced32,33. A 
similar approach to that in the atmosphere is taken, where data-driven 
ML parameterizations are learned from high-resolution climate model 
simulations, to augment existing coarse-resolution simulations. In 
this context, momentum-conserving convolutional neural networks 
(CNNs) and equation discovery have been studied to capture the 
effects of ocean mesoscale onto the large-scale. CNNs are known to 
capture complex structures32,34,35 while equation discovery facilitates 

interpretable models. The generalization ability is best for symbolic 
expressions generated by the equation discovery model or sparse 
regression32,36. These models perform better than state-of-the-art 
physics-based negative viscosity energetically constrained methods. 
These results encourage further development of hybrid ML ocean mod-
els in the long term. In the short term, these approaches will allow us to 
distil simple algebraic forms from the data through equation discovery, 
rendering more manageable models, and allowing us to capture the 
true physics, improve our understanding and formalize previously 
purely empirical equations32,36.

For land, uncertainties in the terrestrial carbon cycle, such as 
projections in the land carbon sink, remain a major challenge37. These 
uncertainties can in part be tackled by automated and systematic 
reduction of uncertainties in land model structure and parameters38. 
Compared with the atmosphere or ocean, there is no equivalent to 
high-resolution, high-fidelity simulations for the land component, 
such that the main ways to improve models are through process rep-
resentation and the use of observations. Land processes are further 
complicated by the fact that extremes are critical to land carbon and 
water cycles, dominating interannual variability and also the long-term 
carbon sink39. Hybrid modelling for the land provides a unique opportu-
nity to combine ML with physical constraints or laws to better simulate 
and project terrestrial processes8,40. The power of hybrid modelling lies 

Challenges Potential of ML-based solutions

Process-oriented model evaluation • �Causal model evaluation comparing causal dependencies as learned from observational data to the 
ones from climate models72,73

• �XAI to identify prototypical behaviour linked to physics-based processes from images for Earth system 
science applications74

Tighter constraints on uncertainties in multi-model 
projections

• Process analysis and causal discovery73

• �Nonlinear, multi-variable ML-based emergent constraints to reduce uncertainties for global and 
regional projections75

Availability and quality of Earth observations • Use of ML methods to develop targeted observational products for model evaluation

Analysis and evaluation of data-intense high-resolution 
simulations

• ML-based approaches based on nonlinear dimensionality reduction with variational autoencoders76

• �Climate networks reconstructed from statistical correlations of time series at grid points have been 
used together with measures from information theory to detect hidden structures in climate data71

Cross-cutting challenges in ML method developments

Physical consistency • Custom losses that penalize physically inconsistent predictions79

• Architectures that strictly enforce physical constraints26,29

Enhancement of robustness and generalization of ML 
predictions for out-of-distribution samples12

• �Performance on outliers can be improved using custom losses that weigh extremes more without 
compromising mean predictions77

• Custom frameworks that normalize data using extreme value theory78

• Robustness tests addressing non-stationarity12 and causal interventions15

Uncertainty quantification • �Combination of aleatoric and epistemic uncertainty to address data sparsity and out-of-distribution 
generalization issues80

• Quantification of uncertainties through
  ∘ �Perturbations in the initialization via deep ensemble82, neural network weights via Monte Carlo 

dropout81, and datasets via bootstrapping83

  ∘ Bayesian methods for example for variational autoencoders84

Obtaining the right answers for the right reasons: XAI • Identification and quantification of sources of predictability within the climate system87,90

• Analysis of the physical impacts of climate change66

• Measures to ensure physical consistency with the true dynamics of the climate system88

Gaining insights from XAI into the decision-making 
process of the ML algorithm requires simplifications of 
the model itself

• �Development of interpretable models that are built to incorporate the decision-making process 
explicitly into their structure to be understood without post-hoc methods92

