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ABSTRACT

We introduce CAMulator version 1, an auto-regressive machine-learned (ML) emulator of the
Community Atmosphere Model version 6 (CAM6) that simulates the next atmospheric state given
prescribed sea surface temperatures and incoming solar radiation. CAMulator explicitly conserves
global dry air mass, moisture, and total atmospheric energy while remaining numerically stable
over indefinite climate integrations. It successfully reproduces the annual CAM6 climatology and
key modes of climate variability, including the El Niño–Southern Oscillation, the North Atlantic
Oscillation, and the Pacific-North American pattern, with slightly muted variability. When forced
with sea surface temperature (SST) beyond the training distribution, CAMulator exhibits a systematic
cold bias in high-latitude regions, particularly in boreal winter, likely due to the absence of interactive
land and sea ice. Nonetheless, CAMulator achieves these results with a 350 times speedup over
CAM6, making it an efficient alternative for generating large ensembles. CAMulator represents a
step toward fast, physically realistic ML-driven climate modeling.

1 Introduction

Earth system models are essential for understanding Earth system dynamics, characterizing extreme events, and
projecting future climate scenarios. However, their high computational cost limits their practical applications. One
major computational bottleneck of these models is the atmosphere component [Worley et al., 2011]. Recent advances
in machine learning (ML) emulators offer a promising path forward, with the potential to accelerate simulations
and improve physical representation. Demonstrating the fidelity of ML-driven emulation is crucial; success in Earth
system model component emulation could enhance and enable key modeling activities such as rapid hypothesis testing,
large-ensemble generation [Kay et al., 2015, Maher et al., 2021], and comprehensive uncertainty quantification [e.g.,
Deser et al., 2017, Touma et al., 2022], ultimately broadening the scope and efficiency of climate research.

Progress in ML-based climate emulation has been rapid, particularly in emulating component models [Dheeshjith
et al., 2024, Watt-Meyer et al., 2023, 2024] and, more recently, in coupled systems [Cresswell-Clay et al., 2024].
The community is beginning to demonstrate that ML-based Earth system component models have the potential to
emulate key features that are important for climate research, such as emergent variability and response to external
forcing. However, the extent to which this has been achieved remains an active area of investigation [Watt-Meyer
et al., 2024]. However, differences in the state variables, reduced dimensionality, and lower physical resolution—both
horizontally and vertically—pose challenges for combining these ML-based atmospheric emulators with other Earth
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system components, including ocean, land, cryosphere and chemistry.It has also been proposed to interactively combine
such emulators with dynamical models using a supermodeling framework [e.g., Schevenhoven et al., 2023, Chapman
et al., 2024]. These differences hinder the seamless coupling with traditional physics-based models and limit the broader
adoption of atmospheric ML-emulators in Earth system simulations.

Here, we introduce CAMulator Version 1, an ML-based emulator that mimics the Community Atmosphere Model
version 6 (CAM6) [Danabasoglu et al., 2020] while preserving both vertical and horizontal spatial resolution. CAMulator
runs approximately 350 times faster than CAM6 (see Section 2.5 for details) while enforcing key conservation properties,
including global dry mass, total water, and energy.

For model training and testing, we leverage the National Science Foundation’s (NSF) National Center for Atmospheric
Research (NCAR)-Community Research Earth Digital Intelligence Twin (CREDIT) platform [Sha et al., 2025a, Schreck
et al., 2024]. CREDIT is a machine learning platform for scientific research that provides an efficient framework for
the rapid development of auto-regressive models, making it well-suited for Earth system modeling tasks. In our study,
CREDIT serves as the backbone for an efficient data pipeline, scalable high-performance computing, model training,
and inference. We extend its capabilities from numerical weather prediction emulation to fast climate emulation and
demonstrate the necessity of incorporating physical constraints on mass, water, and energy to enhance model fidelity
and improve emulation accuracy.

In this work, we focus on emulating atmospheric physics during the historical period (1979–2014), a common validation
period for CAM6. We conduct this experiment as an AMIP simulation, where CAMulator is forced with observed sea
surface temperatures (SSTs) and incoming solar radiation. We show that CAMulator successfully captures the historical
climate trend over this period. To test model stability in an indefinite forcing mode, we run long-term integrations using
climatological SSTs as the prescribed boundary condition, ensuring consistency with the statistical properties of the
CAM6 climate system.

We find that CAMulator successfully reproduces key climate statistics, including variability associated with the El Nino
Southern Oscillation and has similar root mean square error compared to CAM6. Although geopotential height is not
directly predicted, the emulator is still able to accurately capture major modes of variability, such as the North Atlantic
Oscillation and the Pacific North American pattern, from predicted variables. This suggests that the model preserves
physical consistency across key atmospheric fields, even in extended simulations.

An important application of climate models is to predict the response to an external forcing, for example increased
ocean sea surface temperatures (SSTs). Beyond historical validation, we test CAMulator in out-of-sample scenarios
(i.e. forcing scenarios the emulator was not trained on) with ocean surface warming of +2K and +4K,. The model
demonstrates a promising ability to adjust dynamically to these warmer conditions, though its response appears weaker
under +4K warming. In this manuscript, we focus on evaluating CAMulator’s performance and exploring its potential
applications and extensions.

In this manuscript, we focus on evaluating CAMulator’s performance and exploring its potential applications and exten-
sions and is organized as follows: Section 2 describes the data sources used for model training and evaluation. Section
3 outlines the methodology, including model construction and training. Section 4 presents the results, highlighting
CAMulator’s performance in reproducing key climate statistics and its response to out-of-sample warming scenarios.
Finally, we conclude with a discussion of CAMulator’s strengths, limitations, and potential extensions for future work.

1.1 Training and Verification Data

We use the Community Atmosphere Model version 6 (CAM6), the atmospheric component of the Community Earth
System Model version 2.1.5 (CESM2), developed by the NSF NCAR [Bogenschutz et al., 2018, Gettelman et al., 2018].
At the training time, CAM6 was the latest supported model release and incorporates advancements in atmospheric
physics, cloud microphysics, and boundary layer turbulence while leveraging a finite-volume (FV) dynamical core.

For this study, we run CAM6 in AMIP mode, where it is forced by observed SSTs and sea ice concentrations from 1979
to 2014 [Huang et al., 2017, 2021, Rayner et al., 2003], with these monthly forcing fields linearly interpolated to daily
values. CAMulator also accounts for time-evolving aerosol emissions and trace gas concentrations (including CO2) to
ensure consistency with historical atmospheric conditions.

Model simulations use the scientific release resolution of CAM6, with a horizontal grid spacing of 0.9◦ latitude × 1.25◦
longitude and 32 hybrid sigma-pressure levels extending up to 2.26 hPa in the vertical dimension. The emulator was
trained on a number of static and dynamic variables (see Table 1), all saved at 6-hourly intervals. For simplicity, we
keep the vertical and horizontal resolution the same.
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Table 1: Description of input and predicted variables for CAMulator. Variables are categorized as input-only (static and
dynamic forcing), input/output (prognostic), and output-only (diagnostic). ∗Qtot is a sum of all column moisture—both
vapor and condensed: Qtot = Specific Humidity + Grid Box Snow Amount + Grid Box Rain Amount. TOA = Top of
Atmosphere.

