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Abstract

Transfer learning (TL) is a powerful tool for enhancing the performance of neural networks
(NNs) in applications such as weather and climate prediction and turbulence modeling. TL enables
models to generalize to out-of-distribution data with minimal training data from the new system.
In this study, we employ a 9-layer convolutional NN to predict the subgrid forcing in a two-layer
ocean quasi-geostrophic system and examine which metrics best describe its performance and
generalizability to unseen dynamical regimes. Fourier analysis of the NN kernels reveals that they
learn low-pass, Gabor, and high-pass filters, regardless of whether the training data are isotropic
or anisotropic. By analyzing the activation spectra, we identify why NNs fail to generalize without
TL and how TL can overcome these limitations: the learned weights and biases from one dataset
underestimate the out-of-distribution sample spectra as they pass through the network, leading
to an underestimation of output spectra. By re-training only one layer with data from the target
system, this underestimation is corrected, enabling the NN to produce predictions that match the
target spectra. These findings are broadly applicable to data-driven parameterization of dynamical
systems.

1 Introduction

Improving the accuracy of climate, weather, and ocean models requires enhancing their resolution.
This necessitates more computational power, which is restricted by limitations. Practical models that
run on low spatio-temporal resolution with high predictive accuracy require an accurate representa-
tion of subgrid-scale (SGS) processes that occur below the numerical model’s grid size. Although
these processes occur on such a small spatial and temporal scale that resolving them inside a model
is computationally intractable, their effects on the large-scale dynamics is significant. SGS param-
eterization approximates these processes in models, allowing for more accurate simulations at lower
computational costs. The accurate parameterization of SGS processes is essential for improving the
accuracy of predictions of these nonlinear, multi-scale, and high-dimensional systems. Consequently,
modeling SGS processes has been an active area of research for the past few decades [Bracco et al.,
2024, 2025, Dipankar et al., 2015, Meneveau and Katz, 2000, Pressel et al., 2017, Sagaut et al., 2013,
Sarlak et al., 2015, Schneider et al., 2017].

In the early stages of global climate modeling, Smagorinsky [1963] introduced a physics-based SGS
model, aiming to parameterize the effects of SGS eddies through a scale-selective dissipative approach,
marked by positive eddy viscosity and second-order diffusion. This model and its variants since then,
have found applications across a wide array of fields, including weather and climate simulation, combus-
tion, and magnetohydrodynamics, amongst others [Arakawa and Lamb, 1977, Fox, 2012, Fox-Kemper
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and Menemenlis, 2008, Knaepen and Moin, 2004, Piomelli, 1999,?, Sagaut, 2005, Stevens et al., 2018,
Tan et al., 2017]. Despite their utility in ensuring numerical stability for Large Eddy Simulations
(LES), these purely diffusive models often fail to accurately represent inter-scale physical processes
like energy transfers, notably omitting backscattering [Pope, 2000]. Backscattering – the transfer of
energy from subgrid to resolved scales – is critical in various problems involving turbulent fluid flow
and has prompted extensive research to incorporate it into physics-based SGS models [Carati et al.,
1995, Domaradzki et al., 1987, Guan et al., 2024, Jansen and Held, 2014, Jansen et al., 2019, Kerr et al.,
1996, Khani and Waite, 2016, Leslie and Quarini, 1979, Mason and Thomson, 1992,?, Shinde, 2020,
Thuburn et al., 2013, Zhou, 1991]. Efforts have been made to refine these models for more accurate
energy transfer depiction, such as the dynamic approach by Germano et al. [1991], Grooms [2023b]
that allows for negative eddy viscosity to account for backscattering [Grooms, 2023a]. However, these
advancements often come with trade-offs in numerical stability, highlighting the ongoing challenge of
developing SGS models that precisely capture both forward and backscatter energy transfers. This
gap underscores the limitations of physics-based models in SGS parameterization, paving the way for
exploring data-driven approaches in subsequent research efforts.

The mathematical relationship between the large-scale dynamics of turbulent flows and the corre-
sponding subgrid-scale forcing is generally nonlinear and poses a significant challenge for researchers.
Therefore, neural networks (NNs), as universal approximators [Hornik et al., 1989], are attractive tools
to establish such mapping and unveil more hidden knowledge from data, potentially providing better
SGS models and even new insights into SGS physics. Nevertheless, some issues exist with relying
solely on data-driven models to find the mapping between large-scale and small-scale processes. These
models require a large training dataset that contains accurate SGS terms obtained from high-fidelity
sources such as high-resolution observations or simulations. However, these sources are usually scarce,
and the models only perform well on the dataset on which they were trained. They cannot adapt
easily to new datasets, which reduces their effectiveness in predicting dynamics beyond their training
dataset. On the other hand, the ability to generalize to newer dynamical regimes is crucial in both
SGS modeling and the broader area of machine learning for the physical sciences. For example, NN-
based SGS models must perform reliably across diverse climatic conditions to be effectively utilized
in projections of global warming [Larraondo et al., 2019, Rasp et al., 2018] and its impact on extreme
weather events, events that can only be estimated from the tails of the probability density function
(PDF) of the variables. Additionally, NN-based SGS models are less interpretable, making it difficult
to interpret the mappings they create, thereby challenging the trustworthiness and reliability of their
predictions.

