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Summary
Numerical computer models play a key role in Earth science. They are used to make predictions on timescales 
ranging from short-range weather forecasts to multi-century climate projections. Computer models are also used 
as tools to understand the past, present, and future climate system, enabling numerical experiments to be carried 
out to explore physical processes of interest. To understand the behavior of these models, their formulation must 
be appreciated, including the simplifications and approximations employed in developing the model code.

Foremost among these approximations are the parametrization schemes used to represent subgrid scale physical 
processes. A useful mathematical formulation of parametrization often involves Reynolds averaging, whereby a 
flow described by the Navier–Stokes equations is separated into a slow, resolved component and a fast, unresolved 
component. On performing this decomposition, the component representing the unresolved, fast processes is 
shown to impact the resolved scale flow: It is this component that a parametrization seeks to represent.

Parametrization schemes encode the understanding of the salient physics needed to describe processes in the 
atmosphere and ocean and other components of the Earth system, such as land and ice. For example, finding the 
relationship between the Reynolds stresses and the mean fields of the system is the turbulence closure problem, 
which is common to both atmospheric and oceanic numerical models. Atmospheric parametrization schemes 
include those representing radiation, clouds and cloud microphysics, moist convection, gravity waves, and the 
boundary layer (which encompasses a representation of turbulent mixing). In the ocean, eddy processes must also 
be parametrized, including stirring and mixing due to both sub-mesoscale and mesoscale eddies. The similarities 
between the parametrization problem in atmospheric and oceanic models facilitate transfer of knowledge between 
these two communities, such that promising avenues of research in one community can in principle readily be 
adapted and adopted by the other.
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Introduction

The climate system is characterized by a multitude of phenomena on a wide range of spatial and 
temporal scales in the ocean and atmosphere (figure 1). Atmospheric processes include cloud 
microphysics (less than a few centimeters), small-scale turbulence (<1 m), clouds and convective 
storms (1–20 km), fronts (10–1,000 km), cyclones (1,000 km), and large-scale planetary waves 
(5,000 km). In the ocean, processes include mixing and internal waves (<1 km), sub-mesoscale to 
mesoscale eddies (1–100 km), zonal jets (100s km), and basin-scale circulations (1,000s km).
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Figure 1. Continuum of scales: schematic of typical length scales and spatial scales for (a) the atmosphere and (b) 
the ocean. The shaded darker gray region indicates scales unresolved at typical numerical weather prediction 
model resolution (10 km spatial scale, 5 min time step). At a typical climate model resolution (100 km spatial scale, 
20 min time step), the pale gray shaded regions are also unresolved.

Sources: Adapted from UCAR COMET Program <https://www.comet.ucar.edu/> and Dickey (2001).

The continuous interaction between these phenomena across scales governs atmosphere, ocean, 
and climate dynamics. For example, in the atmosphere, the formation of mid-latitude cyclones 
enhances temperature gradients leading to the generation of fronts, which support convective 
storms (e.g., Hobbs et al., 1980). In the ocean, sub-mesoscale eddies generated by large-scale 
atmospheric forced mixed layer instabilities are important for initiating and sustaining the 
mesoscale eddy field, with impacts on the seasonality of ocean dynamics (Sasaki et al., 2014). In 
the tropics, during an oceanic El Niño event, anomalous localized atmospheric winds trigger the 
propagation of planetary-scale waves in the ocean and the spreading of warm surface 
temperatures, which then modify atmospheric moist convection, the Walker circulation, and 
precipitation patterns (e.g., Rasmusson & Wallace, 1983).

With regard to simulating weather and climate, resolving all scales of motion in the ocean and 
atmosphere is not feasible (Balaji, 2021). Climate simulators are truncated versions of the 
equations of motion for the ocean and atmosphere systems. These simulators must, therefore, 
parametrize processes below the scales resolved—breaking the continuum of scales in the ocean 
and atmosphere (see figure 1).

Parametrization is designed to represent the effect of unresolved, subgrid-scale processes on the 
resolved scale state. Subgrid-scale processes are separated into a number of conceptual physical 
phenomena, such as atmospheric convective clouds or ocean mesoscale eddies, each of which is 
encoded by a separate parametrization scheme. The main atmospheric and oceanic 
parametrizations are illustrated in Figure 2. These parametrization schemes are local in 

https://www.comet.ucar.edu/
https://www.comet.ucar.edu/
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horizontal space, allowing for efficient parallelization of the model code, and are designed to 
represent subgrid processes occurring within a single vertical column of the atmosphere or ocean. 
These parametrizations of subgrid processes are often derived from first principles (e.g., Arakawa 
& Schubert, 1974) or from statistics based on a data-driven approach (Monin & Obukhov, 1954). A 
combination of both these approaches is also possible (Schneider, Teixeira, et al., 2017).

Figure 2. Atmospheric and oceanic parametrization schemes. Within an atmospheric column, typical 
parametrization schemes include moist convection, clouds and cloud microphysics, radiation, turbulence, 
turbulent exchange with the land and ocean, and both orographic and non-orographic gravity wave drag. Within an 
oceanic column, typical parametrization schemes include vertical diffusion, sub-mesoscale and mesoscale eddies, 
turbulent exchange with the atmosphere, and cross-thermocline transports.

Source: Authors



Parametrization in Weather and Climate Models

Page 4 of 44

Printed from Oxford Research Encyclopedias, Climate Science. Under the terms of the licence agreement, an individual user may 
print out a single article for personal use (for details see Privacy Policy and Legal Notice).
Subscriber: New York University Libraries; date: 29 April 2023

Even simple approaches to parametrization can be effective. For example, moist convective 
adjustment schemes represent convection as a process that acts to remove instability from the 
atmosphere. In such a scheme, the moist convection parametrization simply relaxes temperature 
and humidity fields toward a prescribed vertical profile (Betts, 1986; Manabe et al., 1965). Note 
that in addition to representing an important process, the moist convection parametrization is 
necessary for the model simulations to remain stable. Similarly, in the ocean, convective 
adjustment instantaneously mixes density (temperature and salinity) within the water column 
(Klinger et al., 1996). More sophisticated (and more common) approaches build a conceptual 
model of the small-scale processes in order to estimate the feedback onto the large scale. For 
example, an “entraining plume” model forms a core component of atmospheric convective cloud 
mass-flux parametrizations (e.g., Arakawa & Schubert, 1974; Bechtold et al., 2001; Yano, 2014).

At the core of the parametrization problem is the fact that the prognostic variables on the 
resolved scale are unable to fully constrain the subgrid-scale motions (Figure 3). In light of this 
caveat, traditional methods for parametrization are designed to represent the mean effect of the 
small-scale processes given the large-scale state. If a scale separation existed, and provided the 
grid box were large enough to contain many small-scale motions, the mean of all possible small- 
scale processes would be a good estimate of the true subgrid tendency (as assumed in, e.g., 
Arakawa & Schubert, 1974). The lack of scale separation in both the atmosphere and the ocean 
means that this approach is one source of error in climate simulators (Berner et al., 2017; 
Dorrestijn et al., 2013).

Figure 3. Streamlines representing an oceanic flow field in a typical (a) low-resolution model and (b) high- 
resolution model. The model grid is schematically represented as black lines. The low-resolution model is not 
simply a smoothed version of the high-resolution model. The poor representation of sub-grid and partially resolved 
eddies degrades the large-scale state of the low-resolution model.