Variable Description Units Levels Category
Input Variables (Forcing)

Static Forcing (Time-Invariant Input)

Surface Geop. Surface Height m²/s² Single Level Input
Land-Sea Mask Land Mask Unitless Single Level Input

Dynamic Forcing (Time-Varying Input)

SOLIN Incoming Solar Radiation J/m² Single Level Input
SST Sea Surface Temperature K Single Level Input

Prognostic Variables (Input and Output)
U Zonal Wind m/s 32 Levels Input/Output
V Meridional Wind m/s 32 Levels Input/Output
T Temperature K 32 Levels Input/Output
∗Qtot Specific Total Water kg/kg 32 Levels Input/Output
PS Surface Pressure Pa Single Level Input/Output
TREFHT Near-Surface Air Temperature K Single Level Input/Output

Diagnostic Variables (Output Only)
PRECT Accumulated Precipitation m Single Level Output
CLDTOT Total Cloud Cover Fraction Single Level Output
CLDHGH High Cloud Cover Fraction Single Level Output
CLDLOW Low Cloud Cover Fraction Single Level Output
CLDMED Medium Cloud Cover Fraction Single Level Output
TAUX Zonal Wind Stress N/m² Single Level Output
TAUY Meridional Wind Stress N/m² Single Level Output
U10 10m Wind Speed m/s Single Level Output
QFLX Surface Moisture Flux m Single Level Output
FSNS Net Solar Flux at Surface J/m² Single Level Output
FLNS Net Longwave Flux at Surface J/m² Single Level Output
FSNT Net Solar Flux at TOA J/m² Single Level Output
FLNT Net Longwave Flux at TOA J/m² Single Level Output
SHFLX Sensible Heat Flux J/m² Single Level Output
LHFLX Latent Heat Flux J/m² Single Level Output

Flux-form variables (see bold variables in Table 1) and precipitation are treated as 6-hour accumulated quantities and
rescaled so that downward fluxes are positive. Flux-form variables are essential for estimating sources and sinks in the
atmospheric moisture and energy budgets. Precipitation (PRECT) represents the total precipitation leaving the column,
including both parameterized and large-scale rain and snow. Prognostic variables are stored as 6-hourly averages. The
prognostic variable Qtot represents the total water content in the model column, including vapor and condensed phases:
specific humidity, as well as snow and rain that are present within the column.

Both static and dynamic forcing variables are included as input. Surface geopotential represents topography, while a
land-sea mask distinguishes between ocean and land grid points to ensure accurate surface-atmosphere interactions.
The model is also provided with dynamically forced (changing in time) variables, including sea surface conditions and
incoming solar radiation, updated every 6 hours. The model predicts the next atmospheric state using only the previous
time step (t), following an autoregressive formulation: t → t+∆t.

All variables, except for the Land-Sea Mask, undergo z-score normalization, where the mean and standard deviation are
computed based on the training data period (1979–2010). The Land-Sea Mask represents the fraction of land within
each grid cell, with values ranging between 0 and 1, and is left unnormalized.
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The goal of this work is to represent CAM6 with as much fidelity as possible, thus, we primarily analyze the emulation
of CAM6 by CAMulator. In some cases, we incorporate reanalysis products to provide qualitative context for the
differences between CAM6, CAMulator, and the assimilated observational datasets. For precipitation, we use NOAA’s
Global Precipitation Climatology Project (GPCP) product [Adler et al., 2003], while all other variables are compared
against the global ECMWF Reanalysis version 5 (ERA5) [Hersbach et al., 2020].

Following best practices, we divide the available data period into three subsets: a training data set (1979 - 2010), a
validation subset (2011) and a testing data set (2012–2014).

2 Methods

2.1 Model Architecture

CAMulator is based on WXFormer, a transformer-based architecture developed at NSF NCAR and described in Schreck
et al. [2024]. Figure 1 shows the CAMulator architecture and workflow. WXFormer utilizes a CrossFormer backbone
[Wang et al., 2023] for multi-scale feature processing and long-range dependency modeling, combined with hierarchical
transpose convolutional layers for upsampling in the decoding stages. Standard skip connections, similar to those in a
U-Net Ronneberger et al. [2015], are incorporated to efficiently transfer feature information and preserve spatial details
from the encoder to the decoder.

WXFormer has demonstrated state-of-the-art performance among leading AI-based weather prediction (AIWP) models
[Schreck et al., 2024], making it an ideal base-model for climate modeling. To adapt WXFormer for our use case, we
introduce several architectural modifications tailored to climate-scale forecasting.

First, we increase the feature embedding size by doubling the dimensionality of the cross embedding layers (CEL) while
maintaining computational efficiency (Fig. 1b). The CEL employs a multi-kernel approach, applying four convolutional
kernels (4×4, 8×8, 16×16, and 32×32) in parallel, each with a 2×2 stride during the initial processing stage [Wang et al.,
2023]. This multi-scale strategy enhances the model’s ability to capture spatial patterns across a range of atmospheric
scales.

Additionally, we reduce both the global and local window sizes of the Long Short Distance Attention mechanism (LSDA;
Fig. 1c) to align with the lower-resolution of CAM6 compared to WXFormer’s original ∼0.28° ERA5 application
(see [Schreck et al., 2024] for further details). This adaptation ensures more effective regional feature extraction while
maintaining performance consistency.

With these modifications, CAMulator is comprised of ~751 million trainable parameters, making it a high-capacity
climate emulator optimized for long-term simulations. CAMulator takes as input the state of the atmosphere at time
step i and predicts the state at i+ 1 with a 6-hour forecast horizon. The model operates autoregressively, generating
multi-step forecasts, allowing it to function as a standalone climate model capable of running indefinitely.

2.2 Conservation Blocks

Following [Sha et al., 2025a] and Watt-Meyer et al. [2024], conservation schemes are applied after the CAMulator
output layer to ensure physically consistent model roll-outs (Fig. 1e). The order of application is critical, as each
scheme depends on the corrections applied in previous steps. Below, we describe the purpose and implementation of
each scheme, with the adjusted variables emphasized. For the direct calculation of these corrections see Appendix
section B.

1. Nonnegative correction: AI models can produce negative values, which are unphysical for certain variables.
For all nonnegative variables (specific total water, total precipitation, 10-meter windspeed, and [Total, High,
Low, Medium] Cloud Cover), any negative raw outputs are set to zero. While this approach ensures physical
consistency, alternative correction methods, such as redistribution, may be beneficial in some cases.

2. Global dry air mass conservation scheme: At each forecast step, surface pressure is corrected to ensure
that global dry air mass remains constant, maintaining consistency with the initial condition. The correction
is applied at each grid cell using a multiplicative factor, computed by first determining the residual mass
imbalance and then adjusting accordingly.

3. Global moisture budget conservation scheme: At each forecast step, total precipitation is adjusted to balance
the global sum of the total precipitable water tendency (derived from specific total water) and the accumulated
net flux of precipitation and evaporation over the previous 6-hour period. The correction is applied at each
grid cell using a multiplicative factor, computed by first determining the residual water imbalance and then
adjusting accordingly.
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4. Global total atmospheric energy conservation scheme: The global atmospheric energy budget is defined as
the balance between the tendency of total atmospheric energy and net energy fluxes at the top of the atmosphere
and the surface. At each forecast step, Temperature is corrected to ensure that the sum of total atmospheric
energy tendencies aligns with the net energy sources and sinks over the past 6-hour period.

Corrections to surface pressure, total precipitation, and air temperature are applied using multiplicative ratios across all
grid cells, computed dynamically at each time step. While this approach enforces conservation, there are no explicit
safeguards against overcorrection and no effort to redistribute values in the nonnegative correction, which may warrant
further investigation in future work. We test the model in configurations with and without the physics blocks activated
(CAMulator-phys and CAMulator-nophys, respectively).

It is essential to apply these conservation schemes in the specified order to preserve the theoretical dependencies
between mass, moisture, and energy conservation. Further technical details are provided in Appendix B.