Given the fact that extrapolation to different climate conditions is an out-of-distribution generaliza-
tion problem and is challenging for NNs [Krueger et al., 2020], transfer learning (TL) is a flexible and
robust framework that enables this [Yosinski et al., 2014, Zhuang et al., 2021] and can help effective
blending of disparate training sets. It involves building a new NN called Transfer Learned NN (TLNN)
from Base NN (BNN), which can achieve a similar level of accuracy for a target system that may have
different statistical and dynamical properties compared to the base system. This is accomplished by
re-training a few layers from the BNN using a small amount of data (usually orders of magnitude less
data than what was used to train the BNN) from the target system. The process can produce a TLNN
with comparable out-of-sample accuracy for the target system as the BNN, despite using only a small
amount of re-training data.

Numerous studies have been conducted on applying TL to improve NN generalizability for prob-
lems involving partial differential equations (PDEs). These investigations predominantly center around
Physics-Informed Neural Networks (PINNs) [Chen et al., 2021, Desai et al., 2021, Gao et al., 2022,
Goswami et al., 2020, Guo et al., 2022, Haghighat et al., 2021, Hanna et al., 2022, Li et al., 2021,
Mattheakis et al., 2021, Xu et al., 2023], where models are fine-tuned or adapted via a physics-based
loss function that is specific to the target PDE/ODE system. Subramanian et al. [2023] explores the
efficacy of pre-trained machine learning models through TL across a wide range of physics problems.
It reveals that fine-tuning pre-trained models reduces the need for extensive downstream training
datasets, achieving desired accuracy levels even for out-of-distribution tasks. Desai et al. [2021] de-
veloped a framework utilizing TL with PINNs for one-shot inference across ODE and PDEs, demon-
strating instant, highly accurate solutions for equations like first- and second-order linear ordinary
equations, the Poisson equation and the time-dependent Schrödinger equation, without requiring com-
prehensive re-training of the network. Additionally, the application of TL to neural operators, defined
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as operators that learn mappings between two functional spaces from a finite set of input-output pairs
(representing coefficients, initial, or boundary conditions as inputs and the PDE solution function as
outputs), has garnered significant interest among researchers [Goswami et al., 2022, Li et al., 2021,
Xu et al., 2022]. Goswami et al. [2022] presents a TL framework utilizing a deep operator network
(DeepONet) to solve nonlinear PDEs in complex geometry other changing dynamics. This framework
efficiently addresses task heterogeneity and conditional shifts by fine-tuning particular layers, show-
casing rapid learning capabilities despite significant variations between source and target domains.
Xu et al. [2022] enhances the stability and long-time prediction accuracy of DeepONet for PDEs by
utilizing TL. It involves sequentially updating DeepONets with minimal re-training to track evolution
equations over different time frames, demonstrating improved accuracy and reduced training data re-
quirements. The necessity of TL in PINNs underscores the vital importance of comprehending TL
mechanisms. This understanding is crucial in enhancing the adaptation and efficacy of models across
diverse physical systems, ensuring their broad applicability and performance.

In the context of using TL for improving parameterization generalizability, Chattopadhyay et al.
[2020] also showed that TL can improve the generalization skill of data-driven parameterization when
they move from one Lorenz 96 system to a more chaotic one. Subel et al. [2021] have shown that
TL enables accurate/stable generalization to a flow with 10x higher Reynolds number (Re) for forced
Burgers turbulence. Guan et al. [2022a] demonstrated that TL, through re-training the Convolutional
NN (CNN) using a minimal subset of data from the new flow, achieves accurate and stable LES-CNN
predictions for flows at 16× higher Re, and supports higher spatio-temporal resolutions when necessary
for achieving stability. Sun et al. [2023] has used NN-based emulators of the Whole Atmosphere
Community Climate Model’s (WACCM) physics-based gravity wave (GW) parameterizations as a test
case. They showed that the accuracy of this NN-based parameterization of GW reduces for a warmer
climate (4×CO2). However, it is significantly improved by applying TL, using ≈ 1 % data from the
warmer climate.

In order to develop parameterization models that are easier to interpret physically, studies aim
to utilize ML methods to discover physical equations for the parameterization. This method utilizes
a library of pre-defined physical terms and estimate coefficients such that the parameterization can
be expressed as a combination of these coefficients and library terms. Zanna and Bolton [2020] built
a fully data-driven, interpretable model employing relevance vector machines (RVM). They used a
library of second-order velocity derivatives and their nonlinear combinations to develop a closed-form
model for SGS momentum and buoyancy fluxes. While the model showed promising results in a priori
(offline) evaluations, it revealed instability in a posteriori (online) tests when coupled with a low-
resolution ocean solver. Jakhar et al. [2023] built on the work by Zanna and Bolton [2020] and used
2D forced homogeneous isotropic turbulence (2D-FHIT) and Rayleigh-Bénard convection (RBC) test
cases to extend the analysis and showed that optimzing on regular mean squared error (MSE) using
such pre-defined library terms would provably converge to the 2nd order term in the Taylor series of
expansion of the filtering kernel.