Source: Authors
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Many errors (biases) in climate models can be traced to parameterizations. For example, biases in 
atmospheric jet latitude and orientation have been traced to the representation of orographic 
drag in climate models (van Niekerk et al., 2017). However, in general it can be difficult to trace 
model errors to their source. Geographically, small-scale errors can rapidly amplify and cascade 
to larger scales, impacting remote regions as illustrated by these examples. Within the model, the 
different parametrization schemes interact with each other, with compensating errors from 
different parametrization schemes further complicating the picture (e.g., Martin et al., 2010). 
Numerical models are used at a wide range of resolutions, from the 250-km grid boxes used in 
paleoclimate models (e.g., Sueyoshi et al., 2013) to 50-km atmospheric grid boxes used for high- 
resolution climate simulations in Coupled Model Intercomparison Project Phase 6 (CMIP6; e.g., 
Haarsma et al., 2016) and sometimes finer for the ocean (e.g., Griffies et al., 2015). Global weather 
forecasting models can reach resolutions of order 10 km in the atmosphere (Bauer et al., 2015). 
Many processes are unresolved and must be parametrized in both weather and climate models, as 
shown in Figure 1. This puts great demands on parametrization schemes because the same 
parametrizations are often used across the whole spectrum of model resolutions. Some 
atmospheric parametrization schemes are virtually unchanged as resolution changes, including 
radiation or cloud microphysics (Bauer et al., 2015). However, others, such as moist convection or 
boundary layer processes, are scale dependent and behave differently across different model 
resolutions (Han et al., 2017; Holloway et al., 2014), depending on the relative length scales of the 
grid resolution and the process of interest (Wyngaard, 2004). It is possible to design such 
schemes to be scale-aware, such that they perform well across different resolutions. This is 
usually achieved through including resolution-dependent parameters, such as subgrid-scale 
dissipation in ocean and atmosphere models (Smagorinsky, 1963). Scale-aware parametrizations 
are in demand in the latest generation of ocean climate models (Bachman et al., 2017) with 
increased horizontal resolution. This is particularly the case for models with an unstructured grid 
and variable meshes, in which the resolution varies as a function of location, offering 
considerable challenges for implementation (Caldwell et al., 2019; Wang et al., 2014).

To conclude this introduction, note that high-resolution atmospheric models used for regional 
weather prediction (Schalkwijk et al., 2015) and process understanding (Stevens et al., 2020), and 
the “digital twins” used for climate policy development (Bauer et al., 2021), can be used at ultra- 
high resolutions of hundreds of meters through to a few kilometers. Yet even at these ultra-high 
resolutions, a range of processes must still be parametrized, including turbulence, shallow 
convection, radiation, and cloud microphysics (see figure 1): Weather and climate models will 
always include subgrid processes that need to be parametrized.

From Physical Equations to Numerical Models: Resolved Scale Dynamics

Constructing a climate model involves solving partial differential equations on a discrete (quasi-) 
regular grid in space, and at discrete points in time, on a sphere. A parametrization scheme 
represents the impact of unresolved processes in space and time on the resolved scale flow: This 
is also achieved in a discrete rather than in a continuous way by mapping the discretized grid- 
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point fields forward in time. To understand how to design a parametrization scheme, it is 
necessary to understand what a grid-point field represents. The three main frameworks for 
solving the dynamical equations of motion are therefore considered in turn.

Finite volume models predict the integrated value of a variable over the volume of the grid cell 
(Machenhauer et al., 2009). Such models make use of the divergence theorem to estimate surface 
fluxes across the cell surfaces and therefore conserve energy, mass, and momentum (figure 4). 
Finite volume models therefore explicitly represent the grid-box average of the prognostic 
variables at a particular time. In contrast, finite difference or grid-point models define a spatial 
grid on which the equations of motion are solved (e.g., the Met Office Unified Model Global 
Atmosphere component; Walters et al., 2019). This gives the value of the prognostic variables at 
those points (see figure 4). A key benefit of this approach is its flexibility, allowing for both 
limited-area and global models, and also enabling resolution to vary across the model domain. 
Spectral models represent the solution to the equations of motion as a sum over a set of orthogonal 
spectral basis functions (e.g., the atmospheric component of EC-Earth3; Döscher et al., 2021) (see 
figure 4). The sum is truncated to retain only the leading order wavenumbers in both meridional 
and zonal directions. The equations are numerically integrated to propagate the coefficients in 
the summation forward in time. Subgrid parametrized processes must be represented in physical 
space, necessitating a transform between spectral and grid-point space at every time step. Note 
that finite element methods, which are occasionally used in atmosphere–ocean modeling, are 
analogous to spectral models in that they represent climatological fields as a sum over basis 
functions (e.g., the Finite Element Sea Ice-Ocean Model, Wang et al., 2014). Whereas both finite 
difference and spectral models represent the value of prognostic variables at a specific point in 
both space and time, a model with a particular resolution can only represent features with scales 
greater than four to eight times the grid increment (Abdalla et al., 2013). The grid-point fields are 
therefore implicitly smoothed compared to the “truth.” A grid-point field from such a model 
must therefore also represent spatial averages in some sense.
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Figure 4. Schematic of three different approaches to discretize the Navier–Stokes equations of motion in weather 
and climate models. Consider discretizing the diffusion equation. (a) The finite volume approach makes use of the 
divergence theorem to predict the value of variable  integrated over the grid box. (b) The finite difference 
approach represents the variable  at discrete points in space. (c) Spectral and finite element methods represent 
the variable  using a sum over a set of basic functions, where  is a test function.

Source: Authors

Integrating in time propagates the prognostic fields forward from t to t + δt. A parametrization 
scheme is thought of within this framework, as providing the subgrid contribution needed to map 
the resolved scale fields forward from one timestep to the next. Although the resolved field in a 
finite volume model unambiguously represents an instantaneous value, it is not clear whether a 
finite difference or spectral model truly represents an instantaneous field at each timestep 
because the arguments used to justify thinking in terms of a spatial filtering can also be used to 
justify a temporal average. However, although spatial averaging is commonly used to derive 
parametrizations and to subsequently couple parametrization schemes to the resolved scale 
dynamics, considering the implications of temporal averaging is rare (Khairoutdinov et al., 2005; 
Tang et al., 2017).

From Physical Equations to Numerical Models: Subgrid Physics

Before discussing specific examples of parametrization schemes in the atmosphere and ocean, 
this section introduces the mathematical ideas needed to understand the parametrization 
problem. The key parametrizations required by climate models are then outlined in the sections 
on “Atmospheric Parametrizations” and “Ocean Parametrizations,” before addressing one in 
more detail: this article focuses on the turbulent boundary layer (BL) as an important unresolved 
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(1)

(2)

(3)

process common to atmosphere and ocean models. Furthermore, turbulent processes must be 
parametrized regardless of the chosen resolution of the model, whether a 100-km resolution 
climate model or a 100-m resolution large eddy simulation. For a comprehensive review of 
atmospheric parametrization, see Stensrud (2007).

Reynolds Averaging

The essence of parametrization lies in the separation of scales. The separation of scales can be 
performed in many ways.

