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Abstract

With the success of machine learning (ML) ap-
plied to climate reaching further every day, em-
ulators have begun to show promise not only for
weather but for multi-year time scales in the at-
mosphere. Similar work for the ocean remains
nascent, with state-of-the-art limited to models
running for shorter time scales or only for regions
of the globe. In this work, we demonstrate high-
skill global emulation for surface ocean fields
over 5-8 years of model rollout, accurately rep-
resenting modes of variability for two different
ML architectures (ConvNext and Transformers).
In addition, we address the outstanding question
of generalization, an essential consideration if the
end-use of emulation is to model warming scenar-
ios outside of the model training data. We show
that 1) generalization is not an intrinsic feature of
a data-driven emulator, 2) fine-tuning the emula-
tor on only small amounts of additional data from
a distribution similar to the test set can enable the
emulator to perform well in a warmed climate,
and 3) the forced emulators are robust to noise in
the forcing.

1. Introduction
Recently, emulation for weather and climate models has
gone from an emerging field to a resounding success story
for how the machine learning community can greatly im-
pact important climate problems. Particularly, we have seen
several models surpass ECMWF’s state-of-the-art numeri-
cal weather models (Price et al., 2023; Zhong et al., 2024;
Kochkov et al., 2023; Bi et al., 2023; Bonev et al., 2023).

The rapid development of emulators has been heavily
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skewed towards the atmosphere and/or weather timescales,
with exciting recent development for atmospheric emulation
at longer timescales (Kochkov et al., 2023; Bonev et al.,
2023; Watt-Meyer et al., 2023). There is an emerging in-
terest in the emulation of the ocean, an essential climate
component for time scales ranging from years to centuries.
Recent works on ocean emulation include time scales of
30 days for global models (Xiong et al., 2023), seasonal
timescales for both idealized and regional ocean modeling
(Chattopadhyay et al., 2023; Bire et al., 2023; Gray et al.,
2024), and multi-year regional emulation (Subel & Zanna,
2024).

Here we demonstrate the potential of emulation on a global
scale for evolving surface ocean fields across multi-year
time-scales, while highlighting the accompanying chal-
lenges when applying emulators to a changing climate. Us-
ing the framework from Subel & Zanna (2024), we build
emulators forced with atmospheric boundary conditions
taken from the climate simulation, which is used as ground
truth.

We explore a set of architectures and their ability to skillfully
reproduce key metrics from our ground truth model. We
then investigate their potential to generalize when providing
atmospheric boundary conditions from a warming scenario
of the same climate model. While models do not natively
extrapolate to distributions far outside the training data, we
show that exposure to a small number of samples similar
to the test distribution allows the model to generalize well.
Finally, we show that these forced emulators are robust
to atmospheric noise. Our results represent a further step
forward to help guide the design and evaluation of ocean
emulators.

2. Methods
The goal is to autoregressively emulate the surface ocean
state of a climate model, Φ, given atmospheric boundary
conditions, F , and test the generalization to different at-
mospheric boundary conditions (for example, taken from
climate models with increased CO2 concentrations).

We define the data variables as follows:

1. Ocean state Φ = (u, v, T ): the zonal velocity, merid-
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Transfer Learning for Emulating Ocean Climate Variability across CO2 forcing

ional velocity, and temperature, respectively, in the
surface layer.

2. Atmosphere boundary conditions τ = (τu, τv, Tatm):
the zonal wind stress, meridional wind stress, and air
temperature, respectively.

To predict ocean state at a future time step t+∆t, Φt+∆t,
we input the ocean state Φt and atmospheric boundary con-
ditions F t from the current time step t. We take ∆t = 1 day.
This gives 6 input channels and 3 output channels.

2.1. Data

We use data from the GFDL CM2.6 coupled climate model,
with a horizontal resolution of 1/10◦ in the ocean and 1/2◦

in the atmosphere (Delworth et al., 2012). We conserva-
tively regrid ocean data to a 1◦ regular grid, and bilinearly
interpolate atmospheric data to the same 1◦ regular grid.
We use daily data from three CM2.6 runs: 20 years of a
preindustrial control (PI) with constant external forcing, 20
years of a transient doubling CO2 experiment sampled from
10 years prior to and 10 years past doubling (2xCO2), and 6
years from a transient quadrupling CO2 experiment taken
after the CO2 concentration passes the point of doubling
(2xCO2+). The third dataset is only used for testing. The rel-
ative sampling windows and CO2 concentrations are shown
in figure 5.