Generally, most of these studies found that, NN-based parameterizations are more accurate offline
and if stabilized in online mode, can lead to a more accurate coupled model. However, an important
question remains: what exactly is learned when a neural network is trained on a dataset without
predefined assumptions? It is crucial to identify the specific physical properties of the system that
contribute to the model’s effectiveness. Recent advancements have been made in understanding what
physics learned through the training of CNNs. Subel et al. [2023] pioneered the analysis of physics
learned from data when applying TL to CNNs for SGS modeling of 2D isotropic turbulence. They
utilized a spectral analysis of kernel weights to elucidate how TL adapts to learn new filters, aligning
with the spectral differences between base and target systems. Pahlavan et al. [2024a] aimed to
establish a link between the kernels of NNs and the local and non-local dynamics involved in gravity
wave propagation and dissipation, employing Fourier analysis of the CNN’s kernels for this purpose.

Despite ongoing efforts to analyze the kernels, pinpointing the exact reasons behind the success
of CNN parameterizations remains challenging. It is understood that training a CNN on a given
dataset results in the adaptation of convolutional filters to that specific set of data. However, the
underlying reasons why particular filters or combinations thereof are effective in parameterization
remain unclear—understanding these mechanisms could reduce training costs and lessen dependence
on large volumes of high-fidelity data by enabling more physics-informed initialization of model weights.
This paper aims to explore the necessity of TL and its impact on the distribution of kernel weights
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of CNNs used to parameterize the small-scale dynamics of an anisotropic canonical ocean model.
The process of deciding what- and how-to-learn does not always align with the intended learning
outcomes of the model. Therefore, a detailed examination of the kernels offers a pathway to better
understand the relationship between the kernels and the physical properties of the system, shedding
light on what is actually being learned as opposed to what was intended to be learned. Investigating
TL and striving to comprehend its underlying mechanisms offers the dual advantage of fostering a
model’s generalizability while leveraging this insight to achieve efficient training with fewer samples
and enhanced model explainability.

Expanding on the groundwork established by Subel et al. [2023], we incorporate the same analysis
for SGS modeling in LES of oceanic flows. Our study broadens the scope to include highly anisotropic
and isotropic flow conditions. This approach allows us to explore how CNNs’ kernels adapt and learn
across varied physical systems, thereby understanding their impact on system performance across
various conditions. Our contributions are as follows:

1. We evaluate the CNN-based parameterizations, highlighting offline and online metrics that best
assess their out-of-distribution generalization performance.

2. We explain why NNs fail to generalize by linking the spectral characteristics of different flows
at different dynamical regimes to the Fourier spectra of activations.

3. We demonstrate that the learnt kernels act as Gabor, low-pass, and high-pass filters and show
that their distribution adjusts based on the training data.

This paper is organized as follows. In Section 2, we introduce the methodology, including the
governing equations of test cases (idealized two-layer quasi-geostrophic model), numerical solver setup,
filtering and coarse-graining procedure for data, and CNN and TL employed. Section 3 presents the
results. Discussion and summary are in Section 4.

2 Methods and Data

2.1 Framework Overview

The simulations in this study are facilitated by pyqg [Abernathey et al., 2022], a Python library
designed for modeling the dynamical behavior of quasi-geostrophic (QG) systems using pseudo-spectral
methods. QG systems serve as a suitable approximation for the complex equations governing motion
in more realistic ocean models, especially in the limit of high stratification and rotation. They adeptly
represent the formation and evolution of ocean mesoscale eddies. Additionally, QG systems offer better
computational efficiency compared to ocean models or GCMs, making them vital for the broad scope
of this study. We followed the same approach as [Ross et al., 2023]. The methodology detailed in 2.2
repeats their explanations. In section 2.3, the CNN setup is explained along with the method we use
to analyze CNN in spectral space in section 2.4.

2.2 Data Collection and Preprocessing

2.2.1 Background: Idealized Two-Layer Quasi-Geostrophic Model

We utilize a two-layer quasi-geostrophic model provided by pyqg. The prognostic variable of this model
is potential vorticity (PV), indicated as q1 for the upper layer and q2 for the lower layer:

qm = ∇2ψm + (−1)m
f20

g′Hm
∆ψ where m ∈ {1, 2}, (1)

where ψm represents the streamfunction corresponding to the depth Hm, ∆ψ = (ψ1 − ψ2), and ∇ =
⟨ ∂∂x ,

∂
∂y ⟩ denotes the horizontal gradient operator. The zonal and meridional velocities for each layer

(m ∈ {1, 2}) can be derived from the streamfunction as um = −∂ψm

∂y and vm = ∂ψm

∂x , respectively. The

horizontal velocity vector is expressed as um = (um, vm). We employ the beta-plane approximation,
where the Coriolis acceleration f varies linearly with latitude (y), described by f = f0 + βy. Here, g′

represents the reduced gravity.
The prognostic equations, solved in the spectral space, are:

∂q̂m
∂t

= −Ĵ(ψm, qm)− ikβmψ̂m − ikUq̂m + δm,2rekκ
2ψ̂2 + ˆssd, (2)
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where ∂
∂t represents the Eulerian time derivative, (̂·) denotes the Fourier transform, and κ =