2.3 Training

CAMulator was trained in a staged approach to balance stability and conservation constraints. Initially, the model
was trained for 113 epochs as a single-step (6-hour) prediction task, minimizing the latitude-weighted mean squared
error (MSE), with conservation block layers entirely omitted to allow for more stable initial learning. After this phase,
conservation layers were introduced, and training continued for 77 additional epochs, now as a two-step (12-hour)
forecast task. In the two-step training, the loss from both forecasted states was accumulated and used to optimize the
model weights. For the single-step pretraining, cosine-annealing schedules were applied with an initial learning rate of
1E− 5. Both stages used latitude-weighted MSE as a loss function, the AdamW optimizer [Loshchilov, 2017], and
batch sizes of 32. The training was conducted using Pytorch on 4 NVIDIA A100 GPUs, each with 40 GB of memory
[Paszke et al., 2019]. In this phase final model state trained for 190 epochs in total over the course of three days.

To determine the final model weights, we conducted a validation cycle, which consisted of training on 500 samples
followed by a ten-year simulation. The resulting climatology was then compared to an archived CAM6 climatology.
This process was repeated after each training iteration to assess the model’s ability to capture the climatology of
precipitation and 2-meter temperature. The final model was selected based on latitude-weighted mean squared error
(RMSE), ensuring the closest match to the CAM6 climatology for these two fields. The 50th cycle was selected as our
final model, which took an additional 12 hours of training.

2.4 Climate Forecast Inference Options

We explore multiple inference configurations, each defined by the forcing applied to the SST field, while all other
dynamic forcing variables remain unchanged. The following four SST scenarios are considered:

1. Observed SSTs (1979–2014) – Uses monthly historical SST values from this period as in the CAM6
simulations

2. Year 2000 Climatological SST – Applies the mean SST state from the year 2000, held constant throughout
the simulation.

3. Year 2000 +2K Climatological SST – Uses the year 2000 SST climatology, with a uniform and instantaneous
+2K temperature increase applied globally to the SST field.

4. Year 2000 +4K Climatological SST – Uses the year 2000 SST climatology, with a uniform and instantaneous
+4K temperature increase applied globally to the SST field.

For every SST case, the monthly sea surface values are linearly interpolated to a 6-hour timestep. In the 1979–2014
observed SST case, the simulation continuously cycles through these years, allowing for realistic variability. In contrast,
climatological SST scenarios (year 2000, +2K, and +4K) can be extended indefinitely, making them well-suited
for exploring equilibrium climate responses under different baseline ocean conditions. We note that the model was
trained exclusively on the 1979–2010 SST state, making the remaining two inference cases (Year 2000+2K, and +4K
climatological SSTs) entirely out-of-sample predictions. To ensure diverse initial conditions, we introduce a stochastic
kinetic energy backscatter scheme [Berner et al., 2009] for the first 15 days to the 1979–2014 SST runs, allowing the
model to reach an independent atmospheric state by week 2. This approach mirrors the initialization strategy used in
CAM6 simulations, where initial temperature perturbations help generate distinct trajectories [Kay et al., 2015].
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Figure 1: (a) the CAMulator architecture consists of encoding stages using a CrossFormer backbone and decoding
stages with hierarchical transpose convolutional layers, with skip connections for improved feature flow. (b) The CEL
captures multi-scale features using four convolutional kernels. The LSDA mechanism includes (c)(i) SDA for local
interactions and (c)(ii) LDA for global dependencies. (d) The decoder component employs convolutional upsampling
blocks with skip connections to progressively increase feature map resolution and maintain spatial information. e)
predictions are then de-normalized and past through the four physics conservation blocks prior to loss calculations

2.5 Computational Speed and Opportunities

CAM6 achieves significant computational throughput on Derecho, a NSF NCAR supercomputer, with 10 CPU nodes
delivering 14 simulation years per day at the selected resolution. This performance metric reflects pure compute time,
excluding I/O overhead. In contrast, our trained ML-based emulator achieves a dramatic 350 times speedup, running at
480 simulation years per day for a deterministic run on a single NVIDIA A100 GPU, while including all computational
overhead and I/O operations. This acceleration enables high-throughput climate experiments, facilitating long-term
scenario projections, ensemble simulations, and uncertainty quantification that would otherwise be computationally
prohibitive with traditional numerical models.

While this speedup is already substantial, further improvements at inference time are possible through:

• Scalability via Ensemble Parallelism: Expanding ensemble members across multiple GPUs to improve
robustness and uncertainty estimation.

• Memory-Efficient Data Handling: Leveraging asynchronous I/O strategies and distributed storage solutions
to further reduce bottlenecks in large-scale climate simulations.

We avoid mixed precision (FP16/BF16) arithmetic to preserve the conservation properties critical for accurate climate
modeling.

This optimized workflow positions the emulator as a scalable and efficient alternative to traditional GCMs, capable of
running thousands of years of simulation within days, opening new avenues for large-ensemble climate forecasting,
extreme event attribution, and policy-relevant decision support.

3 Results

3.1 Annual Cycle and Roll-out

Figure 2 illustrates two key aspects of CAMulator’s response to SST forcing. The top panel compares a 12-member
CAMulator ensemble with the training data from 1979–2014, demonstrating that CAMulator effectively captures the
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Figure 2: Column-integrated heat content in CAMulator to different SST forcing scenarios. (Top panel) A 12-member
CAMulator ensemble (teal) is compared to the CAM6 simulation (purple) using observed SSTs from 1979–2014.
CAMulator successfully captures the long-term warming trend and interannual variability. To isolate the trend, the
seasonal cycle has been removed by regressing out the six leading harmonics, and a 90-day rolling mean has been
applied. The ensemble spread arises from stochastic kinetic energy backscatter (SKEBS) perturbations applied during
the first 15 days of simulation. (Bottom panel) CAMulator forced with fixed year-2000 climatological SSTs produces
a stable long-term simulation with no discernible trend, demonstrating that the model does not introduce artificial
warming in the absence of an external forcing mechanism.

long-term warming trend of total column-integrated heat content. Even though the emulator is initialized from weather
states that then evolve dynamically at 6 hour time steps, it is still able to capture major modes of low-frequency internal
variability while remaining on the correct trend trajectory. Thus, this serves as a semi-independent test of the emulator’s
ability to reproduce climate-scale variability in a changing climate, despite the presence of the trend in the training
data. To isolate this trend, the seasonal cycle was removed by regressing out the six leading harmonics, and a 90-day
rolling mean was applied to the time series (Fig. 2a). The CAM6 simulation remains well within the ensemble spread
of CAMulator, highlighting the ability of CAMulator to reproduce observed interannual variability. The CAMulator
ensemble spread arises from the introduction of stochastic kinetic energy backscatter [SKEBS, e.g., Berner et al.,
2009], which perturbs initial conditions over the first 15 days before allowing the system to evolve freely. We see an
underestimation of total heat capacity in the period from 2003 to 2010 in CAMulator, however, CAM6 still largely sits
within the ensemble spread. This discrepancy, is discussed further in “Model Deficiencies and Future Improvements".

Figure 2b demonstrates the model’s behavior when forced with fixed year-2000 climatological SSTs. In this scenario,
CAMulator maintains an indefinite stable rollout with no emergent trend, as the absence of external forcing in SSTs
prevents any sustained warming signal. This suggests that while the model responds effectively to imposed SST trends,
it does not generate spurious warming in the absence of a forcing mechanism, and is capable of indefinite fixed climate
rollouts. We show an identical figure to Figure 2 in the supplemental material, but for total water path (Fig. S1) and find
similar results.