We train emulators using 4000 training samples taken daily
from the start of the 20 year PI control run. We test on the
PI and 2xCO2 runs using an initial state from day 4200 and
atmospheric boundary information through day 7200. For
the 2xCO2+, we test on the first 2000 days, using day 0
as the initial condition and the remainder for atmospheric
boundary information. We train additional emulators using
a transfer learning methodology. For such emulators, we
take the model trained on PI control data and fine-tune with
data from the 2xCO2 run by selecting consecutive samples
from the start of the 20-year run (e.g., for 5% data, we use
the first 200 days of the 2xCO2 run).

2.2. Architectures

The architectures we use are UNet, ConvNeXT UNet, and
Swin Transformer. The models autoregressively predict the
ocean states to produce rollouts of any length, provided
appropriate boundary conditions are available. All mod-
els implement periodic padding along longitude and zero
padding at the poles. We briefly describe the ML models
below (see Appendix A for further details).

UNET

Our baseline architecture is a UNet, built following Subel
& Zanna (2024), with encoder and decoder blocks. Each

encoder block consists of convolutions and batch normaliza-
tion layers stacked alternatively. We apply a ReLU activa-
tion after each batch normalization layer. The encoder uses
max pooling and the decoder uses bilinear upsampling.

CONVNEXT UNET

The ConvNeXT UNet is designed following Subel & Zanna
(2024) and Liu et al. (2022). We replace the encoder blocks
with ConvNeXT blocks, which use average pooling and
GeLU activation, with blocks that use max pooling and
ReLU respectively.

SWIN TRANSFORMER

We employ the Swin Transformer architecture (Liu et al.,
2021), adapted to produce a large number of pixel-wise
outputs, appropriate for our modeling of a dense prediction
task. This is built as an encoder-decoder network in a similar
fashion to the UNets. Here we start with the ConvNeXT
UNet model and replace the encoder with a standard Swin
Transformer.

2.3. Loss Function

For training the network, we perform multi-step predictions
to create a loss function that captures dynamics beyond the
time step of the emulator, ∆t = 1 day. For convenience,
we use the following notation for recurrent passes of the
network: Φ̃t+n∆t = F (n)

θ (Φt, τ t), where (n) indicates the
number of recurrent passes, Φ̃ is a predicted state, and Fθ

is the neural network with parameters θ. The loss function
optimized is given by

Lmse =

N∑
n=1

∥∥∥Φt+n∆t −F (n)
θ (Φt, τ t)

∥∥∥2
2

(1)

Here, Lmse is the total MSE loss function, N = 4 is the
total number of recurrent passes.

3. Results
We use a set of key metrics to capture the skill of the em-
ulators, based on metrics traditionally used for evaluating
numerical and statistical models (Latif et al., 1998). We
focus on multi-year time-scales, evaluating the following
metrics: probability distributions of state variables (Fig. 1),
representations of key climate indices (Fig. 2), and the
patterns of bias over multi-year rollouts (Fig. 3). Tables
with skill scores across architectures, metrics, and different
training and testing experiments are given in the appendix.

3.1. In-Distribution Skill

The trained ML models skillfully reproduce the probability
distribution (PDF) of temperature when trained and tested

2
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Figure 1. Model skill in reproducing the PDF of temperature. (a) Comparison of the PDF from model datasets; (b) Skill for ML models
trained on PI and tested on 2xCO2 (out-of-distribution generalization test); (c) Skill for different architectures for models trained and
tested on PI data (in-distribution); (d) Transfer learning skill: trained on blended data (PI + some % of 2xCO2 data) and tested on data
from 2xCO2+ run.

on PI data (Fig. 1c). Our leading model, ConvNext, repro-
duces the bulk of the PDF well for temperatures warmer
than 1◦C. The Swin Transformer has a similar skill to
the ConvNext, but the baseline UNet poorly captures the
temperature distribution. All models fail to reproduce the
near 0◦C temperature distributions and create strongly neg-
ative, below-freezing temperatures. This may potentially be
alleviated with additional training data (including sea-ice
concentration as input, for example) or enforcing an equa-
tion of state in future emulators (e.g., adding salinity as a
state variable).