√
k2 + l2

is the radial wavenumber, with k and l as the zonal and meridional wavenumbers, respectively. The
horizontal Jacobian is defined as J(A,B) = AxBy − AyBx. The mean PV gradient in each layer is

given by βm = β + (−1)m+1 f2
0

g′Hm
∆U , where ∆U = U1 − U2 indicates a fixed mean zonal velocity

shear between the two fluid layers. U1 and U2 are the mean zonal velocities at the upper and lower
levels, respectively. The Dirac delta function δm,2 signifies that the bottom drag, with coefficient rek,

is applied solely to the second (bottom) layer. q̂ and ψ̂ are related to each other via

(M− κ2I) ·
[
ψ̂1

ψ̂2

]
=

[
q̂1
q̂2

]
, where M =

[
− f2

0

g′H1

f2
0

g′H1

f2
0

g′H2
− f2

0

g′H2

]
, (3)

where either q or ψ can independently identify the state of the system. We will define ssd below.

2.2.2 Numerical Solver Setup

The model is solved pseudospectrally [Fox and Orszag, 1973] by transforming the velocity field and
PV to real space, calculating the Jacobian using real-space PV fluxes, and then transforming back to
spectral space. The scale-selective dissipation (ssd), included as an additive term in Equation 2, is a
highly scale selective operator that attenuates the largest 1/3 of the spatial wavenumbers of all terms
on the right-hand side of Equation 2. Specifically, the operator is an exponential filter, Fc(κ), defined
as:

Fc(κ
∗) =

{
1, κ∗ < κc

e−23.6(κ∗−κc)
4

, κ∗ ≥ κc
(4)

where κ∗ is the non-dimensional radial wavenumber and κc = 0.65π, is the cut-off wavenumber. After
each time step, q̂m(κ∗) values are multiplied by Fc(κ

∗). Similar to the 2/3 dealiasing rule [Orszag,
1971], this filtering scheme reduces aliasing errors in the same range of scales while also providing the
numerical dissipation necessary for stable simulations.

We configure the model with a doubly periodic square domain of size L = 106 m, featuring flat
topography and a total depth of H = H1 + H2. The model includes a fixed mean zonal velocity
shear, ∆U , with U2 = 0. For our different cases, we use different deformation radii rd, which is the

characteristic scale for baroclinic instability and mesoscale turbulence, defined as r2d =
g′

f2
0

H1H2

H .

We select the model’s grid size, ∆x, based on the deformation radius. To accurately resolve
mesoscale eddies, rd/∆x must be greater than 2 [Hallberg, 2013]. For rd = 20, 000 m, a 256× 256 grid
with ∆xhires = L/256 = 3906.25 m yields rd/∆xhires = 5.12, ensuring mesoscale turbulence is well-
resolved. Conversely, a 64× 64 grid with ∆xLowres = L/64 = 15, 625 m results in rd/∆xLowres = 1.28,
which is insufficient to realistically simulate mesoscale eddies. In this lower-resolution setup, param-
eterization is necessary to account for the unresolved SGS processes. All simulations are conducted
with a numerical timestep of ∆t = 1 hour.

We consider four different cases categorized into two flow regimes to test our parameterization’s
generalization ability shown in Fig. 2: the eddy configuration, which leads to the formation of isotrop-
ically distributed eddies, and the jet configuration, which results in the formation of anisotropic jets.
These configurations exemplify the two primary scaling regimes of meridional heat transport [Gallet
and Ferrari, 2021].

2.2.3 Predicting Subgrid Forcing

We aim to create a mapping from low-resolution velocity (obtained by filtering and coarse-graining the
high-resolution velocity fileds) to the subgrid forcing in potential vorticity, Πqm . First, we quantify the
subgrid forcing by filtering and coarse-graining high-resolution simulations. This approach assumes the
coarsened high-resolution data distribution is similar to low-resolution data for the same data-driven
parameterizations to be applicable. We denote the filtering and coarse-graining operator as (◦̄). The
prognostic equation, after filtering, can be expressed as:

∂q̂m
∂t

= −Ĵ(ψm, qm)− ikβmψ̂m − ikUmq̂m + δm,2rekκ
2ψ̂2 +

ˆssd+ Π̂qm , (5)

5



Let ∂Ht and ∂Lt represent the tendency operators for high- and low-resolution models, respectively.
For any given high-resolution q, its subgrid forcing (encompassing nonlinear advection and numerical
dissipation( [Kent et al., 2016, Porta Mana and Zanna, 2014, Ross et al., 2023, Shevchenko and Berloff,
2021])) is defined as:

Πqm = ∂Ht qm − ∂Lt q̄m. (6)

We calculate Πq by initializing the high- and low-resolution models with q and q̄, respectively, advancing
both models one step with the same ∆t, and then subtracting the low-resolution model’s tendency
from the filtered and coarse-grained tendency of the high-resolution model.