Notably, across all SST forcing scenarios—including cases where the simulations were forced with SSTs outside of the
training distribution—CAMulator has exhibited no signs of numerical instability. To date, no model crashes with our
final model configuration have been observed, highlighting its robustness in handling a range of climate conditions.
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Figure 3: Time series of conservation diagnostics and budget residuals for CAMulator with and without physics
conservation blocks. (a) Total dry mass (kg) for CAMulator-phys (teal), CAMulator-nophys (black), with the initialized
mass shown as a reference (red dashed line). (b) Moisture budget residual (kg) comparing CAMulator-phys and
CAMulator-nophys. (c) Global energy budget residual (W) for CAMulator-phys and CAMulator-nophys. (d) Total
energy tendency (W), representing the time derivative of total atmospheric energy, comparing CAMulator-phys and
CAMulator-nophys.

Figure 3 shows the conservation properties for global mass, water, and energy of the CAMulator system with the
conservative layers activated (Figure 3; CAMulator-phys teal line) and inactive (Figure 3; CAMulator-nophys black
line). CAMulator-nophys immediately deviates from the desired conservation properties and quickly settles into it’s
own errant climatology halfway through the first month of the climate simulation. The residuals are calculated as the
previous time-step minus the current [t−1− t0], meaning an observed positive residual indicates that CAMulator-nophys
sheds mass, water, and energy prior to settling into a steady state. We note that we can still achieve stable simulation
runs and indefinite roll-outs with CAMulator-nophys.

Interestingly, enforcing total energy tendency conservation balances the tendency such that it is centered around zero
and regularly oscillates with the diurnal cycle (Fig. 3e), whereas sporadic behavior is observed in CAMulator-nophys.

3.2 Annual Mean Biases

We next evaluate the time-averaged annual climatology of the CAMulator simulation over the period 1979–2014. Figure
4a–c shows the zonal mean precipitation, 2m temperature, and zonal wind at the lowest model level for CAM6 and
CAMulator, shown in purple and teal, respectively. The zonal mean for two reanalysis products is also shown in dashed
gray.

Overall, CAMulator simulates the annual mean state well. Figure 4d–f presents the difference between the annual
means (CAMulator - CAM). The largest precipitation errors occur in the tropics, with a wet bias over Central America
and a dry bias over the Maritime Continent (Fig. 4d). For 2m temperature, a persistent warm bias is evident over
Greenland, particularly in winter, likely due to the lack of ice representation in the CAMulator state (Fig. 4e). The
largest discrepancies in zonal winds appear in the storm track regions, where slight shifts in the locations of peak wind
magnitudes are observed (Fig. 4f). For every field, the spatial annual climatological RMSE is computed and displayed
in the supplemental material (Figs. 2S-16S), we additionally compute the annual RMSE values which are in appendix
table A.1.

3.3 Modes of Variability

Evaluating a climate model’s performance requires not only assessing its accuracy in representing climatological
averages but also its ability to capture lower-frequency climate modes [e.g., Phillips et al., 2014]. Given the vast number
of modes of variability identified in the literature, a comprehensive analysis is impractical. Instead, we focus on three
principal and well-documented modes used in major climate model evaluations: the Pacific North American Pattern
(PNA), the North Atlantic Oscillation (NAO), and the El Niño–Southern Oscillation (ENSO) precipitation response. As
these modes typically peak in boreal winter (defined here as December–February (DJF)), our analysis will center on
their wintertime behavior. This section focuses on the representation of the PNA and NAO, while the following section
will examine ENSO.

Figure 5 shows the regression of the 500 hPa geopotential height (Z500) anomaly onto the leading principal component
for the PNA and NAO regions in DJF, comparing CAMulator and CAM. Panels (a) and (b) illustrate the PNA-associated
Z500 anomalies for CAMulator and CAM, respectively, while panels (c) and (d) display the NAO-related anomalies.
Both patterns exhibit a close match to the CAM6 variability in terms of explained variance, indicating that these modes
are well represented. Although the CAMulator patterns appear slightly muted in amplitude, they qualitatively capture
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Figure 4: Zonal mean and spatial bias analysis of key climate variables. The top row (panels a–c) displays the zonal
mean values for (a) precipitation rate (PRECT, mm/day), (b) near-surface air temperature (TREFHT, K), and (c) zonal
wind component (U, m/s), comparing simulations from CAMulator (teal) and CAM6 (purple). Reanalysis products
(GPCP [1981-2010] and ERA5 [1979-2010]) are shown shown in grey dash. The bottom row (panels d–f) presents
the corresponding spatial biases (CAMulator - CAM) for (d) PRECT, (e) TREFHT, and (f) U, highlighting regional
differences. Biases are computed as the annual mean differences between the two simulations and are visualized using
a diverging colormap (red: CAMulator > CAM, blue: CAMulator < CAM)

the general structure of the CAM6 patterns and remain within the expected range of variability over a 30-year simulation
Simpson et al. [2020]. Notably, geopotential height is not directly predicted by CAMulator; rather, it is reconstructed by
summing thicknesses across half-model levels to account for temperature and moisture variations between grid cells.
The fact that CAMulator successfully reproduces the spatial structure of Z500 anomalies suggests that the physical
coherence between surface pressure (PS), temperature (T), and total moisture (Qtot) has been well preserved, lending
credibility to the model’s internal consistency.

3.3.1 PNA & NAO

3.3.2 ENSO Precipitation Response

ENSO is the dominant mode of tropospheric climate variability on interannual timescales, exerting a strong influence
on global precipitation patterns [e.g., Philander, 1983, Dai and Wigley, 2000, Chapman et al., 2021]. To assess how
well CAMulator replicates the ENSO-related precipitation response, we analyze composite precipitation differences (El
Niño minus La Niña) for the eight strongest ENSO events, identified based on absolute Niño3.4 SST anomalies over
DJF and compare the response to CAM6 (Fig. 6a–b).

Both models capture the characteristic precipitation enhancements in the central and eastern Pacific, particularly near
the International Date Line. However, CAMulator exhibits a slightly muted response in this region, a difference that
may be attributable to internal variability. Notably, this muted response is consistent with the slight under representation
of the PNA and NAO modes, suggesting a potential model tendency to underpredict low-frequency variability, which is
notable in another ML-based climate model Cresswell-Clay et al. [2024]. The precipitation derived from ENSO-driven
teleconnections over North America are well captured, with drier conditions over the southern U.S. and wetter conditions
in the Pacific Northwest. Similarly, the Maritime Continent response aligns closely between the models, indicating that
CAMulator effectively represents the large-scale precipitation shifts associated with ENSO. Examining the patterns
in Figure 6 using a cosine latitude weighted Pearson correlation, we see a precipitation pattern correlation of 0.935
between CAM6 and CAMulator. Overall, CAMulator successfully reproduces the spatial patterns of the CAM6 ENSO
precipitation response, showing strong qualitative agreement.

3.4 Extremes and Precipitation

Beyond representing mean climate and large-scale modes of variability, a climate model’s ability to simulate extreme
events is a crucial measure of its fidelity. Extremes (e.g. heatwaves, heavy precipitation events, or droughts) shape
ecosystems, infrastructure resilience, and societal vulnerability. These high-impact phenomena arise from nonlinear
interactions between atmospheric and oceanic processes, making their accurate representation a stringent test of a
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Figure 5: Regression of the anomalous Z500 field on the leading principal during DJF for the PNA region (left column,
20°–85°N, 120°E–120°W) and the NAO (right column, 20°–80°N, 90°W–40°E) over the years 1979–2014. Results are
shown for CAMulator (top row) and CAM6 (bottom row). The explained variance of each mode is shown in the top
right of each panel

model’s physical consistency and predictive skill. Machine learning models, particularly those trained to minimize mean
squared error, often struggle to capture extremes because they tend to favor the mean state over rare, high-magnitude
events. However, CAMulator does not exhibit a strong tendency to underpredict extremes. We hypothesize that this may
be due to its training methodology, which is limited to two prediction time steps (out to 12 hours), allowing it to better
preserve variability. Supporting this, CAMulator’s kinetic energy and potential temperature spectra (see Supplemental
Fig. 1S) show minimal smoothing at smaller spatial scales, a common issue in data-driven models [see, Rasp et al.,
2024] that can lead to weakened variability.