Reynolds averaging as a common decomposition in turbulence theory is reviewed here. The 
Reynolds decomposition can be written as

where  is a variable of interest, the overbar represents the average of , and the prime represents 
deviations/fluctuations from this average. By definition,

and for two arbitrary variables, this gives

The average is usually taken over an ensemble of realizations, in time or in space. For the 
development of parameterizations, Reynolds averaging allows the flow to be separated into a fast 
(small-scale) and slow (large-scale) component. The fast component is generally viewed as the 
fluctuations due to turbulent eddies which impact the slowly varying and large-scale component 
of the flow. In parametrization development, it is typical to use a temporal average. However, 
note that the decomposition also applies if the averaging was carried out in space, as outlined in 
the section on “From Physical Equations to Numerical Models: Resolved Scale Dynamics.” 
Whereas here averaging in time is considered, because this is the usual theoretical approach used 
in Reynolds averaging, in the Appendix, Reynolds averaging in space is discussed, with a 
particular view to deriving data-driven parametrization schemes.

As an example of the application of this approach, consider the horizontal momentum equations 
for the turbulent BL in the ocean or atmosphere, neglecting forcing and dissipation (for 
simplicity):
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(4)

(5)

(6)

(7)

The three-dimensional velocity and its components are  is the material 

(Lagrangian) derivative,  is the local (Eulerian) derivative,  is the pressure,  is the Coriolis 

parameter, and  is the reference density.

Substituting the Reynolds decomposition (Equations 1–3) into the momentum equations 
(Equations 4 and 5), using the continuity equation, and performing an average with respect to 
time results in the following equations for the slowly evolving flow:

where the overbar on the material derivative is defined as

The terms in the square brackets on the right-hand side of Equations (6) and (7), also denoted as 
 and , represent the influence of the turbulent eddies on the mean flow and are the 

divergence of velocity flux terms, also known as the Reynolds stresses (there are three additional 
terms in the vertical momentum equation). Performing a Reynolds decomposition on other 
equations yields similar terms—for example, terms arising from the temperature equation 
represent the flux of heat within the ocean and/or atmosphere. Finding the relationship between 
the Reynolds stresses and the mean fields of the system is the turbulence closure problem.
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Atmospheric Parametrizations

The formalism of the Reynolds decomposition provides a clear justification of the need for 
parametrization. It can also be used as a basis for certain parametrizations, such as turbulent 
fluxes. However, for the three atmospheric parametrization schemes outlined in this section, 
alternative theoretical or conceptual models have proved useful.

Radiation

Solar radiation is the principal source of energy for the climate system. Differential heating of the 
atmosphere is responsible for large- and mesoscale atmospheric circulations, including the 
Hadley circulation, mid-latitude westerlies, monsoon systems, convection, and coastal systems 
(Warner, 2011). A radiation parametrization must provide an estimate of the total radiative 
surface flux, for surface energy balance calculations, as well as the vertical and horizontal 
distribution of radiative heating and cooling rates (Stephens, 1984). The scheme must account for 
radiative absorption and scattering by trace gases including water vapor, carbon dioxide, and 
ozone (e.g., Cagnazzo et al., 2007; Iacono et al., 2000), as well as the interaction of radiation with 
cloud (e.g., Morcrette, Barker, et al., 2008; Shonk et al., 2010). Radiative transfer is well 
understood, but performing the calculation with high accuracy—that is, with fine spectral 
resolution and at high frequency in space and time—is very expensive computationally 
(Morcrette, Mozdzynski, & Leutbecher, 2008; Pincus et al., 2003). The chosen parametrization 
scheme is therefore a balance between numerical accuracy and cost (Pincus & Stevens, 2013). A 
common approach to reducing computational cost is to call the scheme infrequently in space and 
time. Cost can be further reduced through sampling the cloud state and spectral interval 
(Morcrette, Mozdzynski, & Leutbecher, 2008; Pincus et al., 2003).

Cloud Microphysics

Another process that must be parametrized in all atmospheric models is cloud microphysics. This 
covers physics that occurs on the scale of cloud droplets, including processes (e.g., condensation, 
accretion, and deposition) that transfer water between different species, such as vapor, cloud 
droplets, rain droplets, and ice particles (Lin et al., 1983; Murakami, 1990). To calculate the rate 
of these various processes, the number concentrations and sizes (and ideally, shapes) 
corresponding to the different species are required. Bin models approach the problem by dividing 
the range of particle sizes into bins for each species and tracking the number of particles in each 
bin (Khain et al., 2015). Although accurate, this is computationally expensive, so most 
atmospheric models use a computationally efficient bulk model, which assumes a distribution of 
particle size for each species. A key output of both bin and bulk cloud microphysics 
parametrizations is the spatiotemporal distribution of precipitation type and rate (Morrison et 
al., 2009). Cloud microphysics is also of central importance for climate prediction because of 
uncertainties in cloud feedbacks (Tan et al., 2016; Zelinka et al., 2020) and the interaction of 
clouds with natural or anthropogenic aerosol (Gettelman, Hannay, et al., 2019).
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Moist Convection

To resolve atmospheric moist convection, models must have a resolution of order 100 m (Bryan et 
al., 2003), although atmospheric models with resolutions of a few kilometers are often referred to 
as “convection permitting” or “storm resolving” models when run with the convection scheme 
deactivated (Holloway et al., 2012; Stevens et al., 2019). Given these requirements, global weather 
(≈10 km resolution) and climate models both require moist convection to be parametrized: The 
resultant scheme is often referred to as the “convection” scheme. Moist convection must be 
accurately represented both for its impact on extreme weather (Bassil, 2014) and for its 
contribution to driving the global circulation (Donner et al., 2001). Climate models are very 
sensitive to the chosen convection parametrization (Knight et al., 2007), introducing 
uncertainties into simulations of future climate. A wide range of convection parametrization 
schemes have been developed. Although some employ a simple relaxation approach (e.g., Betts, 
1986; Manabe et al., 1965), most modern weather and climate models employ a mass-flux 
scheme (e.g., Arakawa & Schubert, 1974; Gregory & Rowntree, 1990; Kain, 2004; Tiedtke, 1989). 
In its purest form, this approach assumes a convection parametrization can be formulated in 
terms of the flux of mass alone—that is, without also considering the in-cloud vertical velocity or 
convective area fraction. The mass flux at the cloud base can be determined by assuming 
convective quasi-equilibrium—that is, that moist convection responds to counteract large-scale 
forcing over a short enough timescale (Arakawa & Schubert, 1974; Bechtold et al., 2014). The mass 
flux feeds one or more idealized convective clouds called “entraining plumes”: As a plume rises 
from cloud base, it becomes diluted through entrainment of dry environmental air (e.g., Arakawa 
& Schubert, 1974; Bechtold et al., 2001; Yano, 2014). In a bulk model, it is assumed that a single 
plume can be used to represent the effect of all convective clouds within the grid box, whereas in a 
spectral model, convective clouds are grouped together according to their characteristics and 
modeled using a separate plume for each group (Plant, 2010). Key impacts of the convection 
scheme include the restabilization of the atmospheric column, the transport of moisture, and 
convective precipitation. For a comprehensive review of atmospheric moist convection 
parametrization, see Plant and Yano (2016).