We consider two climate indices of dominant ocean signals
to further quantify the model skill on interannual timescales
(Fig. 2 panels a and d). The first index is the Nino 3.4 index,
which measures the dominant mode of climate variability
and is well captured by all ML models (correlation above
.97). This indicates that ML models can respond appro-
priately to the imposed atmospheric boundary conditions.
The second index is the Atlantic Multidecadal Oscillation
(AMO), which is more challenging for the emulators to cap-
ture as it may involve deep ocean processes not resolved by
our emulator. We still find that our overall best-performing
model (ConvNext) correlates above .75 with the ground
truth.

The structure of the climatological bias, i.e. the difference

in the mean states of the model over a multi-year rollout,
shows the error that accumulates over years. All ML models
exhibit some biases in the in-distribution tests, and this is
particularly evident in Tropics, which has too low kinetic
energy for all emulators (Fig. 6b-d). However, these biases
are all small (O(10) J/m2) relative to the mean state, which
is O(103) J/m2 in the tropics. We show the comparison
across architectures in the appendix (Fig. 6).

3.2. Generalization to a warmer climate

One of the use cases for ML emulators is to generate real-
istic long-term trajectories for externally forced runs. To
understand the outstanding challenges in generalizing from
a stationary system to a different climate, we evaluate our
ML models, trained on the PI run, on a warmer climate
given an atmosphere from the 2xCO2 run.

All three emulators fail to reproduce the true PDF of the
2xCO2 model (Fig. 1b). The ConvNext and Swin shift
towards the true PDF, with the ConvNext model closing
most of the gap. However, all models fail to capture the
warmed range of temperatures, reflected in the bias maps
(Appendix, Fig. 7f-h), where there is a uniform global cold
bias. A few additional regional biases are present, such as a
local cold bias in the Arctic and a warm bias in the North
Atlantic and near Antarctica.
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Figure 2. ML Model skill in reproducing key components of climate variability. Panels a-c are for the monthly rolling mean time series of
the Nino 3.4 index. Panels d-f for the monthly rolling mean time series of the AMO index. Left and middle columns are ML models
trained on PI control data, and tested on PI or 2xCO2, respectively; right column: tested on blended data (PI data + different amount of
2xCO2 data) and tested on 2xCO2+.
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Despite the climatological biases, the emulators can repro-
duce the appropriate variability for the Nino 3.4 and AMO
indices. This demonstrates that although the emulators do
not capture the mean changes in a warmer climate, they re-
spond to the out-of-distribution atmospheric forcing without
becoming unstable or losing track of important atmosphere-
forced processes.

In the appendix, we include results that shows the sensitiv-
ity of various emulators trained and tested across different
datasets and forced with different boundary conditions from
the climate model, but also with a uniform 1◦C cooling and
warming of surface temperature.

3.3. Transfer Learning: Utilizing Data Across Climates

To improve the ability of a model trained on the PI run in
generalizing to the 2xCO2+ run, which is similar to the
2xCO2 run, we make use of ideas from transfer learning
(Subel et al., 2023; Hu et al., 2021). Here, we fine-tune
the emulator built on PI data using small amounts of data
from the 2xCO2 case. We explore the requirements on the
amount of data, fine-tuning our ConvNext model using 1
(40 samples), 5 (200), and 25% (1000) of the PI samples
used to train the model.

The uniform cold bias disappears, even after retraining on
only 40 samples from the 2xCO2 run (Appendix Fig. 3h),
though some warm biases emerge in the Southern Ocean.
Increasing to 5% (Fig. 3e) and then 25% of additional data
yields a major improvement in emulator fidelity, with bias
shrinking for each increase in data. We obtain a similar
behavior for the PDF of temperature, which moves closer
to the 2xCO2+ ground truth as the amount of data used
for retraining increases (Fig. 1 d); using 1% of additional
data, we lose skill at lower temperatures, potentially due to
overfitting on a small dataset. As in the other experiments,
these models accurately reproduce variability in the form of
the Nino 3.4 and AMO index.