Figure 7 presents the annual maximum 6-hourly 2m temperature and precipitation at each grid point for CAM6 and
CAMulator, with differences shown in the bottom row. Overall, CAMulator successfully captures the spatial patterns
of extreme events, but some notable biases emerge. For 2m temperature, CAMulator overpredicts Arctic extreme
temperatures, particularly in regions dominated by sea ice and land ice. This bias is expected, as CAMulator lacks
explicit sea-ice and land-ice interactions—a limitation that will be addressed in future versions. For precipitation,
CAMulator underpredicts extremes in the deep tropics while overpredicting them in the mid-latitudes. Notably, the
region off the coast of Japan exhibits a strong positive bias in extreme precipitation, suggesting that CAMulator may be
overestimating the intensity of tropical cyclones in this region.
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Figure 6: Composite difference in DJF precipitation (mm/day) during ENSO events (El Niño minus La Niña) for
the eight strongest ENSO years on record, as identified by the Niño3.4 index. Results are shown for CAM6 (left) and
CAMulator (right), with composites constructed using simple averaging. The Niño3.4-based El Niño years (December)
include 1979, 1982, 1986, 1987, 1991, 1994, 1997, and 2002, while La Niña years (December) include 1983, 1984,
1988, 1995, 1998, 1999, 2000, and 2007. The color scale represents precipitation anomalies, where red indicates
increased precipitation during El Niño relative to La Niña, and blue indicates reduced precipitation.

Figure 7: Climatology of the annual maximum 6-hourly average two-meter temperature (TREFHT, left column) and
precipitation rate (PRECT, right column) over the period 1979–2014. The top row shows results from CAMulator, while
the middle row presents results from CAM. The bottom row displays the differences (CAMulator - CAM), highlighting
areas where CAMulator simulates warmer or colder extreme temperatures (red and blue shading, respectively) and
higher or lower extreme precipitation rates (green and blue shading, respectively). Color bars indicate absolute values for
TREFHT (K) and precipitation (mm/day) in the top and middle rows, while the bottom row represents their respective
differences.
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Figure 8: Global climatological distributions of daily rainfall from CAM6 (teal), CAMulator (purple), and GPCP
observations (dotted black). (Top) Rain amount (mm day−1) as a function of rain rate. (Bottom) Rain frequency
distribution (%) as a function of rain rate. The dry-day frequency is indicated in the top left of the bottom panel, with
values for CAM6 (teal), CAMulator (purple), and GPCP (black). GPCP serves as an observational reference dataset
and is coarsened prior to computing distributions.

3.5 Rain Amount Distribution

In this section we look at the similarities of the modeled rain amount and rain frequency distributions [e.g., Pendergrass
and Hartmann, 2014], using logarithmically distributed rain-rate bins following Watterson and Dix [2003]. See the
appendix section A.3 for the exact form of the calculation. The global distributions of CAM6 and CAMulator, along
with the distribution observed in the daily GPCP dataset spanning years 1997-2012 are shown in Figure 8. The rain
amounts in CAM6 and CAMulator are nearly identical, each peaking at around 10 mm day−1 and are in agreement for
all rain rates (Fig 8a). However, the biases in CAM6 when compared to the GPCP product (i.e. narrower distribution
focused on a higher rain rate) persist in CAMulator. This is expected as CAMulator was trained as a CAM6 emulator.

At larger rain rates (> 10 mm day−1) the rain frequency distributions align fairly well (Fig 8b). However, at lighter rain
rates, between 0.1 and 3 mm day−1, there is a noted reduction in CAMulator rain frequency, bringing the distribution
closer the the GPCP. Additionally, the dry-day frequency is nearly double that of CAM, and much more similar to
GPCP. These are known biases in CAM6 that have persisted through most of the generations of the CAM models
[e.g., Pendergrass and Hartmann, 2014, Pendergrass et al., 2017]. As discussed in [Sha et al., 2025a], the reduction in
drizzle bias is primarily a consequence of our global conservation schemes. In our moisture budget framework, the
global sum of total precipitation is required to be consistent with conserved quantities such as water, mass, and energy.
When CAMulator overestimates drizzle—characterized by relatively low precipitation amounts—and underestimates
precipitation in drier regions, the resulting global precipitation sum deviates from these conservation constraints. To
enforce global consistency, a multiplicative correction is applied. However, because drizzle values are small, even minor
absolute adjustments result in large relative changes. This disproportionate correction significantly increases the MSE
during training, effectively penalizing the drizzle bias to meet the physical conservation laws.

3.6 +2K and +4K runs

Before evaluating the CAMulator’s response to SST perturbations beyond its training distribution, we impose clima-
tological SSTs for the year 2000 as a baseline forcing (+0K). Figure 9 presents the global mean temperature at the
lowest model level (Fig. 9a), along with the vertically integrated heat content for the lower (850–1000 hPa; Fig. 9b) and
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Figure 9: Time series of Global average Surface Temperature (a) and Column-integrated heat content (b,c) for
simulations driven by different sea surface temperature (SST) climatologies: 2000 SST climatology (dark blue),
2000+2K (brown), and 2000+4K (green). The results from CAM6 (dashed lines) and CAMulator (solid lines) are
shown. Integrated heat content is shown in two layers: (b) 850–1000 hPa and (c) 200–850 hPa.

upper troposphere (200–850 hPa; Fig. 9c). To assess the model’s extrapolation capabilities under out-of-distribution
forcing, we introduce uniform SST anomalies of +2K and +4K across all ocean grid cells and compare the CAMulator’s
response to that of CAM6. Notably, these warming states lie well beyond the training data, testing the model’s ability to
generalize under extreme forcing scenarios.

The surface temperature response in the lowest model level exhibits the strongest agreement with CAM6, particularly in
the year 2000 climatology +0K and +2K cases, where the seasonal cycles are well-aligned. However, discrepancies
emerge under stronger warming, with a systematic cold bias in the CAMulator during boreal winter in both the +2K and
+4K simulations. This bias suggests that CAMulator fails to fully capture key feedback mechanisms governing seasonal
temperature variations in high-latitude regions. As shown in Figure 10, the largest errors in 2-meter temperature occur
in polar and sea-ice-dominated regions, indicating that the CAMulator lacks a robust representation of ice-atmosphere
interactions. Specifically, the model has no explicit knowledge of sea-ice melt dynamics, surface albedo feedbacks, or
key phase transition processes that modulate energy exchange in these environments. In contrast, CAM6 dynamically
represents the retreat and expansion of ice cover, which strongly regulates the surface energy budget in these regions.
The absence of such processes in the CAMulator likely leads to an unrealistic seasonal persistence of cold anomalies
during boreal winter.
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Figure 10: Annual mean temperature at the bottom model level in CAM6 (middle row) and CAMulator (top row) for
three sea surface temperature (SST) climatologies: 2000+0K (left column), 2000+2K (middle column), and 2000+4K
(right column). The bottom row shows the difference (CAMulator - CAM), highlighting deviations between the two
models. The color scale represents temperature (K), with positive/negative values (red/blue) indicating stronger/weaker
values in CAMulator.