Ocean Parametrizations

The development of ocean parametrizations has been led by a range of semi-empirical models 
justifying the impact of the subgrid scales on the large scale. In this section, examples of ocean 
parametrizations and the underlying assumptions employed to derive the parametrizations are 
described.

Air–Sea Fluxes

Air–sea fluxes of momentum and heat at the interface between the ocean and atmosphere are 
critical for driving ocean transport on all scales. These fluxes, which have a vast range of spatial 
and temporal scales, are commonly parametrized using a bulk flux formulation with empirical 
coefficients. Whereas momentum coefficients can include a dependency on the wind speed, 
sensible and latent heat coefficients are empirically based on eddy-correlation fluxes compiled 
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from very few observational field experiments (Cronin et al., 2019). The influence of these fluxes 
can lead to uncertainty in projection of ocean heat uptake and associated thermosteric sea level 
rise (Huber & Zanna, 2017).

Momentum Transport

In ocean models, turbulent (eddy) processes are assumed to redistribute momentum similarly to 
molecular diffusion but on a much larger scale. In other words, subgrid fluxes are assumed to be 
on average down-gradient and act to homogenize the resolved momentum field. The eddy 
viscosity coefficient modulates the strength of the mixing. Such eddy down-gradient 
parametrizations improve the numerical stability of ocean models and dissipate enstrophy at the 
grid scale. The parametrizations of Smagorinsky (1963) and Leith (1968) build upon the eddy 
viscosity concept by constructing the eddy viscosity coefficient to have a functional dependence 
on the resolved flow and are widely used in climate models.

Mesoscale and Sub-Mesoscale Eddies

The main mesoscale eddy parametrization used in climate models is concerned with adiabatic 
buoyancy fluxes in the ocean interior, below the mixed layer. The primary parametrization of 
Gent and McWilliams (1990) and Tréguier et al. (2012) mimics baroclinic instability by mesoscale 
eddies via the flattening of isopycnals. Eddies are assumed to reduce stratification by extracting 
available potential energy from the resolved flow. Redi (1982) also provides a common tracer 
parametrization that assumes eddies mix along isopycnals, rather than horizontally, and can be 
used in conjunction with the parametrization of Gent and McWilliams (1990).

Sub-mesoscales, with scales of 1–10 km, are important within the mixed layer. The 
parametrizations of sub-mesoscale processes currently tackle the restratification in the upper 
ocean caused by diabatic processes (e.g., Fox-Kemper et al., 2008) and are implemented in a 
range of climate models (e.g., Dunne et al., 2020).

Turbulent Vertical Mixing in Oceanic and Atmospheric Boundary Layers

The boundary layer (BL) is defined as the layer of a fluid that experiences the effect of a boundary. 
This section discusses in more detail the parametrization of the two most common BLs: the 
atmospheric planetary BL, which is the part of the troposphere directly influenced by the Earth’s 
surface—namely the land or ocean—and the surface BL of the ocean, which is directly influenced 
by the presence of the atmosphere above. The depth of these layers will be determined, in part, by 
mixing generated from the surface buoyancy and momentum fluxes, resulting in thicknesses that 
can range from hundreds of meters to a few kilometers in the atmosphere (Seidel et al., 2010; Von 
Engeln & Teixeira, 2013) and from tens to hundreds of meters in the ocean (Carton et al., 2008), 
with changes on timescales of a matter of hours.
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The atmospheric and oceanic BLs are shown schematically in figure 5. A well-mixed atmospheric 
BL includes the viscous and inertial sublayers and the mixed layer (Moeng, 2016). The viscous (or 
roughness) sublayer is influenced by individual roughness elements such as buildings and 
vegetation. The viscous and inertial sublayers together make up the surface layer. This layer is 
characterized by an approximate balance between the pressure gradient, Coriolis, and friction 
forces: the Ekman balance. Embedded within the surface layer are eddies that transport mass and 
momentum from the surface aloft. Above the surface layer is the mixed layer. This layer is 
convectively active. The structure of the oceanic BL mirrors that of the atmosphere, including 
both the surface Ekman layer and the mixed layer (see figure 5). The oceanic BL is bounded by the 
thermocline, a region of strong vertical temperature gradients.

Figure 5. Schematic of vertical mixing in the atmospheric and oceanic boundary layers. Typical mean temperature 
profiles are shown in red, and wind or ocean current profiles are shown in purple. The schematic shows a well- 
mixed atmospheric boundary layer, most typical of daytime conditions over land.

Source: Authors

Whereas the well-mixed atmospheric BL shown in figure 5 is common over land during the day, 
at night it is common for a stable atmospheric BL to form (Steeneveld, 2014). In this situation, 
long-wave radiative cooling leads to a land surface that is colder than the atmosphere above. This 
results in potential temperature increasing with height, and stable stratification. Atmospheric 
BLs can also include clouds, with the BL either topped by a layer of stratocumulus or associated 
with individual, randomly distributed cumulus clouds (Moeng, 2016). To simplify the discussion, 
neither stable nor cloudy atmospheric BLs are discussed further in this section.
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Climate models are able to reproduce the mean observed atmospheric BL depth but struggle to 
capture the observed diurnal and seasonal variations (Davy, 2018), likely due to errors in the BL 
parametrization (Holtslag et al., 2013). In particular, it is known that the different 
approximations used when parametrizing turbulence within the BL scheme can have significant 
impacts on the simulated climate in numerical models (Christensen & Driver, 2021; Davy & Esau, 
2014; Garratt, 1993), including the sensitivity of the model to changes in external forcing (Davy & 
Esau, 2014, 2016). This sensitivity has led to systematic intercomparison studies such as the 
GEWEX Atmospheric Boundary Layer Study (Holtslag, 2006).

Mixing in the BL is driven by a combination of surface buoyancy and momentum fluxes. The 
Obukhov length, L, is used to characterize the ratio of turbulent kinetic energy production from 
buoyancy compared to shear for different heights above the ground, z, and is a key ingredient to 
estimate turbulent fluxes. Within the surface layer, Monin–Obukhov similarity theory is used to 
model vertical variations in the mean flow. If the Obukhov stability parameter z/L is positive, the 
layer is stably stratified, whereas negative values indicate unstable stratification (Foken, 2006; 
Monin & Obukhov, 1954). Small-scale turbulent eddies interact with larger scale (but still 
unresolved) organized features such as thermals and convective rolls (see figure 5; Etling & 
Brown, 1993), with large impacts on unresolved fluxes. The interaction of mixing with different 
scales, against a stably or unstably stratified background, leads to very different characteristics of 
mixing: These different regimes should be represented within the BL parametrization (Degrazia 
et al., 2000).

There are two main types of closures in turbulence, local and nonlocal, and both have been used 
for parametrizing BL mixing (e.g., Holtslag & Boville, 1993; Xie et al., 2012). In local closures, the 
vertical flux of a scalar, , is parametrized using variables and/or gradients of known 
variables at that same point, where  is the scalar of interest (e.g., temperature and humidity). 
This leads to an expression analogous to molecular diffusion. In contrast, nonlocal closures rely 
on values and/or gradients of known variables at different locations in space, typically spanning 
the vertical column. This is more closely in line with advective processes and often results in 
more accurate closures for well-mixed BLs. The accuracy of the closure can also be improved by 
increasing its order. A first-order scheme includes prognostic equations for the state variables 
with the second-order terms (i.e., covariances) parametrized, whereas a second-order scheme 
also explicitly predicts the evolution of the covariances with the triple correlations parametrized, 
etc. (Bogenschutz et al., 2013). Mathematically, one can write a general first-order 
parametrization as

The first term is a local closure, with  being the diffusion coefficient, and the scalar  is fluxed 
down the mean gradient. The second is related to nonlocal effects and is widely used in both the 
ocean mixed layer and the atmospheric BL.