Though these results require training data from a distribution
similar to the test case, we show that the data burden is quite
small when leveraging the training done on the unforced
scenario.

3.4. Robustness to Noisy Boundary Data

Another use for the emulators is to couple them to multiple
components of climate models, and as such, errors will be
introduced as the system evolves. We explore the robust-
ness of our emulators to atmospheric noise by introducing
Gaussian noise at each time step during rollout. The noise
is drawn from normal distributions of the form N (0, ϵσF),
for values of ϵ = .05, .25, and 1. We both train and test a
ConvNext Unet on the PI run.

We find that the emulator is resilient to noise in the data,

with no significant loss of performance at 5% (ϵ = .05) or
even a high value of noise (25%). In both these tests, the
key indices of climate variability remain well represented,
and the PDFs remain similar to the noise-free rollout (Fig.
4a).

We further increase noise to match the standard deviation of
the boundary terms. A large bias is introduced in tempera-
ture and kinetic energy, and the PDFs no longer resemble
the ground truth (Fig. 4a). However, signals much larger
than the local standard deviation remain in the emulator roll-
out. Specifically, the noised emulator reproduces the Nino
3.4 and AMO indices with minimal degradation compared
to the cases with less noise added(Fig. 4b).

4. Conclusion and Future Work
To make machine learning (ML)-based emulators a useful
tool for assessing the impacts of climate change, we need an
emulator that performs well across metrics on a stationary
climate but also under the many possible warming scenarios
the future might bring. This work demonstrates the potential
of a range of ML models for this problem and examines
the potential pitfalls when using a model to generalize far
outside the training distribution.

We show that our emulators reproduce key features of cli-
mate variability, Nino 3.4 and the AMO index, for both
in and out of distribution rollouts. However, when testing
the generalization from PI data, the model exhibits large
biases and fails to faithfully recreate the temperature PDF.
To remedy this problem, we propose a transfer learning ap-
proach that utilizes a relatively small sample of data from
a warming scenario to significantly improve the generaliza-
tion of the emulator. We hypothesis that the methodology
will apply to any changes in climate regime (e.g., cold and
warm paleoclimates).

To couple ocean emulators to either numerical or data-driven
models of other climate system components, we need to en-
sure that small errors in a boundary input do not drive our
models to produce unrealistic outputs. We demonstrate that
our best-performing emulator retains skill for noisy bound-
ary variables with up to .25 times the standard deviation of
those inputs added at each time step. Though there is clearly
room to grow in scaling up data and model size, we pro-
vide further evidence that the simple framework proposed in
(Subel & Zanna, 2024) and extended here is a well-founded
approach for emulating the ocean from multi-year to decadal
time-scales.
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Figure 3. Bias maps (ConvNext prediction − true2xCO2+) for climatological mean for surface kinetic energy (top) and surface ocean
temperature (bottom). Panel a and d are the 2xCO2+ ground truth. Training with PI data (b, e), PI + 5%CO2 (c, f).

Figure 4. The impact of atmospheric Gaussian noise (0%, 5%, 25%, 100%) on the ConvNext emulator’s skill. (a) Skill of Nino 3.4 index
(b) The PDF of temperature.
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A. Training Recipes
We train all models on an HPC cluster, using 150GB RAM
and 2 NVIDIA RTX 8000s. All models are trained for 3
hours on a batch size of 16, using an Adam optimizer with
a learning rate of 2e− 4, and a Cosine scheduler.

Here, we will further describe the hyper-parameters used to
train our models.

A.1. UNet

The UNet (Subel & Zanna, 2024) has the following channel
widths [64, 128, 256, 512] with dilation rates for convolution
layers of [1, 1, 1, 1] and number of layers set to [2, 2, 2, 2].
The architecture has a total of 11, 813, 571 trainable param-
eters.

