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Abstract AI emulators for forecasting have emerged as powerful tools that can outperform conventional
numerical predictions. The next frontier is to build emulators for long climate simulations with skill across a
range of spatiotemporal scales, a particularly important goal for the ocean. Our work builds a skillful global
emulator of the ocean component of a state‐of‐the‐art climate model. We emulate key ocean variables, sea
surface height, horizontal velocities, temperature, and salinity, across their full depth. We use a modified
ConvNeXt UNet architecture trained on multi‐depth levels of ocean data. We show that the ocean emulator—
Samudra—which exhibits no drift relative to the truth, can reproduce the depth structure of ocean variables and
their interannual variability. Samudra is stable for centuries and 150 times faster than the original ocean model.
Samudra struggles to capture the correct magnitude of the forcing trends and simultaneously remain stable,
requiring further work.

Plain Language Summary AI tools are extremely effective in making fast and accurate predictions
on weather to seasonal timescales. Capturing decadal to centennial changes, which arise from ocean dynamics,
remains an outstanding challenge. We built an advanced AI model called “Samudra” to simulate global ocean
behavior. Samudra is trained on simulated data from a state‐of‐the‐art ocean climate model and predicts key
ocean features such as sea surface height, currents, temperature, and salinity throughout the ocean's depth.
Samudra can accurately recreate patterns in ocean variables, including year‐to‐year changes. It is stable over
centuries and is 150 times faster than traditional ocean models. However, Samudra still faces challenges in
balancing stability with accurately predicting the effects of external factors (like climate trends), and further
improvements are needed to address this limitation.

1. Introduction
The recent success of emulators for components of the climate system, primarily the atmosphere, continues to
produce remarkable outcomes, achieving state‐of‐the‐art performance for weather prediction tasks (Bi
et al., 2023; Kochkov et al., 2024; Price et al., 2023) and promising results reproducing climate models over
decadal (Cachay et al., 2024) to multi‐decadal timescales (Watt‐Meyer et al., 2023).

Existing work on ocean emulation has mainly been limited to the surface and upper ocean, or to steady forcing.
Several works focusing on surface ocean variables show results for timescales of years to a decade (Dheeshjith
et al., 2024; Gray et al., 2024; Subel & Zanna, 2024). Emulators that include subsurface information have focused
on the weekly to decadal timescales and at most the upper 1,000 m (Arcomano et al., 2023; Guo et al., 2024;
Holmberg et al., 2024; Patel et al., 2024; Xiong et al., 2023). Bire et al. (2023) explored longer timescales within a
simplified ocean model with idealized steady forcing. Finally, a seasonal coupled atmosphere‐ocean emulator has
shown promising results, considering the upper 300 m of the ocean (Wang et al., 2024). These ocean and at-
mosphere emulators have been used for seasonal forecasts based on reanalysis data, and to build surrogates of
numerical models.

Emulators of traditional numerical climate models leverage the computational efficiency of machine learning
approaches to reduce the often prohibitive computational cost of running a large number of simulations on the
original (usually CPU‐based) climate model. One of the main benefits of emulators is the ability to run large
ensembles. Such ensembles can be used to probe the likelihood of extreme events, explore the climate response to
a range of forcing scenarios (e.g., greenhouse gases), and facilitate the development of numerical models by
reducing the number of perturbed parameter experiments typically used for calibration (Maher et al., 2021;
Mahesh et al., 2024). Emulators can also accelerate the spin‐up integration of numerical models or replace full
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model components in a coupled setting (Khatiwala, 2024). Finally, emulators can help with data assimilation,
replacing an expensive numerical model with a fast surrogate to generate affordable ensembles or an approximate
adjoint, maintaining accuracy with reduced cost (Manshausen et al., 2024).

Our goal here is to reproduce the full‐depth ocean state for four 3D and one 2D prognostic variables, using a time‐
dependent realistic atmospheric forcing as input, extending the work of Subel and Zanna (2024); Dheeshjith
et al. (2024). At rollout lengths of nearly a decade, our emulator shows considerable skill across several key
diagnostics (mean and variance) when compared to the parent numerical model output, which is our ground truth.
In particular, both the temperature structure as a function of depth and the El Niño‐Southern Oscillation (ENSO)
variability are well reproduced by the emulator.