An example of a nonlocal closure is the mixed layer approach. The approach assumes that 
potential temperature is constant in height and that the mixed layer is homogeneous in the 
horizontal. Neglecting horizontal advection, this leads to the simple expression 
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 In the mixed layer approach,  is assumed to have a constant gradient 

with height (i.e., the closure utilizes knowledge of gradients spanning the vertical column; it is 
nonlocal). Also assuming the flux from the surface into the atmosphere or ocean is known—for 
example, from Monin–Obukhov theory (Foken, 2006)—the only unknown is the flux at the 
boundary of the mixed layer with the free troposphere or ocean abyss, which is assumed to be due 
to turbulent entrainment of air or water at the mixed layer interface. The largest source of 
uncertainty is in specifying this entrainment coefficient. Although this approach was first 
developed for atmospheric models (Carson, 1973; Lilly, 1968), it was quickly adopted into ocean 
models (e.g., the Price–Weller–Pinkel scheme; Price et al., 1986), in which it is still widely used 
due to its computational efficiency (Frants et al., 2013; Lazarevich et al., 2004).

In ocean models, vertical turbulent (diapycnal) mixing acts on all state variables  (temperature, 
salinity, and momentum). A common approach is the K-profile parametrization (Large et al., 
1994), which assumes that the turbulent mixing is dominated by vertical fluxes. It takes the form 
of a first-order closure with a nonlocal term: , where  is the 
viscosity/diffusivity associated with  (Large et al., 1994). The diffusivity, , has several 
contributions, including resolved and unresolved shear instability, and it depends on both the 
depth of the BL and a specified vertical shape function that allows for changes in vertical 
properties within the BL (O’Brien, 1970). The contribution of shear instability is parametrized in 
terms of the bulk Richardson number, which depends on the buoyancy profile and the horizontal 
velocity. The depth of the BL is selected as the depth at which the bulk Richardson number equals 
a set critical value. The nonlocal flux, , depends on the prescribed vertical shape function 
and the surface transport (Van Roekel et al., 2018), which can change based on the process driving 
the mixing (MacKinnon et al., 2017).

Limitations of Current Parametrizations and Approaches

There are several limitations to the current approach to parametrization development.

Clean Separation of Scales

Current parametrizations have been developed by assuming a clear separation of scales between 
resolved and unresolved processes (e.g., Arakawa & Schubert, 1974). However, as computing 
resources, and therefore resolution, increase, many processes become partially resolved. This is 
often called the gray zone. In the gray zone, a process of interest is neither fully resolved nor can it 
be fully parametrized (e.g., Wyngaard, 2004). This is clearly demonstrated by incrementally 
coarse-graining large eddy simulation (LES) data and computing both the turbulent fluxes 
associated with motion smaller than the coarsening scale (“subgrid” motion) and those 
associated with the “resolved” scales at each resolution (e.g., Dorrestijn et al., 2013). This is 
shown schematically in figure 6. If one averages over the entire LES domain, naturally all fluxes 
are unresolved and must be parametrized. Conversely, if one performs no averaging, all fluxes are 
“resolved.” For intermediate length scales, there is a regime in which the unresolved and 
resolved components of the turbulent flux are of similar magnitudes. This is the gray zone, and 
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the length scales associated with it vary depending on the process of interest (Dorrestijn et al., 
2013; Honnert et al., 2020; Pearson et al., 2014). For example, as shown in figure 1, atmospheric 
organized moist convective systems with length scales of order 10s to 100 km are partially 
resolved at both typical weather and climate model resolutions (Moncrieff et al., 2017), so 
traditional parametrization schemes struggle to represent them (Moncrieff, 2019). Scale-aware 
parametrizations are needed (e.g., Bessac et al., 2021), which can be used in a model across a 
range of scales, including the gray zone (e.g., Plant & Craig, 2008).

Figure 6. Schematic of resolved and unresolved fluxes associated with a typical small-scale process as a function 
of grid length scale. In the gray zone, the unresolved and resolved fluxes are both substantial, and there is 
considerable variability in the unresolved fluxes, necessitating a stochastic approach to parametrization. The 
length scales on the x-axis are typical for the case of atmospheric shallow moist convection.

Source: Adapted from Dorrestijn et al. (2013).

In the ocean, the Rossby deformation radius is the horizontal length scale at which rotation 
becomes as large as buoyancy. The deformation radius sets the scale of mesoscale eddies, and 
therefore resolving this scale is critical to capture mesoscale eddies. The current generation of 
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climate models does not resolve this scale in most of the ocean. The deformation length scale 
associated with the mesoscale eddy gray zone varies with latitude, as shown in figure 7. As the 
horizontal resolution increases, the mesoscale eddy field becomes partially resolved in some 
regions of the ocean (Hallberg, 2013). A single parametrization scheme must therefore represent 
both unresolved and partially resolved eddies. Parametrizations that are flow- and/or resolution- 
aware have been developed to address these issues (Bachman, 2019; Jansen & Held, 2014; Zanna 
et al., 2017).

Figure 7. The contours are showing the deformation radius over the model resolution using a global ocean model, 
GFDL OM4 (Dunne et al., 2020); details of the calculation are given in Hallberg (2013). The tropics are resolving the 
deformation scale, whereas the mid-latitudes are marginally resolving the deformation scale, defined as the gray 
zone.

Source: Authors

Separation of Processes

Developing a parametrization scheme generally involves a compartmentalization procedure, 
whereby related processes within the same medium are dealt with by different parametrization 
schemes. An example of this in the atmosphere concerns clouds and moist processes. Many global 
atmospheric models contain separate schemes for BL turbulence, shallow convection, deep 
convection, and large-scale precipitation (e.g., Gettelman, Mills, et al., 2019; Giorgetta et al., 
2018; Hourdin et al., 2020; Walters et al., 2019), whereas in reality, these processes form part of a 
continuum (Kuang & Bretherton, 2006). Similarly in the ocean, vertical mixing and 
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restratification by the sub-mesoscales are treated separately (Fox-Kemper et al., 2019). This 
compartmentalization is problematic, particularly with regard to model development. This is 
because compensating errors between different schemes can mask biases in the model (Palmer & 
Weisheimer, 2011), such that real improvements to one scheme can lead to degradation to the 
model simulation.

The Earth system is also split into different components, with separate models to treat processes 
in the atmosphere, oceans, land surface, etc. These models are often tuned independently before 
being coupled together (Hourdin et al., 2017; Schmidt et al., 2017). However, biases often develop 
on coupling, necessitating retuning (Schmidt et al., 2017). Often, biases in one Earth system 
component can be traced to errors in a different component; for example, persistent biases in the 
Southern Ocean temperatures can be traced to surface flux biases due to errors in cloud 
parametrization schemes (Hyder et al., 2018). Accordingly, improving one component can also 
improve the performance of another component. For example, Kirtman et al. (2012) showed that 
increasing the resolution of the ocean component of the Community Climate System Model led to 
improved precipitation patterns. Even the nature of the coupling can affect the model solutions 
(Rackow & Juricke, 2020). For example, increasing the frequency of the coupling between 
atmosphere and ocean improves the strength of the Madden–Julian Oscillation in regional (Zhao 
& Nasuno, 2020) and global (R. Neale, personal communication, 2017) simulations.