2.2.4 Filtering and Coarse-graining

For data generation, we first coarse-grain and then filter, which are commutative operations for ele-
mentwise spectral filtering. Coarse-graining involves reducing the simulation’s resolution by a factor
of K, specifically by truncating the spatial modes of q̂ to retain only the first 1/K modes. Spectral
filtering typically applies selective decay, diminishing the strength of the highest wavenumbers while
retaining the low-wavenumber components after truncation. For the filtering, we apply the Gaussian
filter to all remaining modes as follows:

ˆ̄qk = q̂k ∗ e−κ
2(2∆xLowres)

2/24 (7)

This is a commonly used filter in SGS modeling [Guan et al., 2022a, Jakhar et al., 2023, Pope, 2000]
where the filter width is chosen to be twice as large as the grid size of the coarse model [Lund, 1997].

2.3 Convolutional Neural Network (CNN) and Transfer Learning (TL)

Building on our previous work [Guan et al., 2022a, 2023, Subel et al., 2023], we develop non-local
data-driven SGS parameterizations for each case by training a CNN. The CNN takes input ūm =
(ūm(x, y), v̄m(x, y)) and predicts Πqm(x, y) as the output, where m ∈ {1, 2} represents the upper
and lower levels. These CNNs consist of 9 sequential convolution layers, with 7 hidden layers each
containing 642 kernels of size 5×5. The outputs of a convolutional layer, called activations, are denoted
for channel j of layer ℓ as gjℓ ∈ RNLowres×NLowres , and the activation equation is:

gjℓ (u) = σ

∑
β

(
W β,j
ℓ ⊛ gβℓ−1(u)

)
+ bjℓ

 . (8)

Note that NLowres = 64 for all cases. Here, ⊛ represents spatial convolution and σ(◦) = max(0, ◦) is

the ReLU activation function (absent in the linear output layer, ℓ = 9). W β,j
ℓ ∈ R5×5 is the weight

matrix of a convolution kernel, and bjℓ ∈ R64×64 is the regression bias, a constant matrix. For all layers,
β ∈ {1, 2, . . . , 64} and j ∈ {1, 2, . . . , 64} except in the input layer (ℓ = 1), where β ∈ {1, 2, 3, 4}, and
in the output layer (ℓ = 9), where j ∈ {1, 2} as the output has two channels. The kernels’ weights
and biases are the trainable parameters of the NN, collectively referred to as θ ∈ Rp. Note that
gin = g0 = ūm and gout = g9 = Πqm .

We refer to CNNs that are trained from scratch on each Casei and tested on Casej as BNNi,j . All
the trainable parameters θ are randomly initialized. BNNs are trained with 40,000 samples from each
case. Training is conducted for 100 epochs with a starting learning rate of lr = 10−3 and a scheduler
that reduces the learning rate by factor of 10 when metrics stop improving to avoid overfitting on each
dataset. We used a batch size of 8 and the ADAM optimizer [Kingma and Ba, 2014]. The mean-
squared error (MSE) was used as the loss function, and the model performance was evaluated using
the metrics introduced in section 2.5.

For TL, we initialize the weights and biases of BNN0 and retrain only the first hidden layer (ℓ = 2)
with different percentages of data from the target case, using the same setup for learning as the BNNs.
The models utilizing transfer learning from Casei to Casej are referred to as TLNNi,j . This approach
allows us to use less data to achieve good performance on the target case. The schematic of the CNN
used in parameterization, its architecture, and its input/output in physical space are shown in Fig. 1.
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Transfer Learning
ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4 ℓ = 5 ℓ = 6 ℓ = 7

Physical space

Spectral space

a.

b.

Figure 1: Row a displays the schematic of the CNN and inputs and outputs in physical space. Each
TLNN is initialized with the weights of BNN0, and only the first hidden layer (ℓ = 2) is re-trained
using a smaller percentage of data. The inputs are the meridional and zonal velocities of the upper
and lower levels, and the output is the subgrid forcing for each level. Row b shows the inputs and
outputs of the CNN in spectral space, with the spectrum meridionally averaged

2.4 Spectral Analysis of CNNs

The Fourier transform operator F is defined as

ˆ(◦) ≡ F (◦) , F : R64×64 7−→ C64×64. (9)

To express convolution in the spectral domain, we first note that each kernel W β,j
ℓ ∈ R5×5 can be

extended to the full domain of the input by zero-padding, a common practice for faster training
[Mathieu et al., 2013], resulting in W̃ β,j

ℓ ∈ R64×64. Using the convolution theorem, we then obtain

W β,j
ℓ ⊛ gβℓ−1 = F−1

(
ˆ̃
W

β,j

ℓ ⊙ ĝβℓ−1

)
, (10)

where ⊙ is element-wise multiplication.

Next, we define linear activation hjℓ , which contains all the linear operations in Eq. (8):

hjℓ =
∑
β

(
W β,j
ℓ ⊛ gβℓ−1

)
+ bjℓ . (11)

Even though Eq. (8) is nonlinear due to the ReLU function, its Fourier transform can still be de-
rived analytically. By applying Eqs. (10) and (11) and utilizing the linearity property of the Fourier
transform, we obtain

ĝjℓ =
∑
α

(
e−i(kxxα+kyyα)

)
⊛ ĥjℓ =

∑
α

(
e−i(kxxα+kyyα)

)
⊛

∑
β

(
ˆ̃
W

β,j

ℓ ⊙ ĝβℓ−1

)
+ b̂jℓ

 , (12)

where (xα, yα) ∈
{
(x, y) | hjℓ(x, y) > 0

}
and i =

√
−1. The sum over α arises from the ReLU function,

involving grid points where hjℓ > 0. Note that e−i(kxxα+kyyα) represents the Fourier transform of the

Heaviside function at (xα, yα). Also, since bjℓ is a constant matrix, b̂jℓ is non-zero only at kx = ky = 0
(and is real).