Simultaneously capturing variables with vastly different timescales, such as velocity (which can contain fast
fluctuations) and salinity (which typically fluctuates more slowly), is an outstanding issue for long integrations
(already encountered by Subel and Zanna (2024)). To alleviate this problem, we introduce an additional emulator
by focusing on the thermodynamic variables (i.e., potential temperature and salinity only). This additional
emulator captures the slowly varying changes in potential temperature and salinity on timescales of decades to
centuries.

We show that our emulator can retain skill and remain stable for centuries for experiments equivalent to both
control and climate‐change simulations. However, we also note that this stability is accompanied by a weak
response to climate‐change forcing. This work demonstrates (to our knowledge) the first ocean emulator capable
of reproducing the full‐depth (from the surface down to the ocean floor) ocean temperature structure and its
variability, while running for multiple centuries in a realistic configuration with time‐dependent forcing.

The paper is organized as follows. We discuss the data and all emulator details in Section 2. We explore the
properties of the trained emulator on a test data set and report several multi‐decadal experiments with a range of
climate forcing in Section 3. We present our conclusions in Section 4.

2. Methods
We built an autoregressive ocean emulator from data generated by a state‐of‐the‐art numerical ocean simulation.
Below, we describe the data, the emulator, the architecture, and the training and evaluation of the emulator.

2.1. Data

The data was generated by OM4 (Adcroft et al., 2019), an ocean general circulation model that is the ocean
component of the state‐of‐the‐art coupled climate model CM4 (Held et al., 2019). The circulation model was
initialized with hydrography from the World Ocean Atlas (Levitus et al., 2015) and forced with atmospheric
reanalysis, following the OMIP‐2 protocol, with version 1.4 of the Japanese Atmospheric Reanalysis (Tsujino
et al., 2020). The model was run for 65 years (1958–2022).

The ocean prognostic variables are potential temperature (θO), salinity (S), sea surface height (SSH), oceanic
zonal (u), and meridional (v) velocity components. The circulation model has 75 degrees of freedom in the
vertical for each 3D prognostic variable, which we conservatively remap onto 19 fixed‐depth levels of variable
thickness–[2.5, 10, 22.5, 40, 65, 105, 165, 250, 375, 550, 775, 1,050, 1,400, 1,850, 2,400, 3,100, 4,000, 5,000,
6,000] m to reduce the data size. We also conservatively coarsen the data in time using a 5‐day simple average in
geopotential coordinates, averaging over the fastest waves resolved by the circulation model (which originally
used a 20‐min time‐step).

The native horizontal grid for the data has a nominal resolution of 1/4°, but is curvilinear and has three poles (grid
singularities) inland. We further post‐process by filtering with an 18 × 18 cell Gaussian kernel using the gcm‐
filters package (Loose et al., 2022), and then conservatively interpolate onto a 1° × 1° Gaussian grid using
the xESMF package (Zhuang et al., 2023). Values in land are treated as missing, and missing values are imputed
with zeros. Before conservative spatial interpolation, we interpolate the velocities to the center of each cell using
the xGCM package (Abernathey et al., 2022) and rotate the velocity vectors so that u and v indicate purely zonal
and meridional flow, respectively.
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2.2. Ocean Emulator

The variables in the ocean emulator are:

1. The ocean state Φ = (θO, S, SSH, u, v), which includes all 19 depth levels. We denote the subset of ther-
modynamics variables as Φthermo = (θO, S, SSH), as opposed to the dynamic variables Φdynamic = (u,v).

2. Atmosphere boundary conditions τ = (τu, τv, Q, Qanom), which consist of the zonal, τu, and meridional, τv,
surface ocean stress, and net heat flux downward across the ocean surface Q (below the sea‐ice) and its
anomalies Qanom. The net heat flux is a sum of the short‐ and long‐wave radiative fluxes, sensible and latent
heating, heat content of mass transfer, and heat flux due to frazil formation (see K4 and K5 of Griffies
et al. (2016) for a precise definition of the variable “hfds”). The heat flux anomalies are calculated by removing
the climatological heat flux computed over the 65‐year OM4 data set.