In the lower troposphere (Fig. 9b), the integrated heat content exhibits a seasonal amplitude shift relative to CAM6,
which may reflect errors in boundary layer processes or the representation of heat fluxes from the surface. Similarly,
upper-tropospheric heat content (Fig. 9c) shows systematic biases that may be linked to discrepancies in heating
distribution via convective processes or the large-scale advection of heat anomalies.

Overall, the lack of cryosphere representation is a key limitation of CAMulator for extrapolation into warmer climates,
particularly in regions where ice-related feedbacks play a critical role. Future work should assess whether incorporating
explicit representations of land-ice/sea-ice state changes, or at least indirect constraints on polar energy fluxes, could
mitigate these systematic biases and improve the model’s ability to handle out-of-distribution SST forcings.

CAMulator’s ability to replicate large-scale low-level wind patterns under different SST forcing scenarios is evaluated
in Figure 11. The top two rows show the zonal wind component (U ) at 850 hPa for CAMulator (Figs. 11a–c) and
CAM6 (Figs. 11d–f) across the +0K, +2K, and +4K SST warming states, while the bottom row (Figs. 11g–i) presents
the difference between CAMulator and CAM6.

Overall, CAMulator demonstrates skill in capturing the large-scale structure of the low-level winds, particularly in
the Southern Ocean. The core features of the midlatitude westerlies, including their equatorward contraction under
warming, are well preserved. The close alignment with CAM6 suggests that CAMulator effectively learns the statistical
relationship between SST forcing and the strength and position of the Southern Hemisphere storm tracks. Given that
Southern Ocean winds are strongly tied to meridional temperature gradients and baroclinic wave activity and that this
relationship is well represented in the training dataset, it is unsurprising that CAMulator generalizes well in this region.

On the other hand, the North Atlantic sector presents a key divergence from CAM6. Despite increasing SSTs, there is
little evidence that the North Atlantic westerlies strengthen in response to warming in CAMulator, whereas CAM6
shows a more pronounced intensification. This discrepancy may reflect limitations in how CAMulator extrapolates
the response of dynamically driven modes such as the North Atlantic Oscillation (NAO). Since the NAO is strongly
influenced by internal atmospheric variability, rather than a direct SST-driven forcing, its response may be more difficult
for a data-driven model to capture, especially in out-of-distribution scenarios. Additionally, CAMulator lacks an
explicit representation of transient eddies and their feedbacks on mean flow, which could contribute to weaker NAO-like
variability under warming.
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Figure 11: Annual mean zonal wind at the second model level in CAM6 (middle row) and CAMulator (top row) for
three sea surface temperature (SST) climatologies: 2000+0K (left column), 2000+2K (middle column), and 2000+4K
(right column). The bottom row shows the difference (CAMulator - CAM), highlighting deviations between the
two models. The color scale represents zonal wind speed (m/s), with positive/negative values (red/blue) indicating
stronger/weaker values in CAMulator.

The difference maps (Figs. 11g–i) further highlight systematic deviations, particularly in the North Atlantic and over
regions of strong land-sea contrast, such as the western boundary currents. While these biases remain relatively small
in magnitude compared to temperature biases, they suggest that CAMulator does not fully capture the dynamical
adjustments that drive localized changes in low-level winds. This implies that some aspects of the wind field may be
inherently more difficult for a ML-based emulator to reproduce from CAM6.

Overall, these results indicate that CAMulator successfully replicates large-scale low-level wind features, particularly in
regions where wind anomalies are tightly coupled to SST changes. However, for dynamically driven patterns such as
the NAO, its response diverges from CAM6, potentially due to challenges in learning internally generated variability
from training data alone. Future work should assess whether incorporating additional predictors—such as large-scale
pressure anomalies or eddy kinetic energy—could improve CAMulator’s ability to mimic dynamically driven circulation
responses to warming.

4 CAMulator Deficiencies, Future Work, and Conclusions

In this work, we introduce CAMulator, an auto-regressive, machine-learned (ML) emulator of the Community At-
mosphere Model version 6 (CAM6). CAMulator is forced by sea surface temperatures (SSTs) and incoming solar
radiation and is explicitly constrained to conserve global mass, water, and energy. It exhibits numerical stability
over indefinite roll-outs and accurately reproduces the surface and integrated atmospheric heating response to within
sample SST variations. The annual climatology is well captured, and dominant modes of variability, such as El Niño
Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), and the Pacific North American (PNA) pattern,
emerge naturally, with slightly muted amplitudes in some cases. Additionally, CAMulator’s physical constraints
alleviate some of the drizzle problem commonly found in traditional climate models (Fig. 8). Beyond these physical
attributes, CAMulator is computationally efficient and differentiable, making it a promising tool for a range of scientific
applications.
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4.1 CAMulator Deficiencies and Future Improvements

Despite these strengths, several key deficiencies remain, highlighting areas for future development.

• High-latitude biases due to missing cryospheric processes: The absence of interactive sea and land ice, and
the limited representation of its change in the training period leads to a persistent cold bias, particularly in
boreal winter. This bias is most pronounced in later periods and becomes apparent in seasonal temperature
cycles (Supplemental Fig. 17S). The lack of explicit ice-feedbacks and phase transition processes likely
contributes to this discrepancy, especially in polar regions.

• Muted ENSO-related variability: While CAMulator successfully captures the broad-scale atmospheric
response to ENSO events, it underestimates the magnitude of certain ENSO-related variability. This is
particularly evident in the integrated atmospheric heat content during strong ENSO events, such as the 1997/98
El Niño (Fig. 2). Improved representation of coupled ocean-atmosphere interactions and internal variability
could enhance this response.

• Challenges in extrapolating to extreme SST perturbations: CAMulator’s response to out-of-distribution
SST forcing (+2K and +4K) diverges from CAM6, which suggests that while the model generalizes well
within its training range, it struggles with conditions that require dynamically consistent extrapolation. Future
improvements to training strategies, including exposure to a broader range of climate states and variables, may
mitigate this issue.

To address these limitations, several promising research directions should be explored:

• Coupling CAMulator with an interactive ocean, sea ice, and land model: Incorporating dynamic surface
processes would improve the representation of feedback mechanisms, particularly in polar regions, and help
resolve biases associated with missing feedback states. We hope that these models could be both physics-based
and machine learned [e.g., Dheeshjith et al., 2024].

• Enhancing variability through stochastic parameterizations: Training CAMulator with a Stochastic Kinetic
Energy Backscatter Scheme [SKEBS; Berner et al., 2009] or a similar approach could improve CAMulator’s
ability to represent subgrid-scale variability, potentially addressing the muted ENSO and NAO responses.

• Exploring supermodeling approaches: One promising avenue is to integrate CAMulator with multiple
ML-based emulators coupled to a single dynamical model, allowing for dynamic state corrections and
improved climate change projections [e.g., Schevenhoven et al., 2023]. Such a framework could enhance the
representation of future warming scenarios while maintaining computational efficiency.

4.2 Broader Implications and Future Outlook

The ability of CAMulator to rapidly emulate atmospheric states while conserving fundamental physical properties
makes it an attractive tool for accelerating climate simulations, uncertainty quantification, and data assimilation.
Furthermore, its differentiability opens new opportunities for inverse modeling and sensitivity analyses, potentially
improving parameter estimation in Earth system models.