Challenges for causal inference;
assumptions for methods may lead to incorrect 
conclusions15,30 for example:
• �Assuming a causally stationary process when in 

practice many real-world processes are non-stationary
• �Assumption of an acyclic causal model, which may 

not be true in the presence of feedback loops
• Structural rather than coincidental interdependencies

• �Close collaboration between method developers and domain experts to define and incorporate 
assumptions into causal methods

• Development of benchmarks for evaluating methods on ground truth data10,11

Table 1 (continued) | The challenges and potential ML-based solutions for hybrid Earth system modelling, emulation of 
climate model simulations, extreme event detection and attribution, climate model analysis and benchmarking, and 
cross-cutting ML method developments
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Box 1

Collaboration between academia and the private sector
Collaboration between academia and the private sector is crucial 
for advancing climate research and enhancing technology transfer. 
Collaborative projects may serve dual purposes—contributing to 
public service initiatives and commercial applications. For instance, 
academic research may lead to the development of ML-enhanced 
climate models that aid public policymakers in making informed 
decisions. Simultaneously, the private sector may leverage these 
models to create specialized climate services for industries such 
as energy, transport or agriculture for commercial applications 
and solutions. Clear governance mechanisms respecting national 
and international laws need to be set in place that strike a balance 
between the public good derived from research outcomes and the 
proprietary interests of businesses while delineating responsibilities, 
addressing intellectual property concerns, defining licences, data 
and code security, and privacy, as well as ensuring the ethical use of 
ML models.

Open data and source code initiatives play a pivotal role in 
fostering collaboration between academia and the private sector 
to accelerate progress in climate modelling and analysis with ML. 
This collaborative environment can be reinforced through joint 
publications on results, code or data descriptions, for example 
as in ref. 11. Academic institutions, often the creators of valuable 
climate datasets, contribute substantially by opening access to 
their data, fostering collaborative research. Simultaneously, the 
private sector’s participation is facilitated by sharing proprietary 
datasets or tools, establishing a mutually beneficial exchange of 
information. Open source code, inherently distributed with licences 
allowing users to freely view, use, modify and distribute the source 
code, is a cornerstone of collaborative efforts. For the private sector, 
collaboration can become challenging in projects with copyleft 
(for example, GNU General Public License) or non-commercial 
(for example, Creative Commons Attribution CC-BY-NC) licences. 
Therefore, non-copyleft licences, such as Massachusetts Institute of 
Technology, Berkeley Software Distribution or Apache Version 2.0, 
are preferred. These licences, without restrictions for commercial 
use, offer flexibility for developers and organizations to choose 
how they use and distribute software, even incorporating it into 
proprietary projects. Open data and code initiatives not only 
facilitate seamless access, use and contribution to tools and 
data but also foster transparency and innovation through shared 
code repositories, contributing to advancements beyond the 
state of the art. The concept of ownership in the traditional sense 
is somewhat different in the context of open source software, 
as the collaborative nature of open source development allows 
multiple contributors to participate in shaping and enhancing the 
codebase. Still, contributors might want to retain copyright to 
their specific contributions. The consortium developing the open 
source software should define the management, contributions and 
utilization of the open source code within the consortium as well as 
intellectual property rights for the specific contributions. Crucial 
considerations also include specifying the open source licence, 
implementing contributor licence agreements to define contribution 
terms, establishing governance structures for code decisions, and 
assigning responsibilities for code maintenance. Compatibility 
with consortium goals should be emphasized, ensuring alignment 

with the chosen open source licence and integration into the 
collaborative project.