Our emulator, F, is built to autoregressively produce multiple future oceanic states given multiple previous
oceanic states. Specifically, we use a 2‐input–2‐output model configuration. Mathematically,

Φ̃t+(n+1)Δt,Φ̃t+(n+2)Δt = F( Φ̃t+(n− 1)Δt,Φ̃t+nΔt,τt+nΔt) (1)

where n is a positive integer and Φ̃ represents the ocean state predicted by the emulator at time t. A depth‐varying
land mask is used to set land cells in the model output to zero. We use OM4 ocean states, Φt and Φt − Δt, along
with the corresponding atmospheric forcing, τt, to produce the first predictions. Subsequent ocean states are
recursively produced by using previously generated ocean states as input. We illustrate the rollout process of the
emulator in (Figure 1a). The use of multiple input states provides additional context to the emulator, similar to the
use of model time tendencies in PDE‐based numerical integrations. In all of our experiments, Δt = 5 days.

2.3. Architecture

The emulator is based on the ConvNeXt UNet architecture from (Dheeshjith et al., 2024), where the core blocks of
a UNet (Ronneberger et al., 2015) are inspired by ConvNeXt blocks (Liu et al., 2022) adapted from (Karlbauer
et al., 2023). The UNet implements downsampling based on average pooling and upsampling based on bilinear
interpolation, which enables it to learn features at multiple scales. Each ConvNext block includes GeLU acti-
vations, increased dilation rates, and inverted channel bottlenecks. We did not use inverted channel depths and
replaced the large 7 × 7 kernels with 3 × 3 kernels. We use batch normalization instead of layer normalization,
as it yielded better skill. The encoder and decoder consist of four ConvNeXt blocks, each with channel widths
[200, 250, 300, 400]. The dilation rates used for both the encoder and decoder are [1, 2, 4, 8]. Additionally, we
include a single ConvNext block (with channel width 400 and dilation 8) in the deepest section of the UNet before
upsampling. The total number of model parameters is 135 M. We apply periodic (or circular) padding in the
longitudinal direction and zero padding at the poles as in (Dheeshjith et al., 2024).

The architecture is modified from Dheeshjith et al. (2024) to process multiple ocean depth levels (as opposed to
surface only). In the surface ocean emulator, which contains only a single depth level, each channel is associated
with a variable. In the multi‐depth ocean emulator, each channel is associated with a variable and a depth level.
Our main emulator Fthermo+ dynamic takes as input four 19‐level oceanic variables (θO, S, u, v), the surface variable
SSH and four atmospheric boundary conditions (τu, τv, Q, Qanom). It produces five output variables
(θO, S, SSH, u, v). As discussed above, we use a 2‐input 2‐output model configuration and thus, there are
(4 × 19 + 1) × 2 + 4 = 158 input and (4 × 19 + 1) × 2 = 154 output channels. In addition, we build
another emulator Fthermo that only uses the thermodynamic variables, Φthermo = (θO, S, SSH) .

2.4. Training Details

We illustrate the training of the model in (Figure 1a). We train the emulators using 2,900 data samples corre-
sponding to the range 1975‐01‐03 to 2014‐09‐20 with the last 50 samples used for validation. Each sample is a 5‐
day mean of the full ocean state and atmospheric boundary conditions.

We ignore data over 1958–1975 due to the excessive model cooling, while it adjusts from the warm initial
conditions. This cooling does not reflect the forcing but rather an interior ocean model adjustment (see Sane
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et al. (2023) and Figure S3 in Supporting Information S1). Note that some regions are still cooling post‐1975 in
this simulation, which biased some of our testing (see results).

The loss function used for optimization is

Lt =∑
PN

n=1

1
C Y X

∑
C

j=1
∑
Y

k=1
∑
X

l=1
( Φ̃

[j,k,l]
t+nΔt − Φ

[j,k,l]
t+nΔt)

2
. (2)