Validation and Improvement of Parametrizations

Improvements to parametrization schemes can either be motivated by theoretical arguments (a 
“bottom up” approach) or designed to correct specific biases in the model (a “top down” 
approach) (Walters et al., 2019). In both cases, instead of testing parametrization developments 
in a full climate model, it is common to use single column models (SCMs) to bridge the gap 
between observations and climate models (Bechtold et al., 2000; Petch et al., 2007; Randall et al., 
1996). An SCM consists of a single column taken from a parent global climate model, containing 
the subgrid parametrization schemes. Boundary forcings are estimated from observations (Zhang 
et al., 2016) and used in place of the resolved dynamics, before the evolution of the SCM is 
compared to that observed (Gettelman, Truesdale, et al., 2019). SCMs are computationally cheap 
to run compared to a global model, enabling sensitivity tests such as vastly enhanced vertical 
resolution (Hourdin et al., 2019). SCMs can also be compared directly with LESs that resolve 
small-scale processes of interest (Zhang et al., 2013). However, it can be difficult to interpret SCM 
results due to the lack of feedback between subgrid processes and the resolved scale dynamics 
(Dal Gesso & Neggers, 2018).

What Next?

Significant resources are still going into improving the current generation of parametrization 
schemes. For example, it is possible to refine the selection of mesoscale eddy coefficients in 
current ocean parametrizations schemes (Hewitt et al., 2020) by invoking conservation of energy 
in the simulations or tuning them with observations (Couvreux et al., 2021; Hourdin et al., 2021; 
Schneider, Lan, et al., 2017) or to build on existing approaches to deterministic moist convection 



Parametrization in Weather and Climate Models

Page 19 of 44

Printed from Oxford Research Encyclopedias, Climate Science. Under the terms of the licence agreement, an individual user may 
print out a single article for personal use (for details see Privacy Policy and Legal Notice).
Subscriber: New York University Libraries; date: 29 April 2023

parametrization to capture the diurnal cycle better (Bechtold et al., 2014). The further 
development of process-level understanding, and its incorporation into parametrization 
schemes, will doubtless continue to improve models. However, there are four new fruitful 
research directions that each have the potential to give a step-change in model skill.

Unification of Parametrized Processes

As highlighted in the sections on “Atmospheric Parametrizations” and “Limitations of Current 
Parametrizations and Approaches,” traditional approaches to parametrization have addressed 
groups of processes in separate subroutines. Such compartmentalization is artificial. The early 
21st century saw efforts to overcome this limitation in atmospheric models by unifying the 
parametrization of groups of processes. The unification of moist processes is particularly 
promising. For example, the eddy-diffusivity mass-flux (EDMF) parametrization (Siebesma et 
al., 2007; Sušelj et al., 2013, 2014) represents transport within the BLs as arising from two 
components: An eddy-diffusivity component (see the section on “Turbulent Vertical Mixing in 
Oceanic and Atmospheric Boundary Layers”) represents turbulent transport in neutrally stable 
regions, and a mass-flux component is used to represent embedded convective motions. Sušelj et 
al. (2019) extended the approach to include a representation of shallow and deep convection, 
thereby capturing all moist processes in a single scheme. A key benefit of this unified approach is 
the lack of trigger functions, which in a modular moist convection parametrization determines 
whether the scheme is activated or not. Despite aiming to represent the same suite of moist 
processes, the Cloud Layers Unified By Binormals (CLUBB) approach (Golaz et al., 2002) is very 
different to EDMF. CLUBB predicts the joint probability distribution function (PDF) of moisture, 
temperature, and vertical velocity, where the PDF is assumed to be a double Gaussian for 
computational efficiency. Turbulent fluxes, mass flux, and cloud cover, can be computed from the 
predicted joint PDF, ensuring consistency between these quantities of interest. Through coupling 
CLUBB to a microphysics scheme, Storer et al. (2015) extended CLUBB to include a representation 
of deep convective events. As for EDMF, this formulation avoids the specification of trigger 
functions for different cloud regimes: The modified scheme is able to capture the smooth 
transition from stratocumulus cloud regimes to deep convection (Guo et al., 2015).

An alternative approach to unification is superparametrization. Here, a two-dimensional cloud 
resolving model (CRM) of 1- to 4-km resolution is embedded within each grid column of the 
parent model, replacing the parent model’s moist convection and cloud parametrization schemes 
(Grabowski, 2001; Khairoutdinov & Randall, 2001; Khairoutdinov et al., 2005). The CRM is not re- 
initialized each timestep and instead runs continuously, introducing memory into the subgrid 
tendencies. Each CRM is independent of its neighbors, with cyclic boundary conditions, enabling 
efficient parallelization of the global model. Superparametrization has been shown to improve 
the diurnal cycle of convective clouds, convective organization and propagation, the 
representation of the Madden–Julian Oscillation, and the coupling between land and atmosphere 
(Grabowski, 2001; Kooperman et al., 2016; Pritchard et al., 2011, 2014; Qin et al., 2018). However, 
the computational cost of the superparametrization approach is substantial compared to 
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conventional parametrization schemes, so it has not been widely adapted. In addition, even a 
CRM requires parametrization, the details of which can substantially change the behavior of the 
model solution (Christensen & Driver, 2021).

Unification of mesoscale eddy parameterizations in ocean models has begun. From quasi- 
geostrophic dynamics, the deformation scale, some of the available potential energy (APE) is 
transformed into kinetic energy via baroclinic instability and then backscattered to large scales. 
The transport of tracers in ocean models has been traditionally parametrized via the Gent– 
McWilliams (GM) framework, which mimics baroclinic instability. The framework leads to a 
flattening of isopycnals and net sink of APE. This net loss of APE is unaccounted for in the 
traditional GM framework. Early 21st-century advances in mesoscale eddy parametrizations have 
focused on closing the mesoscale eddy energy budget (Cessi, 2008; Marshall & Adcroft, 2010; 
Marshall et al., 2012). In particular, new parametrizations of eddy momentum have been devised 
to address the kinetic energy backscatter (from small to large scales) (Jansen & Held, 2014; 
Juricke et al., 2017; Porta Mana & Zanna, 2014; Zanna et al., 2017) and to address the 
transformation of lost APE into kinetic energy (Bachman, 2019; Jansen & Held, 2014; Zanna & 
Bolton, 2020). This unification of mesoscale eddy parametrizations is done primarily by focusing 
on the mesoscale eddy energy budget, but it is not yet operational.

Stochastic Parametrization

Another fruitful approach since the late 1990s has been the development of stochastic 
parametrizations. Here, the parametrization scheme is formulated in terms of a PDF constrained 
by the resolved scale flow. This encapsulates the statistical nature of many subgrid processes in 
the absence of scale separation, and it is particularly appropriate at gray zone resolutions, where 
there is high variability (i.e., uncertainty) in the subgrid motions consistent with the resolved 
scales (see figure 6).