Collaborations that do not require further research or need to 
protect know-how are often performed without formal contracts. 
Otherwise, several governance models exist for collaborations 
between academia and the private sector. For example, a 
non-disclosure agreement, which is a legal contract outlining the 
terms under which one party discloses confidential information to 
another, with the expectation that the recipient will not disclose 
the information to third parties, might be chosen during the phase 
of exploring possible collaboration opportunities while already 
exchanging ideas. For unfunded collaborations, a collaboration 
agreement can be established, defining a common research goal 
with all parties contributing research activities in roughly equal 
shares. Although background information remains the property 
of each party, jointly developed foreground, that is, intellectual 
property that is collaboratively created by two or more parties, can 
usually not be solely owned by the industry partner in this case. This 
model proves advantageous when academia and the private sector 
share common interests, enabling the long-term development 
of relationships without immediate financial commitments. It is 
particularly suitable for exploratory or precompetitive research, 
fostering a shared exploration of new ideas and solutions with risks 
and benefits distributed among the partners. A funded research 
project aligns with long-term innovation goals and provides the 
necessary financial support for sustained research efforts. It might 
also be required if the private sector wants to own jointly developed 
foreground, which is usually not possible in a collaboration 
agreement. Consultancy services are chosen when specific 
expertise and rapid solutions are needed. Consultants offer targeted 
recommendations for implementing solutions, making them valuable 
for efficient project management and execution. Which governance 
model is actually selected depends on the collaborative objectives, 
timeframes and the depth of expertise required, and might also 
depend on national or international laws of the participating parties 
(for example, European Union state aid law).

Several companies are currently using weather forecasting as a 
first application in this research field that enables easier validation 
of foundational ML technology than ML for Earth system and climate 
modelling. For example, Microsoft has built a general-purpose 
foundation model for weather and climate based on vision 
transformers96. NVIDIA is developing a global forecasting model 
based on spherical Fourier neural operators97, generative artificial 
intelligence (AI) methods for downscaling and channel synthesis 
at kilometre scales98, and collaborations with climate scientists 
on open benchmarks for hybrid AI–physics climate modelling11. 
NVIDIA has also open sourced its workflows for training large-scale 
global AI weather simulators, together with US national lab 
scientists (https://github.com/NVIDIA/modulus-makani), in addition 
to tools for probabilistically assessing and intercomparing such 
systems’ predictions for open community assessment99, as well as 
collaborating in the open domain on applications beyond weather to 
climate simulation (https://github.com/ai2cm/ace). DeepMind and 
Google are developing ML models for global weather forecasting3,4, 
and Google also uses ML to make operational flood forecasts100.
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in its ability to utilize existing and new observational data, coupled with 
physical understanding constraining land processes across a range of 
time scales. Fast processes, such as photosynthesis, can be constrained 
by data and are a good target for ML-based parameterizations, while 
slow processes, such as carbon allocation, do not have frequent obser-
vations and thus need to rely on physical knowledge as they cannot be 
derived from data alone. The advantage of hybrid modelling is its capac-
ity to extrapolate and generalize beyond the scope of the observational 
data. This approach was recently developed for estimating ecosystem 
evapotranspiration41, where a hybrid model showed a greater ability 
to generalize during extreme events compared to a pure ML model. 
Other successful cases of hybrid modelling for the land have combined 
traditional hydrologic modelling with ML to increase skill in predicting 
flood risk42 and groundwater flow43. An ML component was also inte-
grated within a physical model to learn total water storage with a neural 
network44. While these studies show early success in employing hybrid 
modelling for the land, there are several important considerations 
for future work. First, capturing extreme events on land (for example, 
wildfires, floods and droughts) in the context of a changing climate is 
a high priority45. Second, data availability, sparsity and observational 
uncertainties remain ongoing issues for land modelling. Variations 
across land datasets, unequal geographic distributions, and spatial 
and climatic biases in observations are key challenges for the use of 
data at scale, potentially biasing the retrievals46.

Hybrid modelling, as described above, also introduces new chal-
lenges, such as stability after coupling25, differences between offline 
and online behaviour25,28 and generalizability. The latter describes 
the question whether the models will be able to accurately project 
warming and extremes when they were trained against the current 
climate, rather than future climates. There may be unknown physical 
processes arising and the distribution of the data is likely changing 
with climate change. Thus, it is necessary to understand when models 
diverge and fail and take corrective actions. More comprehensive 

detection, analyses and metrics regarding their out-of-climate gener-
alization and performance beyond time-averaged errors (for example, 
on extremes) are needed. Ideally, the community will increasingly 
draw on the advances made in interpretable and explainable ML and 
other ML challenges to further advance hybrid models as we further 
discuss below.