Figure 1. (a) Schematic of the model training process, illustrating the mapping from input (ocean states and atmospheric
forcing) to output (ocean states rolled out over several time steps). Initially, the ground‐truth ocean states, Φt and Φt − Δt ,
along with the atmospheric forcing, τt , are provided as inputs to predict Φ̃t+Δt and Φ̃t+ 2Δt. Predictions, along with ground‐truth
atmospheric forcing, are then used as inputs for future steps in the unrolling process. (b) Time‐averaged potential temperature
(θO) depth‐latitude profiles over the 8‐year test set, comparing the ground truth OM4 (left) and predictions from Fthermo (middle)
and Fthermo+ dynamic (right). (c) root mean square error (RMSE) of 8‐year test set predictions for different initial conditions of the
emulators, Fthermo and Fthermo+ dynamic. Gray dots represent an RMSE instance of a single rollout, including runs from training on
5 unique model seeds per emulator and 2 additional rollouts initialized at states 6 months apart. Horizontal lines indicate the
respective mean RMSE. RMSE is calculated over the common periods of each rollout.
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Lt is the total mean square error (MSE) loss function at time step t, where P corresponds to the total number of
input/output states used by the model in a single step, N is the total number of recurrent passes, C, Y and X are the
total number of output channels, height and width, respectively, of a single output state. Here, we set P = 2 to
obtain a 2‐input 2‐output model configuration and N = 4 steps.

We use the Adam optimizer with a learning rate of 2e − 4, which decays to zero using a Cosine scheduler. Our
emulators are trained using 4 80GB A100 GPUs for 15 and 12 hr for the models Fthermo+ dynamic and Fthermo

respectively, with a total batch size of 16.

2.5. Evaluation

To evaluate the emulators, we take our initial conditions from 2014‐09‐30 and produce an 8‐year rollout using the
corresponding atmospheric forcing. We compare the output from this rollout to held‐out OM4 data to evaluate the
emulator skill. In addition, we produce longer runs to assess the emulator's response, similar to control simu-
lations, with arbitrarily long rollouts. The emulator is forced with atmospheric boundary conditions taken from
1990 to 2000, with a repeat 10‐year cycle. This period is chosen specifically because it has a near‐zero globally
integrated heat flux forcing, which ensures minimal ocean drift. We also performed a 100‐year and a 400‐year
control run (see Supporting Information S1).

We produce predictions using both Fthermo+ dynamic and Fthermo. All evaluations use a single 40 GB A100 GPU. For
each year of rollout, Fthermo+ dynamic and Fthermo take about 90.52 s and 47.2 s, respectively. Thus, for the faster
emulator, a century rollout takes approximately 1.3 hr Fthermo takes approximately half the time to produce the
same number of states in the rollout compared to Fthermo+ dynamic.

3. Results
3.1. Full‐Depth Global Ocean Emulator

We begin by evaluating the emulators Fthermo+ dynamic and Fthermo against the ground truth to establish a baseline
skill. Capturing the full‐depth climatological profiles of potential temperature and salinity is a key target of ocean
numerical climate models in general and, therefore, a key target for our ocean climate emulators. The structure of
the zonal mean of potential temperature (Figure 1b) is captured by the two emulators, demonstrating significant
skill at reproducing the profile from OM4 (see Figure S6 in Supporting Information S1 for salinity structure). The
average mean absolute error (MAE) is 5.7 × 10− 3 ° C for Fthermo+ dynamic and 4.5 × 10− 3 ° C for Fthermo, with a
pattern correlation of roughly 0.99 for both emulators. The outputs show a robust thermocline structure, sub-
tropical gyres, and a region of North Atlantic deep water formation. However, both emulators in the northern
hemisphere show too warm and too salty high latitudes (around 55N), too cold and too fresh mid‐latitudes, and
Arctic signals down to 750m depth (Figures S2 and S7 in Supporting Information S1). The biases are consistent
with underestimating the northward heat transport by the ocean. The potential temperature and salinity biases in
the Southern Ocean for the Fthermo+ dynamic emulator are reminiscent of residual transport changes, with opposite
signed biases in the Southern Ocean and in the region north of it. The Fthermo emulator is warmer than
Fthermo+ dynamic, at most depths (Figure S2 in Supporting Information S1).

We performed several experiments to test the sensitivity of the emulators to different training choices. The
emulators' skill is unchanged when using different seeds and start dates, so the trained models are statistically
reproducible. We measure robustness by calculating the root mean square error of rollouts with 5 different seeds
and rollouts initialized with ocean states taken 6 months apart. The RMSEs show little variance across the
different trained models (Figure 1c). The standard deviation of the RMSEs across training seeds in the emulators
Fthermo and Fthermo+ dynamic are 0.0033 and 0.00225, respectively.