As ML-driven climate modeling continues to evolve, hybrid approaches that combine data-driven methods with
traditional physics-based models will likely become increasingly valuable. CAMulator provides a foundation for
such efforts, demonstrating that machine-learned emulators can maintain physical fidelity while offering substantial
computational advantages. By incorporating additional coupling mechanisms and improving variability representation,
future iterations of CAMulator could play a critical role in next-generation climate modeling, bridging the gap between
computational efficiency and physical realism.
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Appendix Material

A Metric Calculations

A.1 Climatological RMSE

The weighted annual climatological root mean squared error is calculated as:

RMSE(ti, tl) =

√√√√ 1

NϕNλ

Nϕ∑
i=1

Nλ∑
j=1

{
w(i)

[
CAM6(i, j)− CAMulator(i, j)

]2}
(1)

Where Nϕ and Nλ are the number of latitude (ϕ) and longitude (λ) grid cells, respectively. w (i) = cos(ϕi) is the
latitude weighting coefficient, which is normalized such that

∑
i w(i) = 1, the over bar indicates that each field was

first averaged in time over the 30 year simulation run. Table A.1 shows the RMSE calculated for each single level
variable.

Short Name Long Name Units Globally Averaged RMSE
PRECT Precipitation Rate mm/day 0.5766
CLDTOT Total Cloud Cover fraction 0.0402
CLDHGH High Cloud Cover fraction 0.0391
CLDLOW Low Cloud Cover fraction 0.0340
CLDMED Medium Cloud Cover fraction 0.0296
TAUX Zonal Wind Stress N/m² 0.0110
TAUY Meridional Wind Stress N/m² 0.0055
U10 10m Wind Speed m/s 0.3062
QFLX Surface Moisture Flux kg/m²/s 0.0474
FSNS Net Solar Flux at Surface W/m² 6.4269
FLNS Net Longwave Flux at Surface W/m² 2.6681
FSNT Net Solar Flux at TOA W/m² 5.8499
FLNT Net Longwave Flux at TOA W/m² 3.9247
SHFLX Sensible Heat Flux W/m² 2.1538
LHFLX Latent Heat Flux W/m² 5.4987

Table 2: Spatial Root Mean Square Errors (RMSE) for climate variables, including their names, descriptions, and
measurement units. The RMSE values represent the deviation of CAMulator’s 30-year climatological mean from the
climatology of the base CAM6 simulation.

A.2 Atmospheric Heat Capacity

The atmospheric heat capacity is calculated by integrated temperature in the vertical and taking a cosine-latitude
weighted sum.

Cp

g

∫ P0

P1

T dP (2)

Where Cp is the dry air specific heat capacity and is set to 1004 [Jkg−1K]−1
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A.3 Rain amount and Rain Frequency

The calculation of rain amount and rain frequency follows the method outlined in Pendergrass and Hartmann [2014],
but we summarize the approach here for completeness. The rain-rate distribution is constructed using logarithmically
spaced bins, where each bin is 7% wider than the previous one, with its center shifted accordingly. Only rain rates
exceeding 0.03 mm day−1 are included, while dry days are defined by a precipitation threshold of 0.0321 mm day−1.

At each grid point, we first compute a histogram of rain rates and normalize it by the total number of days to obtain
the rain frequency distribution. The total precipitation amount within each bin is then summed to construct the rain
amount distribution. Finally, these distributions are averaged globally using an area-weighted approach to produce the
global-mean distributions. To formalize this, we define the probability distribution of rain amount p and rain frequency
f for each dataset, using daily rain accumulation r from model output or gridded observations. The bin edges are
denoted as T l

i (left) and T r
i (right), with the bin centers defined as T c

i = (T l
i + T r

i )/2. The transformation of the
distribution is expressed mathematically as follows:

pi(T
c
i ) =

1

∆ lnR

∫ lnT r
i

lnT l
i

p(ln r)d ln r =
1

∆ lnT

∑
gridpts

r(T l
i < r < T r

i )
Agridpt

Atotal
, (3)

fi(T
c
i ) =

1

∆ lnT

∫ lnT r
i

lnT l
i

f(ln r)d ln r =
1

∆ lnT

∑
gridpts

Nd(T
l
i < r < T r

i )∑
Nd

Agridpt

Atotal
, (4)

Fd =
1∑
Nd

∑
gridpts

Nd(r = 0)
Agridpt

Atotal
, (5)

where A is the grid cell area, and Nd represents the number of days in the dataset. The bin width is set as

∆ lnT =
(Ti+1 − Ti)

Ti
= 7.67%, (6)

ensuring sufficient resolution to capture the distribution of rain rates.

A.4 Low Frequency Variability

To extract the leading patterns of variability, we perform an empirical orthogonal function (EOF) decomposition on the
monthly anomaly fields. The climatology is defined as the monthly mean computed over the full 30-year simulation
or reanalysis record. Prior to decomposition, all fields are area-weighted by the square root of the cosine of latitude
to account for variations in grid cell area. We represent the spatial patterns by regressing the field pointwise onto a
one-standard-deviation change in the corresponding temporal principal component.

We examine the DJF Pacific–North American (PNA) pattern and the North Atlantic Oscillation (NAO) in detail.
Following [Phillips et al., 2014] (NCAR’s Climate Variability Diagnostic Package), these patterns are defined as the
leading modes of atmospheric variability over the regions [20–85°N, 120°E–120°W] and [20–80°N, 90°W–40°E],
respectively.

The eight strongest El Niño and La Niña events are identified using the Niño3.4 index from the observational record.
The December El Niño years include 1979, 1982, 1986, 1987, 1991, 1994, 1997, and 2002, while the December La
Niña years include 1983, 1984, 1988, 1995, 1998, 1999, 2000, and 2007. The composite precipitation pattern is then
calculated by computing the DJF seasonal averages and subtracting the La Niña composite field from the El Niño
composite field.

B Model Grid and Conservation Schemes

CAMulator leverages a hybrid sigma-pressure coordinate system, where vertical integrals are computed by first
determining the local pressure value. The pressure at each model level k is given by:

P (i, j, k) = AkP0 +BkPS(i, j) (7)
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where P (i, j, k) represents the pressure at level k for a given latitude-longitude point (i, j). The terms Ak (hPa) and
Bk (dimensionless fraction) are reference coefficients defining the hybrid coordinate system, while P0 (1000.0 hPa) is
the reference pressure. The surface pressure, PS(i, j), varies across grid points and is used to determine the pressure
levels dynamically.

For a quantity S(z) that varies with height z, its mass-weighted vertical integral can be converted to a pressure level
integral using the hydrostatic equation:

∫ ∞

0

ρSdz =
1

g

∫ 0

ps

Sdp ≈ 1

g

∫ p0

ps

Sdp (8)

where S represents the variable of interest at the midpoint of the (i, j, k)-the grid box, and g is the acceleration due to
gravity. We conduct similar corrections to [Sha et al., 2025a,b], except applied on sigma-hybrid pressure levels, we
repeat the derivation of those calculations below for completeness.

B.1 Global dry air mass conservation

The evolution of dry air mass within a given atmospheric column is determined by the divergence of the vertically
integrated dry air mass flux:

1

g

∂

∂t

∫ p0

p1

(1− q)dp = −∇ · 1
g

∫ p0

p1

[(1− q)v]dp (9)

where v represents velocity, and q corresponds to total atmospheric moisture, approximated by specific total water (see
Table 1).

For a global sum, if the atmosphere is considered incompressible, the divergence term in equation (9) becomes zero.
Consequently, the total global dry air mass (⟨Md⟩) remains conserved over time (henceforth, ⟨⟩ denotes a global sum):

∂

∂t
⟨Md⟩ =

∂

∂t

〈
1

g

∫ p0

p1

(1− q)dp

〉
= ϵd (10)

Where ϵd is the residual term that violates the global dry air mass conservation.