Emulation of climate model simulations
For climate modelling, many challenges remain including the relation-
ship of model error and resolution47,48 and limits on near-term predict-
ability due to internal variability of the climate system49. The emulation 
of weather and climate models with ML has demonstrated potential to 
accelerate resolution of these challenges and has therefore become a 
rapidly evolving field3,4,10,50. Those algorithms aim to emulate a physi-
cally based weather or climate model at a small fraction of its cost. In 
substantial part, this speed-up arises by eliminating the mathematical 
condition that higher spatial resolution requires shorter time steps 
governing classical models that solve the full equations of motion. 
Some important applications are the use of those emulators to generate 
massive weather forecast and climate projection ensembles to better 
capture internal variability. Because the number of emulated simula-
tions is several orders of magnitude larger than in the initial weather 
or climate forecast models, this is opening unique perspectives in the 
assessment of extreme events or very rare events (1st or 99th percen-
tiles of the distribution), which often cannot be captured by the tens of 
ensemble members in the weather forecast or climate models. There 
is hope that much larger ensembles generated with emulators could 
capture such very rare events. There are caveats to the use of those 
emulator-based ensembles, especially related to checking whether they 
correctly capture the distribution generated by the emulated chaotic 
physical model. Emulators can also be used to answer scientific ques-
tions that would require running many climate model simulations and 
would therefore be computationally infeasible. Applications include 
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Figure adapted with permission from: a, ref. 7, Wiley; b, ref. 8, Springer Nature Ltd.
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the characterization of extreme event evolution or sampling10,51 and 
the emulations of regional-scale events52,53. Again, in this context, care 
needs to be taken to systematically check that the emulator respects 
both the physical response and statistics of the host physical model. 
Advancing beyond emulation, climate models and observations have 
been optimally merged using a technique called transfer learning to 
better predict El Niño54 or to better project climate change55. Transfer 
learning can improve the accuracy of climate predictions and projec-
tions spanning the past to the future by reducing systematic errors and 
increasing correlation to key observables in the recent climate record.

Extreme event detection and attribution
Low-likelihood high-impact (LLHI) extremes are a class of phenomena 
where the high but unknown risks of substantial and negative societal 
and environmental effects are mismatched with inconsistent evidence 
and limited consensus regarding how LLHIs will evolve under global 
warming56. Two of the major obstacles to reducing the uncertainty in 
how LLHIs will change in warmer climates are the need to objectively 
yet rapidly search through petabytes of climate model projections 
while simultaneously harmonizing across highly diverse methods 
for detecting these extremes57. ML exhibits considerable promise to 
address these challenges. Deep learning approaches have enabled 
training algorithms to find and track extremes in climate model output 
at exascale speeds58, and ML methods have been successfully deployed 
to study a wide variety of severe weather59. In addition, projections of 
LLHI evolution accompanied by quantifiable and objective measures 
of uncertainty can be generated using threshold-free Bayesian detec-
tion methods calibrated with Markov chain Monte Carlo60. Extreme 
phenomena have been identified using human-expert-labelled data-
sets of tropical cyclones, atmospheric rivers and weather fronts in 
climate model output combined with deep61 and CNNs62. Topological  
data analysis combined with support vector machines provide a 
threshold-free method for identifying atmospheric rivers in climate 
projections produced under a wide range of horizontal resolutions and 
climate scenarios63. Persistent phenomena, such as hurricanes, can 
readily and accurately be tracked using convolutional long short-term 
memory methods64. ML can also provide insights into the physical 
drivers of extreme phenomena and how these drivers will change in 
future projections65. In addition, certain applications of deep learning 