The potential‐temperature timeseries at 2.5 m and 775 m (Figure 2a) are further indicators that both emulators
capture the climatological means and the upper ocean response to variable atmospheric forcing. The standard
deviation of the 2.5 m potential temperature for OM4, and the emulators Fthermo and Fthermo+ dynamic are 6.8
× 10− 2 ° C, 4.35 × 10− 2 ° C and 5.26 × 10− 2 ° C respectively, while the standard deviations of the 775m po-
tential temperature are 2.3 × 10− 3 ° C, 1.0 × 10− 3 ° C and 2.1× 10− 3 ° C, respectively. The emulators capture a
large portion of the variability, but with some biases (Figure 2b). The standard deviations are calculated after
removing both the trend and the climatology from the timeseries (See Figure S8 in Supporting Information S1 for
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additional timeseries of potential temperature, along with salinity, zonal velocity, and meridional velocity, and
Figure S10 in Supporting Information S1 for bias maps).

The emulator can skillfully emulate ENSO response in both warm and cold phases ((Figure 2b) and Figure S11 in
Supporting Information S1). The smallest fluctuations in the Nino 3.4 timeseries are the hardest for the emulators
to capture. The emulator responses are in phase with OM4 for all years shown, but the amplitude is altered.
Fthermo+ dynamic exhibits higher skill than Fthermo in capturing the magnitude of ENSO events. We hypothesized that
providing the velocities, whose data contain shorter time‐scales and larger variability, helps the emulator produce
larger ENSO events. Fthermo still manages to detect the correct phase and structure (Figures 2b and 2d) despite
producing events with smaller magnitudes, both at the surface and in the upper ocean. The emulators capture the
deepening and shoaling of the equatorial thermocline from equatorial Kelvin waves for the strongest events
(Figures 2d and 2e). The magnitude of subsurface anomalies for the emulators is weaker than for OM4. For the
Nino 3.4 timeseries (Figure 2b), the MAE is 0.0077 ° C for Fthermo+ dynamic and 0.0124 ° C for Fthermo, with
correlations of 0.905 and 0.7017, respectively. For the ENSO profiles (Figures 2c–2e), the MAE is 0.01 ° C and
0.07 ° C for the emulators Fthermo+ dynamic and Fthermo respectively, and their pattern correlations are 0.976 and
0.973, respectively.

For the ocean emulator Fthermo+ dynamic that uses all variables, we noticed that the potential temperature and salinity
fields exhibit atypically high spatial variability, with scales more characteristic of velocity so we posit that this
results from using velocity inputs. See Figures S16–S17 in Supporting Information S1 for maps of variability for
our emulators. This result is consistent with Subel and Zanna (2024). We hypothesize that this may arise from the
large separation in timescales and variability between velocity and potential temperature in the ocean.

Finally, despite capturing the mean and climatology of ocean variables, the emulators struggle to capture the
magnitude of the small, but systematic potential temperature trends (Figure S1 in Supporting Information S1

Figure 2. (a) Spatially averaged timeseries of potential temperature θO at depths 2.5 m (left) and 775 m (right) over the test set
comparing the ground truth OM4 (black), and predictions from Fthermo (red) and Fthermo+ dynamic (green). The mean prediction
and its variance (indicated by shading) are plotted over five initial seeds of training for each model. (b) Nino 3.4 index timeseries
over the test set for the ground truth (OM4, black) and predictions (Fthermo, red; Fthermo+ dynamic, green). Anomalies are averaged
over rolling 150‐day windows. (c)–(e) Meridionally averaged depth profile of potential temperature anomalies in the tropics
during the peak Nino event (marked by a black dot in the timeseries) over the test set for OM4 (c), Fthermo (d) and Fthermo+ dynamic
(e). Anomalies in (c)–(e) are averaged over a 15‐day window.
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global mean 10− 3 ° C/ yr) over the same 8‐year period (Figure 2a and Figures S1 and S3 in Supporting Infor-
mation S1); for most depths the trained models underestimate trends by 20%–50% relative to OM4. Of the two
emulators, Fthermo has higher skill in capturing the global heat changes (Figure S9 in Supporting Information S1).
The salinity trends in OM4 are weak, due to the small forcing, and to the use of salinity restoring boundary
conditions. For both emulators, the trends are 7–8 orders of magnitude less than the mean value, consistent with
the numerical representation of variables within the learned models, suggesting that the models conserve prop-
erties of the OM4 data although strict conservation is not imposed (Figures S4–S5 in Supporting Information S1).