Equation (12) indicates that the spectrum of ĝjℓ is influenced by the spectrum of ĝjℓ−1, the spectra

of the weights
ˆ̃
W

β,j

ℓ (and constant biases b̂jℓ), and the regions in the physical space where hjℓ > 0. With

TL, updating the weights and biases changes both their spectra and the regions where hjℓ > 0.
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To understand how TL enables the TLNN to capture the physics of different cases, we perform

extensive analysis on how the weights (
ˆ̃
W

β,j

ℓ ) and the spectrum of all layers (ĝβℓ ) change during TL.
This allows us to explain how the distribution of kernels affects the shape of the spectrum and how
these spectral changes propagate through the layers to the final layer where the loss function is applied.
This process highlights the adaptation of weights to the physics and demonstrates how TL can adjust
the weights to be consistent with the physics of the target system.

2.5 Offline metrics

We use several metrics to evaluate the model’s a priori performance. The first metric is root mean
square error, defined in Eq. (13), which assesses the optimality of the mapping between input and
output. Here, N is the number of test samples, and ∥·∥2 represents the L2 norm. This ensures the
model prediction and true output are close in the L2 space.

RMSEΠqm
=

√√√√ 1

N

N∑
i=1

∥∥∥Π̄pred
qmi

− Π̄true
qmi

∥∥∥2
2

/
1

N

N∑
i=1

∥∥Π̄true
qmi

∥∥2
2
. (13)

The correlation coefficients (CC), averaged over N test samples, assess the CNN model’s ability to
capture the structure of the true data

CCΠqm
=

⟨
(
Π̄predqm − ⟨Π̄predqm ⟩

) (
Π̄trueqm − ⟨Π̄trueqm ⟩

)
⟩√

⟨
(
Π̄predqm − ⟨Π̄predqm ⟩

)2

⟩
√
⟨
(
Π̄trueqm − ⟨Π̄trueqm ⟩

)2⟩ , (14)

where ⟨·⟩ represents domain averaging.
We evaluate models performance by calculating the RMSE between the predicted output spectrum

and the true output spectrum

Spectrum RMSE =
1

Nkx

∑
kx

∣∣∣∣∣ ˆ̄Πpred
qm (kx)− ˆ̄Πtrue

qm (kx)

ˆ̄Πtrue
qm (kx)

∣∣∣∣∣ . (15)

Spectrum RMSE is essential for ensuring that the model not only predicts accurate values but also
preserves the spectral characteristics of the data.

3 Results

In this section, we present and discuss the results of our study. We start by examining the distinct
physical and spectral characteristics of different cases. Subsequently, we focus on the generalization
capabilities of BNN and the effectiveness of TL to enhance these capabilities both a priori and a
posteriori. Furthermore, we emphasize the significance of spectral RMSE in assessing the model’s
generalization performance. Additionally, we examine the CNNs in spectral space to observe the
impact of retraining one layer on subsequent hidden-layer activation spectra. This section also explains
the role of weights as spectral filters and shows and quantifies how kernel distributions optimally adjust
in response to changes in training data.
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Figure 2: Comparative analysis of the base system and three target configurations using 10 years
of simulation data. Row a: Snapshots of potential vorticity showcasing the spatial distribution of
eddies in each system—eddies display a roughly isotropic structure, while jets exhibit more organized
zonal alignment. Row b: Meridionally averaged spectra of velocity profiles at the upper level. Row
c: Meridionally averaged spectra of velocity profiles at the lower level. Row d: Meridionally averaged
spectra of subgrid forcing at both levels. In all spectral panels, kx represents the zonal wavenumber,
and spectra are averaged over the meridional direction

3.1 Overcoming BNN’s Generalization Limits: How TL Bridges the Gap

Before explaining the physics behind TL, we need to quantify the improvement in parameterization
performance due to TL. Here, we discuss the ways TL improves parameterization and metrics that
can best assess the model’s generalization. By examining Fig. 2 (a), we observe that adjusting the
parameters of Eq. (2) leads to different physical characteristics. When examining the potential vorticity
snapshots of the upper level (q1) shown in Fig. 2 (a), isotropic eddies are formed for Case 0. The
same system’s behavior with larger eddies is observed by increasing the deformation radius (Case 1).
Altering β, δ, and rek leads to creating highly anisotropic jets with varying numbers (Case 2 & 3).
Different physical characteristics are reflected in different spectra, meaning that cases differ in both
large and small scales. Figures 2 (b, c, and d) illustrate the distinct physics governing each system,
resulting in differences in velocity and subgrid forcing spectra.