methods have shown the capability of generalizing from present-day 
to future climatic conditions, provided an extensive hyperparameter 
grid search is performed to find appropriate model hyperparameters66. 
Successful demonstrations that physical mechanisms can be learned 
from data rather than prescribed include analyses of the extreme pre-
cipitation circulation patterns and strongly rotating thunderstorms66. 
ML algorithms have also been used to emulate classical downscaling 
methods to enhance the horizontal spatial resolution of climate model 
simulations67. ML methods are exhibiting substantial potential to 
considerably accelerate projections of extremes in warmer climates. 
Recent applications include prediction of heat waves68 and droughts69. 
These approaches advance addressing several long-standing chal-
lenges involving LLHIs, including the difficulty of sampling LLHIs from 
observations and climate model simulations of insufficient duration, 
and biases in projecting LLHIs involving physical processes that are 
under-resolved or highly parameterized in ESMs.

Climate model analysis and benchmarking
ML-based parametrizations that perform well in evaluations where 
they are not yet coupled online into the host ESM but rather trained, 
validated and tested offline on high-resolution model data, may exhibit 
surprising failure modes when coupled online within a climate model25. 
This all needs to be carefully tested. Tools such as the Earth System 
Model Evaluation Tool (ESMValTool70) facilitate the evaluation of 
ML-based online climate model simulations against Earth observa-
tions and other climate models. In addition, as ML for climate modelling 
efforts have matured, the community has recognized a growing need to 
develop metrics, datasets and tools to benchmark ML performance in 
more rigorous and consistent ways10,11. Another approach is data-centric 
AI, which focuses on how ML results can be improved by identifying 
ways to increase the quality and diversity of training data.

On the analysis side, climate networks reconstructed from statisti-
cal correlations of time series at grid points have been used together 
with measures from information theory to detect hidden structures 
in climate data71. ML has started to demonstrate its great potential 
to enhance climate model analysis through the application of causal 
inference, XAI, nonlinear multi-variate emergent constraints and the 
development of more targeted observational products for model evalu-
ation. Causal discovery algorithms learn causal dependencies beyond 
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permission from ref. 16, Wiley.

http://www.nature.com/natureclimatechange


Nature Climate Change | Volume 14 | September 2024 | 916–928 923

Perspective https://doi.org/10.1038/s41558-024-02095-y

traditional correlation and regression methods15. Causal model evalu-
ation compares causal dependencies as learned from observational 
data to the ones from climate models, thus enhancing process-oriented 
model evaluation72,73. XAI can be applied to identify prototypical behav-
iour linked to physics-based processes from images for Earth system 
science applications and with this provide a new approach for model 
evaluation74. ML methods have also been used to constrain uncertain-
ties in multi-model projections based on process analysis and causal 
discovery73 or the combination of emergent constraints on the global 
scale to reduce uncertainties on the regional scale75, which is often more 
relevant for policymakers. In addition, ML-based approaches based 
on nonlinear dimensionality reduction with variational autoencod-
ers could help evaluating data intense high-resolution simulations76.

Cross-cutting challenges in ML method 
developments
Addressing key challenges in climate modelling and analysis with 
ML as discussed in the previous section does not only benefit from  
the application of current ML methods, but also requires address-
ing several challenges in ML method development that are shared by 
all these different applications. In this section, we focus on four ML  
challenges that have seen recent breakthroughs, but for which  
more work is needed in order to utilize full potential (Table 1). This 
particularly will require further progress in physical consistency and 
generalization, uncertainty quantification, explainable AI and causal 
inference.