A.2. ConvNeXT UNet

The ConvNeXT blocks we use are based on (Karlbauer
et al., 2023) and are modified versions of those described
in (Liu et al., 2022). (Karlbauer et al., 2023) do not employ
several ConvNeXT features such as large 7× 7 kernels or
depthwise separable convolutions. Avoiding these features
helps manage the significant increase in parameters and
computational load.

The ConvNeXT UNet has channel widths of
[24, 45, 90, 180] with dilation rates for convolution
layers of [1, 2, 4, 8] and number of layers set to [1, 1, 1, 1].
The architecture has a total of 15, 887, 031 trainable
parameters.

A.3. Swin Transformer

The Swin Transformer uses a patch size of 4 and an embed-
ding dimension of 60. The number of attention heads for
each layer were set to [3, 6, 10, 15] and depth to [2, 2, 2, 2].
We use a window size of 10 and drop path rate of 0.2.

We address the patching artifacts generated by the embed-
ding layer of a transformer, as seen in (Nguyen et al., 2023)
by utilizing a convolutional decoder. Thus, for the decoder,
We reuse the core block of ConvNeXT UNet with trans-
posed convolutions instead of bilinear interpolation. The
dilation rates were set to [1, 2, 4, 8] and number of layers
set to [1, 1, 1, 1]. The architecture has a total of 64, 242,
851 trainable parameters.

B. Metrics Tables
We quantify model skill by computing the correlation (Corr)
and root mean square error (RMSE) over the time series
or mean state of temperature (T), kinetic energy (KE), and
climate variablity indices. In Table 1, we present statistics
for training and evaluating ML models on the PI dataset.
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Figure 5. Comparison of the CO2 trajectories within the model
runs used for this work. The PI run and 2x CO2 run take data from
model years 180 to 200. For the 2x CO2 run, this corresponds to
10 years of incremental increase to the doubling point and 10 years
of stationary forcing past doubling. For the 2x CO2+ run, the 6
years are years 190 through 196, which are years with incremental
increase past the doubling point.

Table 2 showcases statistics for training on PI dataset and
evaluating on 2xCO2. Table 3 presents the statistics for
transfer learning with varying amounts of 2xCO2 data eval-
uated on the 2xCO2+ run. Table 4 shows the impact of
adding different amounts of noise to the atmosphere bound-
ary conditions.

C. Forcing Comparisons
To give better context to the difference between the scenarios
in each run, figure 5 shows the CO2 forcing as a function
of model year across scenarios. In addition in indicates the
range of years included from each run.

D. Additional Bias Figures
Here we show additional bias plots to complement the re-
sults in the main text. Figure 6 shows the bias training and
testing on the PI run and figure 7 shows the bias for each
architecture when training on the PI run and generalizing
to the 2xCO2 run. We also include the extended version of
figure 3 that includes all retraining percentages.

E. Time Series Plots
In Figure 9, we present the ability of the models to repro-
duce the global mean time series of kinetic energy and
temperature across the different training settings.

F. Additional noised results
To complement the results of figure 4, we include additional
metrics in figure 10 and bias in figure 11.

G. Perturbation Experiments
To ensure that our models are sensitive to a simple uniform
perturbation of surface air temperature, we take our mod-
els trained on the PI run and evaluate the model with an
atmosphere taken from the evaluation window of the PI run,
but with 1◦C uniformly added and removed at each time
step. In figure 12, the models respond well, with a uniform
increase and decrease around the mean state.

9



Transfer Learning for Emulating Ocean Climate Variability across CO2 forcing

Model Name KE Corr KE RMSE T RMSE PDF T Corr Nino Corr Nino RMSE Amo Corr Amo RMSE
UNet (Baseline) 0.921 20.462 0.391 0.812 0.988 0.132 0.917 0.026
ConvNext UNet 0.932 18.024 0.334 0.833 0.983 0.116 0.775 0.043
Swin 0.942 16.559 0.441 0.846 0.972 0.176 0.742 0.044

Table 1. Emulator Statistics when training and evaluating on the PI dataset. Note the temperature correlation and the kinetic energy PDF
correlation are removed as all architectures have a value above .99.