Figure 3 (a) shows that, when provided with sufficient data, the BNNi,i performs best, within
uncertainty, across all metrics. However, when tested on different cases, BNN0,i struggles to generalize
to other systems with different spectral properties, leading to sub-optimal performance. In particular,
BNN0,i fails to generalize across all metrics, except for the correlation coefficient in the upper layer,
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which remains comparable to BNNi,i. Furthermore, there is minimal change in the CC of the subgrid
forcing at the upper level when more data is integrated into TL. However, the RMSE consistently
decreases as more data is included in TL. Spectrum RMSE offers more valuable insights into the
model’s generalization capabilities. It consistently worsens at both upper and lower levels when the
model is extrapolated and improves at both levels when TL is applied with 2% and 10% of target
system data. These results demonstrate that TL enhances the generalization capability of BNN0 using
only a small fraction of the data needed to train a new BNNi from scratch.

Figure 3 (b) shows the ratio of the output spectrum to the FDNS spectrum for each case. BNN0,i

exhibits the largest gap relative to FDNS, while TL progressively closes this gap as more re-training
data is used. This further confirms that TL helps align the spectral characteristics of the learned
subgrid forcing with that of the true system.

As shown in Fig. 4, the TLNN can rectify mismatches in the kinetic energy (KE) spectra wherever
there is room for improvement. Specifically, Fig. 4 (a) shows that TLNN0,i improves the KE spectra
at high wavenumbers compared to BNN0,i, with both parameterizations performing better than the
simulation without any SGS parameterization. In contrast, Fig. 4 (c) shows that all parameterizations
perform equally well in that case, and all surpass the no-parameterization baseline. Fig. 4 (e) demon-
strates that TLNN0,i better captures the KE spectra at both low and high wavenumbers compared to
BNN0,i.

The scale-selective dissipation (ssd) introduced in Section 2.2.2 can obscure the positive effects of
TL in improving online results. This is evident in the PDFs of q1 in Fig. 4 (b, d, f), where even
the baseline simulation without SGS parameterization captures the mean flow well. Nonetheless, TL
proves beneficial wherever there is room for improvement. For example, Fig. 4 (d) shows that TLNN0,i

improves the PDF tails in Case 2, highlighting its potential to fine-tune models efficiently for extreme
events with limited re-training data across different dynamical regimes.

3.2 Why Does BNN Fail to Generalize? How Does TL Solve Generalization
Issues?

Analyzing the CNN in the spectral space provides a clearer distinction between different physical
systems [Pahlavan et al., 2024b, Subel et al., 2023]. When BNN0 is applied to out-of-distribution
inputs, it underestimates the channel-averaged, meridionally averaged activation spectrum relative
to BNN0,0, whose weights are tuned for in-distribution data. This underestimation begins in early
layers and propagates through the network, ultimately resulting in a mismatch with the FDNS output
spectrum.

Figure 5 illustrates this mechanism. Row a demonstrates that, when BNN0,i is tested with out-
of-distribution data, underestimation of the spectral content is evident across all layers compared to
BNN0,0. This leads to a mismatch in the output spectrum relative to FDNS.

However, applying TL by re-training only the second hidden layer in TLNN0,i helps close this gap.
As seen in Rows b to d of Fig. 5, this localized re-training causes an upshift in the spectrum at layer
2. While this adjustment may be subtle at ℓ = 2, it propagates through subsequent layers, leading to
an output spectrum that better matches the FDNS. The behavior of TLNN0,i becomes more similar
to that of BNNi,i, which serves as the ideal case for each target dataset.

Figure 5 thus highlights how targeted re-training of just one layer can realign the CNN’s internal
spectral response with the physics of the new system, enabling generalization across dynamical regimes.

3.3 Spectral Filters in Action: The Role of Weights in Generalization

The weights within a CNN act as spectral filters that influence how information at different spatial
scales is processed through the network. To better understand what controls the spectral content of
activations gℓ, we analyze the convolutional kernels in Fourier space—a powerful approach widely used
in understanding the physics of turbulence.

We examine all 642 kernels in the second convolutional layer. Since direct visualization is impracti-
cal, we apply the k-means clustering algorithm to identify representative cluster centers. As shown in
Fig. 6, the cluster centers across all four cases consistently represent combinations of low-pass, Gabor,
and high-pass filters. This behavior is largely independent of whether the training data are isotropic
or anisotropic, and does not, on its own, distinguish between different physical systems. Nevertheless,
the spectral magnitudes of the weights exhibit structured peaks at specific wavenumber pairs (kx, ky).
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To analyze how the distribution of kernel weights adapts during transfer learning, we identify the

wavenumber pair (kx, ky) where the absolute value of each Fourier-transformed, padded kernel

∣∣∣∣ ˆ̃W β,j

2

∣∣∣∣
reaches its maximum. This gives a spectral ”footprint” of each filter’s dominant response. We focus
specifically on layer 2—the only layer re-trained during TL—while keeping all other layers frozen (as
discussed in Section 3.2). This setup allows us to isolate and quantify how the second layer adjusts
when adapting to out-of-distribution samples.

Histograms of these dominant wavenumber pairs are shown in Fig. 7 (b–e) for both BNN0 and
TLNN0,i. Most kernels behave as low-pass or high-pass filters, while Gabor filters appear less frequently
and without a dominant orientation. The saturation in the center and corners of each histogram
indicates a higher concentration of low-pass and high-pass filters.