Physical consistency and generalization
Physical models are designed to be valid in a broad range of regimes, 
while ML models are usually trained to best fit a specific training set. 
Therefore, ML models can make inconsistent predictions when tested 
on out-of-distribution samples12, such as warmer climates. There has 
been notable progress on making the quality of ML-based inference 
less sensitive to changes in the data, broadly referred to as robust-
ness. Performance on outliers and extremes can be improved using 
custom losses that weigh extremes more without compromising 
mean predictions77, or custom frameworks that normalize data using 
extreme value theory78. Physical consistency can be improved using 
custom losses that penalize physically inconsistent predictions79 or 
architectures that strictly enforce physical constraints26,29. Overall, 
although improving robustness is application dependent, we encour-
age conducting out-of-distribution tests over out-of-sample tests that 
are still independent and identically distributed with respect to the 
training data, addressing non-stationarity in the data if possible12, and 
considering tests to ask whether the ML model can properly predict a 
causal intervention15. Making robustness tests a standard component 
of benchmark datasets for weather and climate would help establish 
the most generalizable ML frameworks on distinct cases, paving the 
way towards their routine use in climate science.

Uncertainty quantification
Another challenge to be addressed in the ML space is uncertainty quan-
tification of the predictive performance of ML models. Systematic 
uncertainties arise due to the choice of the ML model itself, and the 
variability of its predictions, for example, due to the stochastic gradi-
ent descent methods used for training. Stochastic (statistical) uncer-
tainty is also present due to noise in the data used for training, and the 
choice of predictive variables being an incomplete representation of 
the Earth system49. Therefore, even the best model of the Earth system 
cannot produce definitive predictions. However, stochastic and sys-
temic uncertainty are not mutually exclusive and can be combined to 
address data sparsity and out-of-distribution generalization issues80. It 
is known that deep neural networks alone are not providing uncertainty 
estimates and tend to produce overconfident predictions. Therefore, 
uncertainty quantification is receiving growing interest in ML81.

There are roughly two types of uncertainty quantification methods 
in deep learning. The first one focuses on robustness via employing 
parameterized distributions to describe stochastic uncertainty sam-
pling over solutions to the loss minimization procedure during training 
or bootstrapping to approximate parent distributions. Perturbations 
are made to the inference procedure in initialization via deep ensem-
ble82, neural network weights via Monte Carlo dropout81, and datasets 
via bootstrapping83. The other type is Bayesian, such as variational 
autoencoders84, which aims to model posterior beliefs of connection 
weights given the data. Bayesian methods are typically more robust in 
mean prediction, while confidence levels obtained from frequentist 
methods provide more extensive coverage over data variations13.

Uncertainty quantification presents distinctive challenges for 
weather and climate projection. For weather forecasting, much pro-
gress has been made to ensemble forecasts, leading to increased 
forecast skills and more reliable probabilistic estimates. For climate 
projection, despite the effort in multi-model ensembles to quantify 
systematic uncertainty, the multi-scale nature of the system and its 
internal variability make it challenging to produce and validate reliable 
uncertainty estimates and risk assessments. Deep learning has also 
been used to create ensemble forecasts, including for medium-range 
weather systems4, typically through Monte Carlo dropout81 or deep 
ensembles82. Specifically, multiple deep learning models are trained 
by varying the dropout units or training data and then generate fore-
casts jointly. Recently, deep generative models have also been used for 
probabilistic forecasts4,85. The accelerated inference enabled by deep 
learning emulators can in principle enable very large ensembles to 
quantify the uncertainty due to natural variability in weather forecasts, 
but also in climate projections86.