Stochastic parametrizations have several advantages over deterministic parametrizations. A 
stochastic framework is more consistent with the underlying Navier–Stokes equations, which 
show strong evidence of scaling symmetries (Lovejoy & Schertzer, 2013; Nastrom & Gage, 1985). 
Stochastic parametrizations can be derived on theoretical grounds—for example, 
homogenization theory, which decomposes the fast and slow scales of interest—or by using 
statistical mechanics (e.g., Craig & Cohen, 2006) for the parametrizations of subgrid convective 
cloud mass flux. Alternatively, stochastic parametrizations can be guided by data—for example, 
by coarse-graining the output of a high-resolution simulation to diagnose missing or uncertain 
processes in a coarse-resolution model (for atmospheric convection, see Shutts & Palmer, 2007; 
see also the Appendix). Figure 8 shows the results of one such coarse-graining study 
(Christensen, 2020). The “true” subgrid tendency is diagnosed from a coarse-grained high- 
resolution data set and compared to the tendency predicted by a low-resolution model initialized 
from the same coarse-grained fields. Although the parametrized tendency is a good predictor of 
the mean of the “true” tendency, as expected, substantial variability is observed about this mean. 
This variability increases as the parametrized mean increases, motivating a state-dependent or 
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multiplicative stochastic correction term (Buizza et al., 1999). This provides further evidence that 
parametrization schemes should be stochastic and can also be used to motivate the form that 
stochastic parametrizations should take (Christensen, 2020; Porta Mana & Zanna, 2014).

Figure 8. (a–d, f–i) Probability distribution functions of “true” diagnosed tendency for temperature at 850 hPa 
computed from a high-resolution simulation, conditioned on the tendency predicted by a low-resolution forecast 
model. The narrow gray rectangle in each panel indicates the forecast tendency. (e) Mean “true” tendency 
conditioned on predicted tendency. For this model, negative temperature tendencies are cold biased. (j) Standard 
deviation of “true” tendency conditioned on predicted tendency. Uncertainty in the “true” tendency increases with 
the magnitude of the forecast tendency.

Source: Adapted from Christensen (2020).

From a practical standpoint, stochastic parametrizations can also represent uncertainty 
associated with the parametrization itself. It is necessary to represent this model uncertainty to 
produce reliable ensemble forecasts on weather, subseasonal and seasonal timescales (Berner et 
al., 2017). For this reason, stochastic parametrizations are widely used across these communities. 
The climate modeling community has also begun to experiment with using stochastic 
parametrizations. Including stochasticity in climate models can improve systematic biases, 
including those in the mean state, such as the distribution of precipitation (Strommen et al., 
2019) and biases in modes of variability (Juricke et al., 2017), such as the El Nino–Southern 
Oscillation (Christensen et al., 2017).

Machine Learning Parametrizations

Since the early 21st century, the advent and efficiency of machine learning (ML) algorithms have 
allowed for more accurate data-driven parametrizations. In this case, by using data from high- 
resolution simulations and/or observations, the ML algorithm is tasked to obtain an optimal 
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relationship between the subgrid forcing and the resolved variables (figure 9), where the subgrid 
and resolved scales are separated using a coarse-graining approach (see the Appendix). A host of 
ML methods are available. However, deep learning has been shown to be well-suited to extract 
subgrid parametrizations using spatiotemporal information. For example, neural networks have 
been shown to be a useful tool for turbulence parametrization in idealized setups (Ling et al., 
2016; Maulik & San, 2017; Maulik et al., 2019). In more complex settings, neural network-based 
convective cloud parametrizations have been shown to outperform traditional physics-driven 
parametrizations when implemented in coarse resolution weather and climate models 
(Brenowitz & Bretherton, 2018; Gentine et al., 2018; Yuval et al., 2021). In the ocean, convolutional 
neural networks have been successfully used to parametrize ocean mesoscale eddies (Bolton & 
Zanna, 2019; Zanna & Bolton, 2020) and vertical mixing (Salehipour & Peltier, 2019) efficiently. 
New ML methods are also being tested in the simple chaotic Lorenz model—generative 
adversarial networks for stochastic subgrid parametrizations (Gagne et al. 2020) and transfer 
learning to best optimize ML parametrizations (Subel et al., 2021) are notable examples.

Figure 9. Parametrization with machine learning, based on Bolton and Zanna (2019): streamfunction as input to a 
convolutional neural network to predict the zonal component of the sub-grid forcing, .

Source: Authors

Instead of learning improved parametrizations, ML can also be used as a tool to speed up existing 
schemes. Studies in the late 20th century successfully emulated radiation schemes (Chevallier et 
al., 1998; Krasnopolsky et al., 2005), which are notoriously expensive. Substantial breakthroughs 
in deep learning in the early 2010s paved the way for work that revisited radiation (Veerman et al., 
2021) and have targeted emulation of other schemes, including moist convection (O’Gorman & 
Dwyer, 2018) and gravity wave drag (Chantry et al., 2021). Although ML can often be seen as a 
black box, emerging ideas to improve ML methods are being proposed. Tools can be used to 
interpret results, from heat maps (Ham et al., 2019) to learning differential equations (Zanna & 
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Bolton, 2020): These tools are a way forward to open the black box of ML parametrizations. Yet 
many challenges remain; see the section on “Challenges and Opportunities” for further 
discussion.

Novel Validation Approaches

New approaches in parametrization need novel validation approaches. Although the basic 
questions of physical consistency and impact on model biases must always be evaluated, 
probabilistic parametrizations have additional degrees of freedom that are more difficult to 
assess. One approach is the use of data assimilation to attribute errors in the forecast to the 
deficiency in physics, observational errors, and model biases (Klinker & Sardeshmukh, 1992; 
Rodwell & Palmer, 2007; Rodwell et al., 2016). A key benefit of studying analysis increments is 
that verification occurs on a sufficiently short timescale as to be uncontaminated by errors from 
remote parts of the world. The key limitation is that it cannot assess errors that grow on longer 
timescales (e.g., due to coupled processes) (Christensen & Berner, 2019). Developments in 
ensemble data assimilation allow partitioning of error covariance into observational uncertainty, 
bias, and ensemble variance to check for consistency in a probabilistic framework (Rodwell et al., 
2016, 2018). This closely assesses the performance of stochastic parametrizations.

An alternative is the use of reanalysis data sets to initialize short (3–5 days) climate model 
simulations (e.g., Hannay et al., 2009; Medeiros et al., 2012; Williams et al., 2013). Verification is 
possible for these short-range forecasts, which can be directly compared to observations. The 
short duration allows for some localization of errors, allowing errors to be attributed to a 
particular parametrization scheme, thereby targeting analysis of fast physics biases (Williams et 
al., 2013). For example, tests with the CMIP6 version of the Met Office model show improved 
initial tendencies compared to earlier model versions, providing reassurance about the fidelity of 
fast cloud processes in the model, in the face of an elevated climate sensitivity (Williams et al., 
2020).

These novel approaches to validation suggest that a seamless approach to modeling the Earth 
system across a range of timescales should be taken (Bauer et al., 2015; Brunet et al., 2010; Hurrell 
et al., 2009; Phillips et al., 2004). This involves the weather, seasonal and climate communities 
working together to produce and evaluate models. The fast processes in a climate model can be 
tested by using that model for initialized forecasts, where verification is possible (Palmer et al., 
2008; Weisheimer & Palmer, 2014), before being used for long-range projections.