Model Name KE Corr KE RMSE T RMSE PDF T Corr Nino Corr Nino RMSE Amo Corr Amo RMSE
UNet (Baseline) 0.907 21.334 0.617 0.941 0.98 0.174 0.85 0.035
ConvNext UNet 0.913 19.526 0.641 0.888 0.982 0.133 0.822 0.038
Swin 0.919 20.663 0.928 0.9 0.971 0.252 0.402 0.064

Table 2. Emulator Statistics when training and evaluating on the PI dataset and evaluating on 2xCO2. Note the temperature correlation
and the kinetic energy PDF correlation are removed as all architectures have a value above .99.

Model Name KE Corr KE RMSE T RMSE PDF T Corr Nino Corr Nino RMSE Amo Corr Amo RMSE
0% 2xCO2 0.907 19.6 0.628 0.895 0.978 0.146 0.917 0.027
1% 2xCO2 0.846 25.604 0.52 0.766 0.972 0.216 0.861 0.035
5% 2xCO2 0.904 20.658 0.401 0.855 0.976 0.18 0.864 0.033
25% 2xCO2 0.931 18.123 0.367 0.809 0.98 0.136 0.86 0.035

Table 3. Emulator Statistics when varying the amount of data taken from the 2xCO2 to retrain the ConvNext model trained on PI. This is
evaluated on the 2xCO2+ data. Note the temperature correlation and the kinetic energy PDF correlation are removed as all architectures
have a value above .99.

Model Name KE Corr KE RMSE T RMSE PDF T Corr Nino Corr Nino RMSE Amo Corr Amo RMSE
100% Noise 0.907 24.371 0.652 0.378 0.985 0.15 0.775 0.043
25% Noise 0.933 18.125 0.337 0.704 0.984 0.114 0.789 0.042
5% Noise 0.933 17.956 0.333 0.824 0.984 0.116 0.794 0.042
0% Noise 0.932 18.024 0.334 0.833 0.983 0.116 0.775 0.043

Table 4. Emulator Statistics when training and evaluating on the PI dataset with noise added to the atmosphere boundary conditions. Note
the temperature correlation and the kinetic energy PDF correlation are removed as all architectures have a value above .99.

Figure 6. Bias maps (train PI run and test PI run) for climatological mean for surface kinetic energy (top) and surface ocean temperature
(bottom). Panel a and e are the PI ground truth. Baseline UNet (b, f), ConvNext (c, g), Swin (d, h).
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Figure 7. Bias maps (train PI run and test 2x CO2 run) for climatological mean for surface kinetic energy (top) and surface ocean
temperature (bottom). Panel a and e are the PI ground truth. Baseline UNet (b, f), ConvNext (c, g), Swin (d, h).

Figure 8. Bias maps (ConvNext prediction − true2xCO2+) for climatological mean for surface kinetic energy (top) and surface ocean
temperature (bottom). Panel a and f are the 2xCO2+ ground truth. Training with PI data (b, d), PI + 1%CO2 (c, h), PI + 5%CO2 (d, i), PI
+ 25%CO2 (e, j).
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Figure 9. ML Model skill in reproducing time series of model state variables. Panels a-c are for the time series of the global mean kinetic
energy. Panels d-e for the time series of the global mean temperature. The left and middle columns are ML models trained on PI control
data and tested on PI or 2xCO2, respectively; the right column is tested on blended data (PI data + different amounts of 2xCO2 data) and
tested on 2xCO2+.
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Figure 10. The impact of atmospheric Gaussian noise (0%, 5%, 25%, 100%) on the ConvNext emulator’s skill. (a) kinetic energy time
series (b) temperature time series (c) Skill of AMO index (d) The PDF kinetic energy.

Figure 11. Bias maps (train PI run and test PI with varying levels of Gaussian noise) for climatological mean for surface kinetic energy
(top) and surface ocean temperature (bottom). Panel a and f are the PI ground truth. Noise free (b, g), 5% noise (c, h), 25% noise (d, i),
100% noise (e,j).
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Figure 12. Model sensitivity to perturbations of atmospheric surface air temperature. Each panel shows the sensitivity of a particular
architecture through the global mean temperature time series.
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