3.2. Long‐Term Stability

We also evaluated, the ability of the emulators to produce long control experiments, without retraining. For these
experiments, we use repeat boundary conditions over 10 years (described in Section 2.5) chosen to contribute a
near‐zero net heat flux, allowing the emulators to run for arbitrarily long periods of time while minimizing
potential temperature drift.

Figure 3. (a) Globally averaged potential temperature (θO) timeseries over a 100‐year control run, comparing the 10‐year
ground truth OM4 (black) and predictions from Fthermo (red) and Fthermo+ dynamic (green). (b) Time‐averaged potential
temperature (θO) depth profile over a 100‐year control run, comparing the 10‐year ground truth OM4 (left) and predictions from
Fthermo (middle) and Fthermo+ dynamic (right). (c) Nino 3.4 index timeseries over a 100‐year control run, comparing the 10‐year
repeat for the ground truth (OM4, black) and predictions (Fthermo, red; Fthermo+ dynamic, green). (d)–(e) Meridionally averaged
depth profile of potential temperature anomalies in the tropics during the peak Nino event (marked by a black dot in the
timeseries) over the test set for Fthermo (d) and Fthermo+ dynamic (e). Anomalies are as in Figure 2.
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Both emulators converge to an equilibrium, maintaining a global mean potential temperature close to OM4
throughout a century of integration (Figure 3a). The global mean temperatures are 3.225 ° C/ yr for Fthermo and
3.215 ° C/yr for Fthermo+ dynamic, compared to 3.219 ° C/yr for OM4. In addition, Fthermo+ dynamic over‐predicts
the variability in potential temperature, likely extrapolating some fast dynamics via the velocities variables. This
issue is exacerbated in the deeper layers of the ocean, which have little variability in the original data set. The
temperature structure is again well preserved for the long rollouts (Figure 3b), with different structures in potential
temperature biases (Figure S12 in Supporting Information S1) than for the 8‐year test data (Figure S2 in Sup-
porting Information S1).

We examine the emulators' skill in reproducing variability over these long timescales. Since we are reusing the
same 10‐year cycle to drive the emulator, we expected some persistent features to appear when looking at a
phenomenon such as the response to ENSO. Although both emulators can produce appropriate Nino 3.4
anomalies for the entire century rollout ((Figure 3c) and Figure S13 in Supporting Information S1), Fthermo+ dynamic

shows stronger peak‐to‐peak amplitude, but little cycle‐to‐cycle variability–perhaps due to the strong coupling of
velocity with the wind stress forcing, whereas Fthermo shows more aperiodic variability across years.

To further test stability, we generate a 400‐year rollout, with an identical forcing setup as for the century‐long run.
Both emulators remain stable (Figure S15 in Supporting Information S1). Fthermo has the added benefit of
exhibiting long‐term aperiodic variability in potential temperature and salinity, despite the repeat forcing, across
the centuries. The long experiments were reproduced using a repeat forcing period from the test set that is, 2014–
2022, producing similar results (Figure S19 in Supporting Information S1).

4. Discussion
We produce a computationally cheap machine‐learning (ML) emulator of a state‐of‐the‐art ocean model, namely
OM4 (Adcroft et al., 2019). TheML architecture consists of a modified ConvNeXt UNet (Dheeshjith et al., 2024).
The reduced order model—Samudra—predicts key ocean variables, sea surface height, temperature, and salinity,
across the full depth of the world oceans while remaining stable for centuries. Integrating OM4 for 100 years takes
approximately 8 days using 4,671 CPU cores, whereas our fastest (thermo) emulator completes the same task in
about 1.3 hr on a single 40GB A100 GPU. This represents approximately a 150x increase in simulated years per
day for Samudra compared to OM4. Some of this speed up can be attributed to Samudra: (a) using a 5 days time
step (vs. 15 minutes in OM4); (b) operating on a spatially coarser grid. However, we note that Samudra makes
predictions with the implicit spatial skill of the finer resolution OM4, whereas existing coarser General Circu-
lation Model (GCMs) with eddy parameterization tend to show worse biases (e.g., see Figure 9 of Adcroft
et al. (2019) for a 1/2‐degree GCM).