Challenges and Opportunities

This section highlights outstanding problems to be solved in parametrization, many of which are 
common across traditional and novel approaches.
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Interaction

It is not necessarily practical to develop a single parametrization scheme for all subgrid processes 
in the atmosphere or ocean. Resources must be invested to improve the coupling between 
individual schemes and to identify and reduce compensating biases. Lessons can be learned from 
the experience of coupling separate Earth system components, including the benefits and 
limitations of testing subroutines individually and the importance of the nature of the coupling 
(Ginu-Bogdan et al., 2018). In contrast to traditional parametrization, early approaches to 
stochastic or machine-learned parametrization have been holistic and use a single stochastic 
approach (Buizza et al., 1999) or neural network to represent all subgrid processes (e.g., Yuval et 
al., 2021). Here, there is increasing interest in moving to a targeted approach whereby a bespoke 
scheme is developed for each process of interest (Ollinaho et al., 2017). It is not clear how many 
such schemes can be constrained or how they would subsequently interact with each other, but 
lessons can be learned from past experience with traditional schemes.

Scale Awareness

Parametrization schemes must perform well across a wide range of resolutions. Atmospheric 
schemes are employed across weather, seasonal and climate models, whereas ocean 
parametrization schemes may experience different resolutions even within the same simulation 
(Wang et al., 2014). For ocean parametrizations, the problem is compounded by the varying 
Rossby radius of deformation, which sets the scale of ocean eddies (see figure 7). Research into 
scale-aware parametrizations could include physical understanding of the nature of processes 
across scales or data-driven approaches (Bessac et al., 2021).

Universality

Developing a new parametrization scheme involves a substantial investment of resources, both 
human and computational. To what extent can a parametrization scheme (traditional, stochastic, 
or machine-learned) developed for one model be transferred to another model? Critical for 
climate prediction, how universal or generalizable are our parametrizations? It is assumed that 
traditional schemes based on the laws of physics are appropriate in different climates, although it 
is not known whether the characteristics of errors in those schemes may change. The extent to 
which a data-driven parametrization generalizes to a different climate state is an open question 
requiring further research.

Conservation

The laws of physics dictate that energy, mass, and momentum be conserved. Yet many 
parametrization schemes do not obey these conservation laws such that conservation “fixers” 
are routinely employed in numerical models (e.g., Williamson et al., 2015). It has been difficult to 
impose conservation laws in some stochastic schemes without changing other assumptions in the 
schemes (Davini et al., 2017; Sanchez et al., 2016). In machine learning (ML) parametrizations, 
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conservation laws and symmetry can be imposed either as part of the algorithm or in the loss 
function: This type of physics-constrained ML parametrization has the advantage of respecting 
the underlying physics (Beucler et al., 2021).

Stability

Stability of forecasts has been a problem since Richardson’s first numerical weather prediction 
(Lynch, 2006). Many models use implicit and/or semi-Lagrangian approaches to improve 
stability and allow longer timesteps (e.g., Cullen, 2001). However, numerical stability continues to 
impose constraints when developing parametrizations (e.g., Beljaars et al., 2017; Leutbecher et 
al., 2017). ML parametrizations in particular suffer from this problem: Parametrizations that 
perform well during training can prove unstable when run in “online” mode, with substantial 
work ongoing to understand and resolve this problem (e.g., Brenowitz & Bretherton, 2018; Yuval 
& O’Gorman, 2020; Yuval et al., 2021).

Data

Stochastic and ML approaches to parametrization are both data-driven. They rely on the 
availability of high-resolution data, spanning large areas and for extended periods of time. The 
lack of suitable observational data has led to a reliance on model data. However, such model 
simulations still require subgrid parametrizations and contain their own biases. Furthermore, 
simulations are expensive to produce, limiting the size of the training data set and the potential 
universality of the resultant scheme. Although they are not built based on data, traditional 
parametrizations also suffer from a lack of observational data. Stringent tests on parametrization 
schemes require high-quality observational data. For atmospheric schemes, this takes the form 
of data from an array of observational platforms, including balloon soundings and surface 
instruments (Zhang et al., 2016). There are only a few sites globally with this capability, giving 
rise to representativity issues. In the ocean, although satellite altimetry and global float programs 
such as Argo have revolutionized our understanding of the ocean, these data sets by themselves 
are not sufficiently high resolution to devise data-driven parametrization but may complement 
model data.
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(A.1)

Appendix

Methodology for Defining Subgrid Scales

Numerical models explicitly distinguish between subgrid and resolved processes. To use high-resolution data to 
derive data-driven parametrization schemes, this distinction must be artificially introduced. The subgrid scale is 

defined using a filtering procedure  that acts to separate the resolved scales ( ; larger than the grid-box size) from 
the unresolved scales that are to be parametrized. For a given scalar field c, the subgrid scales,  can then 
be deduced.

Coarse-graining has long been a natural option to separate resolved and unresolved scales (e.g., Christensen, 2020; 
Yanai et al., 1973). Coarse-graining takes the weighted ( ) spatial mean over a subset of grid points ( ) within a 

box,  The size of the coarse-graining box defines the spatial scale of the resolved state . In 

contrast to time averaging (see the section on “Reynolds Averaging”), coarse-graining typically involves averaging in 
space as opposed to in time. In addition, the starting point for coarse-graining is some high-resolution data that must 
be decomposed into resolved and “unresolved” components at some lower resolution, as opposed to the continuous 
equations of motion, as is the case for Reynolds averaging.

Coarse-graining produces a local definition of subgrid, where quantities outside of the coarse-graining box have no 
effect on the coarse-grained variable . This is consistent with the definition of the grid box in finite volume models 
(see the section on “From Physical Equations to Numerical Models: Resolved Scale Dynamics”). The disadvantage of 

this method is that the procedure does not commute with spatial derivatives—that is,  (i.e., it 
does not respect Reynolds averaging rules). This can lead to artifacts in the coarse-grained data (figure A.1, left). An 
alternative to coarse-graining is to use a low-pass spatial filter,

where  is the filter, and the two-dimensional spatial integral is evaluated over the entire domain (Bolton & 

Zanna, 2019). Spatial filters do commute with spatial derivatives, preserving conservation properties. They are also 
more consistent with the grid definition used in finite difference and spectral models (see the section “From Physical 
Equations to Numerical Models: Resolved Scale Dynamics”). A low-pass filter removes high wavenumbers from the 
signal, resulting in a smoothed field c; the smoothing reduces variability at spatial scales smaller than the predefined 
scale characterizing the filter. Spatial filtering using a Gaussian kernel produces a more nonlocal definition of subgrid 
because all grid points, irrespective of location, impact the large-scale field  through the integral 

. However, spatial filters, unlike coarse-graining, do not change the underlying grid 

size. A solution is to combine spatial filtering and coarse-graining. This is shown in the right panel of figure A.1, where 
the mean, , is first defined using a spatial filter before coarse-graining to a new grid size.
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Figure A.1. Illustrations of two averaging procedures using a Gaussian-shaped eddy. Left shows coarse-graining, and right 
shows spatial filtering and then coarse-graining for the zonal component of the resulting eddy momentum forcing, .

Source: Authors
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