Explainable artificial intelligence
Although most ML techniques have previously been viewed as ‘black 
boxes’, XAI methods have the potential to change how these tools are 
viewed and used in climate science by assisting scientists to determine 
whether the ML approach is obtaining the right answers for the right 
reasons14. XAI approaches are beginning to appear more frequently 
in ML climate studies, including for identifying sources of predict-
ability within the climate system87 and analysing the physical impacts 
of climate change66. XAI methods can be used to ensure that neural 
network models are physically consistent with the true dynamics of 
the climate system88. Such model interpretation and visualization can 
help ML methods capture the physically salient aspects of a problem, 
operate within the limits of the training data, and help identify new 
scientific hypotheses14. For example, neural networks and their explain-
ability tools can be harnessed to identify patterns of the forced signal 
within combined fields89. XAI can identify which oceanic patterns of sea 
surface temperature anomalies lead to the largest gains in predictabil-
ity90. The applicability of XAI approaches originally trained for image 
classification are now being tested on climate prediction tasks. The 
sensitivity to the choice of XAI method and its specific parameters is 
still being resolved91. Furthermore, XAI methods are applied post-hoc 
to an otherwise black box model, and so, gaining insights from XAI 
into the decision-making process of the ML algorithm requires simpli
fications of the model itself92,93. As an alternative, scientists should 
therefore consider developing interpretable models which are built to 
incorporate the decision-making process explicitly into their structure 
in order to be completely understood by a human without the need for 
post-hoc methods92.

Causal inference
Standard ML methods, including deep learning, excel at learning highly 
nonlinear statistical relationships from complex, large-scale data-
sets and are being increasingly applied in Earth and environmental  
sciences8. However, research questions in climate science are often 
about causal relationships rather than purely statistical associations. 
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Causal inference provides the theoretical foundations to utilize 
assumptions about the underlying system to answer causal questions 
from data15. Two main strands of causal inference are causal discovery, 
where the goal is to learn a qualitative causal graph from data, and 
causal effect estimation, where one assumes qualitative causal knowl-
edge in the form of a graph and then quantifies the effect of hypothetical 
interventions, for instance, by utilizing causally informed ML models. 
Thus, causal inference complements ML well30. Causal methods have 
been employed in various contexts in climate science, see ref. 15 for 
an in-depth overview.

Causal inference is currently used to tackle two major challenges 
in climate modelling and analysis. Firstly, causal models can inform 
subgrid-scale parameterizations in hybrid modelling to better respect 
the underlying physical processes in the ML model16, which is crucial 
for modelling climate change. To this end, causal discovery15 can be 
performed to estimate causal graphs from high-resolution models or 
observational data. This qualitative information can then help choosing 
which input variables to include in ML-based parametrizations, which is 
a formal way of feature selection. Second, causal inference can be used 
to evaluate and compare climate model output from projects such as 
CMIP (refs. 72,73), with possible implications for reducing uncertain-
ties of climate projections. Here the approach is to learn causal graphs 
separately from observational data as well as model output and then 
utilize graph comparison metrics to identify which physical models 
better simulate the causal relationships as learned from the observa-
tions. One may also directly assume a causal graph and compare the 
causal effect estimated.

Beyond the statistical challenges shared with pure ML methods, 
such as dealing with high-dimensional and spatially correlated data30, 
the advantages and challenges of causal inference methods lie in the reli-
ance on expert knowledge about the underlying system, from the pres-
ence of hidden confounders and the complexity of nonlinear processes 
occurring across timescales, to the basic but often challenging problem 
of defining the causal variables of interest15 or possible loss of causality 
when coarse-graining. More specifically, key challenges in causal infer-
ence, calling for advanced method development, are associated with 
the assumptions on which these methods often rest on: (1) the data is 
generated from a causally stationary process when in practice many 
real-world processes are non-stationary; (2) the data-generating causal 
model is acyclic, which may well not be true, especially, in the presence 
of feedback loops; and (3) interdependencies are not coincidental but 
structural, and violations of this assumption may lead to incorrect 
conclusions15,30. Tackling these challenges requires close collaboration 
between method developers and domain experts to define and incorpo-
rate assumptions into causal methods, as well as to develop benchmarks 
for evaluating methods on ground truth data10,11. If these challenges can 
be met, the primary advantages of causal methods lie in the intuitive 
interpretation of the causal graphs, their transparent way of stating 
assumptions, and their potential for better out-of-distribution perfor-
mance, which increases trustworthiness in climate change projections.