To further analyze how these maxima change under TL, we divide the kernels into two categories:
1. Unchanged maxima locations: For filters whose dominant wavenumber remains the same after

TL (Fig. 7 (f)), we compute the mean ratio of spectral amplitude at the maximum before and after
re-training. As shown in Fig. 7 (g), this amplitude increases consistently, aligning with the upshift in
the activation spectra observed in Fig. 5 (b–d).

2. Shifted maxima locations: For kernels whose dominant wavenumber changes after TL (Fig. 7

(h)), we compute the radial wavenumber κ =
√
k2x + k2y before and after TL to determine how these

shifts affect the scale preference of the filters. Fig. 7 (i) shows that TL shifts many of these maxima
toward lower wavenumbers, indicating a stronger focus on large-scale features. This behavior is con-
sistent with the decaying nature of the activation spectra and supports the idea that adapting to new
dynamics requires capturing the dominant large-scale structure.

4 Discussion

In Section 3, we introduced a non-intrusive approach to explain how kernels adapt during TL with
minimal data. A detailed analysis of the weights in BNNs and TLNNs reveals that the learned kernels
function as low-pass, Gabor, and high-pass filters, regardless of whether the training data are isotropic
or anisotropic. This study presents the first comprehensive effort to relate the distribution of these
spectral filters to the spectral characteristics of isotropic and anisotropic flows in the context of SGS
modeling.

The methodology proposed here advances our understanding of what is learned during TL from
physical data, particularly in high-dimensional systems. Rather than viewing TL purely as an op-
timization task, this study aims to uncover the underlying mechanisms that govern learning from
limited data. For instance, our findings suggest that spectral bias [Chattopadhyay and Hassanzadeh,
2023, Chattopadhyay et al., 2024, Gray et al., 2024, Lupin-Jimenez et al., 2025] in NNs—where filters
underrepresent high-wavenumber content—can be partially explained by how weights evolve during
training.

While this analysis assumes that filters have a single global maximum, some kernels exhibit multiple
significant local maxima that pass activation at different scales. Although this assumption simplifies
the analysis, more detailed studies could provide a more precise understanding of what is learned
during TL. Additionally, while clustering offers a starting point for explaining the learned kernels
as spectral filters, more is needed to fully explain how these kernels process information at different
scales. Furthermore, using radial wavenumber to analyze kernel spectra distribution may overlook
directionality, necessitating further research to address this limitation. It is also important to note the
role of numerical dissipation in the solver, which may obscure the improvements brought by TL.

Although our findings are likely specific to the test cases, network architecture, and SGS pa-
rameterization studied here, the analysis methods are broadly applicable. They can be extended to a
wide range of base–target system combinations and applications, including data-driven forecasting and
training set blending. The comprehensive analysis introduced here holds potential for many multi-scale
dynamical systems applications.

In conclusion, we examined the performance of CNN-based parameterizations for quasi-geostrophic
turbulence, focusing on various offline metrics to determine which best explains generalization perfor-
mance. By analyzing CNNs in the spectral space, we uncovered why generalization fails in these
systems, specifically by examining activation spectra and their propagation through subsequent layers.
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To understand how TL can improve this sub-optimal performance, we investigated how kernel distri-
butions adapt to the training dataset. Identifying the quantity and intensity of these filters before and
after TL allowed us to explain how TL effectively bridges the generalization gap.
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Case 1

Case 2

Case 3

b.

a.

Figure 3: A priori evaluation of CNN parameterization. Panel a: CC, RMSE, and spectrum RMSE
for upper and lower levels, comparing BNNi,i, BNN0,i, and TLNN0,i with different re-training data
percentages across three target cases. Panel b: Ratio of output spectrum to FDNS spectrum for each
case
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a. b.

c.
d.

e.
f.

Figure 4: A posteriori evaluation of CNN parameterization. Panels a, c, and e: Kinetic energy
spectra from 10-year simulations using BNN0,i and TLNN0,i across different cases. Panels b, d, and
f : PDFs of potential vorticity at the upper level for the same simulations
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Case 0 Case 1 Case 2 Case 3
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Figure 6: Cluster centers of filter spectra obtained by applying the k-means algorithm to the 642

padded weight matrices

∣∣∣∣ ˆ̃W β,j

ℓ

∣∣∣∣ from layer 2 of BNN0 and TLNNi. The number of cluster centers

varies in each case as we increase the number of cluster centers until qualitatively similar patterns are
observed
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Comparative Analysis of Kernel Maxima Across Base and Target Systems
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Figure 7: Schematic and analysis of kernel changes in spectral space. Panel a: Identification of the
642 wavenumber pairs corresponding to the maxima of the padded and Fourier-transformed layer-2

kernels

∣∣∣∣ ˆ̃W β,j

ℓ

∣∣∣∣. Panels b–e: Histograms of these wavenumber pairs for BNN0 and TLNN0,i. Panel

f : Wavenumber pairs whose maxima locations do not change after TL. Panel g : Change in the mean
amplitude ratio at the maxima. Panel h: Wavenumber pairs whose maxima locations shift after TL.
Panel i : Comparison of change in radial wavenumber between base and target systems
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