The emulator performs well on a range of metrics related to the model climatology and its variability on the test
set and long control simulations. The emulator produces accurate climatologies over the last 8 years of the OM4
simulations and is robust to changes in seeds and initial conditions. Furthermore, it can capture variability (e.g.,
ENSO response to forcing). Therefore, these emulators could be used to study the contemporary ocean and
climate at a significant reduction in cost compared to OM4.

The emulator, however, struggles to capture trends under a range of surface heat flux forcings (see Supporting
Information S1), similarly to the surface emulators in Dheeshjith et al. (2024). We performed idealized forced
experiments using the same repeated atmospheric forcing generated for the control experiment and a spatially
uniform linear forcing of varying magnitudes for the surface heat flux. Figure S16 in Supporting Information S1
showcases the ocean heat content trends predicted by Fthermo under linear surface heat flux increases of 1, 0.5,
0.25, and 0W/m2. The patterns of ocean heat uptake are reminiscent of ocean‐only and coupled forced numerical
experiments (Couldrey et al., 2020; Todd et al., 2020), with dipole patterns in the Southern Ocean and North
Atlantic sinking region (Figure S14 in Supporting Information S1). However, the magnitude of change is too
weak compared to the forcing (Figure S16 in Supporting Information S1). Similar behavior of weak general-
ization under climate change is also observed in the atmosphere climate emulator, ACE (Watt‐Meyer et al., 2023),
but improved when a slab ocean model is added (Clark et al., 2024).

Here, we could not produce an emulator that simultaneously captures the trends in the test data and remain stable
for centuries. Further work is needed to explore the reasons for the issues and would require new numerical
simulations.
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The lack of generalization reflected in the weak warming trends could be due to the training data. The effects of an
initial drift can be alleviated by pruning years 1958–1975 from the training data, which removes the bulk of this
adjustment period. Yet, different depths and regions adjust more slowly, and some of this continued adjustment
may remain in the data since the time scale of equilibration of the model is hundreds of years. Another reason for
the trend bias could be the forcing data sets. The atmospheric forcing imposed on the ocean implicitly results from
the real ocean‐atmosphere coupling. Therefore, the atmospheric forcing has felt a changing ocean circulation,
particularly in the North Atlantic (Chemke et al., 2020). The resulting effect is that the “forcing” applied to the
ocean emulator is not entirely decoupled from the ocean response, potentially leading to some biases in the
response, as in Todd et al. (2020); Couldrey et al. (2020); Zanna et al. (2019). We alleviated these issues by adding
an extra forcing input, namely the cumulative heat forcing, which led to a more skillful model capable of
capturing the global warming trend. However, this model was unstable under climate‐change forcing past
50 years. Alternatively, it is possible that learning to predict the model state directly may not be optimal. We
explored learning tendencies, which improved performance for the warming trends but, again, was unstable over
long timescales. A challenge going forward is designing faithful emulators capable of capturing trends while
remaining stable in long rollouts.

Despite the limited response to future climate forcing, Samudra is skillful at emulating the contemporary ocean
and is therefore an affordable emulation of expensive ocean circulation models. Without further modification,
Samudra could be used in studies requiring large ensembles (e.g., uncertainty quantification, extreme events) or to
enhance and accelerate operational applications (e.g., data assimilation). More opportunities emerge if we
consider refining training for Samudra, for example, to revised versions of OM4 or to other models, which could
greatly accelerate climate model development by allowing evaluations of long, yet affordable, rollouts. This
includes coupling Samudra with atmosphere climate emulator (Watt‐Meyer et al., 2023) to emulate CM4.

Data Availability Statement
The code for training the models along with generating rollouts and plots is available on GitHub at https://github.
com/m2lines/Samudra, while the model weights and data are hosted on Hugging Face at https://huggingface.co/
M2LInES/Samudra and https://huggingface.co/datasets/M2LInES/Samudra‐OM4, respectively. Additionally,
data from National Centers for Environmental Prediction et al. (2006) was also used in the Supporting Infor-
mation S1. The code is also version tagged and archived at Dheeshjith (2025) via zenodo.
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