The way ahead
Innovative machine learning methods are rapidly providing new and 
transformative ways of modelling and projecting climate change and 
extracting information from massive data volumes. These are timely 
topics given the start of the IPCC’s Seventh Assessment cycle and the 
initiation of CMIP7. Although the full potential of hybrid modelling 
will certainly not be reached in time for CMIP7 contributions, some 
proof-of-principle hybrid ESMs might well be ready to participate. 
This could include models where a subset of the physical or empirical 
parametrizations is replaced with ML-based parametrizations, for 
example for cloud cover and convection. The structure of CMIP is such 
that any climate model that can perform the DECK (Diagnostic, Evalua-
tion and Characterization of Klima) and CMIP historical simulations can 
contribute to CMIP (ref. 1). The upcoming CMIP7 ensemble can benefit 

from these developments to include some of these first ML-based 
hybrid ESMs, but also from the use of emerging ML techniques such 
as uncertainty quantification, XAI and causal inference to interpret 
simulations from these models in comparison to Earth observations. 
It will be important to benchmark the class of ML-based hybrid ESMs 
against classical climate models to assess potential improvements 
and to exploit ML-based nonlinear multi-variate and transfer learning 
combined with other approaches to constrain uncertainties in climate 
projections with Earth observations.

ML shows great potential to improve ESMs by learning important 
subgrid-scale processes from high-resolution simulations and Earth 
observations, producing stable multi-year simulations with encourag-
ingly small systematic errors. However, as we discussed in this Perspec-
tive, trust and generalizability of the ML models need to be further 
improved by introducing climate invariant variables, physical con-
straints or equation discovery, and by further developing some of the 
main ML challenges including XAI, uncertainty quantification, and cau-
sality (see also Table 1). The increasing speed and fidelity of emulators 
will enable the creation of huge ensembles of hindcasts and forecasts. 
The unprecedented sampling of plausible but counterfactual climates 
could transform our understanding of the drivers and consequences of 
LLHI extremes. Stability in coupled-model simulations upon replace-
ment of a numerical model component or parameterization with an 
ML-based parameterization, and improved coupled-model skill and 
projection capability, are benchmark activities that we foresee as being 
critically important as ML for climate continues to advance as a field.

To sustain this rapidly evolving field, different communities need 
to work together. The full potential of ML for climate modelling and 
analysis with ML can only be met using an interdisciplinary approach, 
where the climate science community works closely with the ML com-
munity. Beyond this collaboration, this will demand new collaboration 
opportunities to be seriously approached between academia and the 
private sector (Box 1). As the ML community becomes more aware of 
the potential of algorithms in society-relevant climate and Earth system 
research, large technology companies are increasingly interested in 
applying their capabilities to climate via interdisciplinary research 
with climate scientists, who are either employed directly or collabo-
rate from academia. Private sector research may also be a valuable 
element in the development of more computationally efficient and 
scalable climate models as well as the developments of digital twins 
of the Earth which have been defined as “an information system that 
exposes users to a digital replication of the state and temporal evolu-
tion of the Earth system constrained by available observations and 
the laws of physics”94,95. As these applications venture into the realm 
of unseen climates, input from academic domain experts will become 
increasingly essential, opening new opportunities for joint efforts to 
push the frontiers of climate science.

The use of ML to better understand, model and project the Earth 
system is a challenging but promising research field with accelerating 
progress in the past 5 years. Additional research efforts could have a 
high impact both to advance science and to address topics of critical 
importance and high relevance for society. These topics include the 
need for much more reliable and localized predictions of near-term 
global environmental change and projections of the many options for 
mitigating this change under investigation. With enhanced ML-based 
climate modelling and analysis capabilities as discussed in this Perspec-
tive, we can look forward to substantial advancement of Earth system 
sciences to accelerate scientific understanding, modelling, as well as 
projecting climate change towards desperately needed actionable 
climate science.
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