For two forecast time steps separated by ∆t = t1 − t0, where t0 corresponds to the initial analyzed state and t1 denotes
a subsequent validation time, equation (10) can be reformulated as:

∂

∂t
⟨Md⟩ = ⟨Md (t0)⟩ − ⟨Md (t1)⟩ = ϵd (11)

During the correction stage, PS can be adjusted to ensure ϵd = 0 using a multiplicative ratio. For this correction, the
contribution of global dry air mass from coefficients A and B are estimated as follows:

⟨MA⟩ = SUM

[
1

g

Nl−1∑
il=0

∆Ail (1− q)il

]
, ∆Ail = Ail −Ail−1

⟨MB⟩ = SUM

[
ps
g

Nl−1∑
il=0

∆Bil (1− q)il

]
, ∆Bil = Bil −Bil−1

(12)

Where ⟨MA⟩ and ⟨MB⟩ are global dry air mass components spread to A and B, respectively. When computed on t1,
they are denoted as ⟨MA (t1)⟩ and ⟨MB (t1)⟩.
The correction of ps is defined as follows:

p∗s (t1) = ps (t0)
⟨Md (t1)⟩ − ⟨MA (t1)⟩

⟨MB (t1)⟩
(13)

Where ⟨Md (t0)⟩ is the total amount of global dry air mass calculated from the initial condition. p∗s (t1) is the corrected
ps on t1. The same multiplicative correction is applied to ps on all grid cells.
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B.2 Global moisture budget conservation scheme

For an air column, the time tendency of total precipitable water (Mv) is governed by the balance between the vertically
integrated moisture flux divergence, evaporation, and total precipitation:

∂

∂t
Mv =

1

g

∂

∂t

∫ p0

p1

qdp = −∇ · 1
g

∫ p0

p1

(vq)dp− E − P (14)

Here, q represents the specific total water content, while E and P correspond to evaporation and total precipitation,
respectively, with units of kg ·m−2 · s−1.

On a global scale, the divergence term in equation (14) vanishes, implying that the global sum of Mv is primarily
modulated by the spatially averaged evaporation (⟨E⟩) and precipitation (⟨P ⟩), with an additional residual term ϵm
indicating conservation errors:

−
〈
∂Mv

∂t

〉
− ⟨E⟩ − ⟨P ⟩ = ϵm (15)

By convention, downward precipitation results in a positive ⟨P ⟩, whereas ⟨E⟩ is typically negative due to upward
evaporation.

To enforce moisture budget closure, precipitation is adjusted during the correction step via a multiplicative factor:

P ∗ (t1) = P (t1)
⟨P ∗ (t1)⟩
⟨P (t1)⟩

, ⟨P ∗ (t1)⟩ = −
〈
Mv (t1)−Mv (t0)

∆t

〉
− ⟨E (t1)⟩ (16)

where ⟨P ∗ (t1)⟩ denotes the globally adjusted precipitation necessary to achieve moisture conservation. This correction
is uniformly applied across all grid points.

B.3 Global total atmospheric energy conservation scheme

For a given air column, its vertically integrated total atmospheric energy (A) is defined as follows:

A =
1

g

∫ p0

p1

(CpT + Lvq +Φs + k)dp (17)

The terms on the right side of the equation (17) are thermal energy, latent heat energy, potential energy, and kinetic energy,
respectively. Lv is the latent heat of vaporization, and Φs is the geopotential at the surface. Kinetic energy (k) is defined
as k = 0.5 (v · v). The specific heat capacity of air at constant pressure (Cp) is defined as Cp = Cpd(1− q) + Cpvq.
The formulation of equation (17) has some limitations, which will be addressed in a separated section below.

The tendency of A is determined by the divergence of vertically integrated moist static energy (h = CpT + Lvq +Φ),
kinetic energy, and other energy sources and sinks:

∂

∂t
A = −∇ · 1

g

∫ p0

p1

v (h+ k)dp = RT − FS (18)

Where RT and FS are net radiation and energy fluxes on the top of the atmosphere and the surface.

RT = TOAnet +OLR

FS = Rshort +Rlong +Hs +Hl
(19)

Where TOAnet is the top-of-atmosphere net solar radiation, OLR is outgoing longwave radiation. Rshort, Rlong, Hs,
and Hl are the surface net solar radiation, surface net longwave radiation, surface net sensible heat flux, and surface net
latent heat flux, respectively. Frictional heating is ignored in FS .

For global sum, the divergence term in equation (18) is zero, and the global sum of the tendency of A is balanced by its
energy sources and sinks, subject to a residual term:
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⟨RT ⟩ − ⟨FS⟩ −
〈
∂A

∂t

〉
= ϵA (20)

Here, the net energy flux is computed as ⟨RT ⟩ − ⟨FS⟩ because both terms have downward as positive. The downward
on the top of the atmosphere means the energy goes “into” the atmosphere, but the downward on the surface mean the
energy “leaves” the atmosphere. This is different from equation 15 where both sources and sinks are at the surface.

The air temperature (T ) can be corrected to ensure thermal energy (CpT ) closes the energy budget, forcing ϵA = 0:

⟨A∗ (t1)⟩ = ⟨A (t0)⟩+∆t⟨RT ⟩ − ⟨FS⟩, γ =
⟨A∗ (t1)⟩
⟨A (t1)⟩

T ∗ (t1) = γT (t1) +
γ − 1

Cp
[Lvq (t1) + Φs + k (t1)]

(21)

Where ⟨A∗ (t1)⟩ is the corrected global sum of total atmospheric energy, γ is the multiplicative correction ratio. The
same γ is applied to T at all grid cells and pressure levels.

Supplemental Material

B.4 Global Spectra

The verification of the global energy spectrum is computed using spherical harmonic transforms. For a given forecasted
or analyzed field F (ϕ, λ), it can be represented using spherical harmonic functions Y (ϕ, λ) as orthonormal basis and
spherical harmonic coefficients (a):

F (ϕ, λ) =

lmax∑
l=0

l∑
m=−l

aml Y m
l (ϕ, λ) (22)

Where degree l represents the total angular frequency of Y . m is the zonal wave number. The energy spectrum of F at
a given m is the sum of magnitudes of a in all degrees with l ≥ m:

P (m) =
∑
l≥m

∥aml ∥2 (23)

The kinetic energy (m2 · s−2) and potential temperature energy (K2) spectrum on 500 hPa pressure level were computed
and as functions of m, ti, and tl. The result is averaged on ti. Comparing P (m) on forecasts and the ERA5 target,
the ability of weather prediction models to represent the energy transfer across scales can be verified. In addition, the
energy spectrum provides a measure of the effective resolution of AI NWP models, which helps identify the smoothing
effect of neural-network-based computations and model training.
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Figure 1S: Global mean kinetic energy (a) and potential temperature (b) energy spectra for CAMulator (teal), and
CAM6 (Purple) at 500 hPa calculated for years 1979-2010.

B.5 Annual Climatolgical RMSE

Figure 2S: Annual climatological RMSE by level for U V T and Q for CAMulator simulation run from 1979-2010
computed against the CAM6 climatology

Figure 3S: Annual climatology of the total cloud cover fraction in CAMulator (a), CAM6 (b) and the difference (c)
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Figure 4S: As in 3S but for high cloud fraction

Figure 5S: As in 3S but for medium cloud fraction

Figure 6S: As in 3S but for low cloud fraction

Figure 7S: As in 3S but for zonal surface wind stress
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Figure 8S: As in 3S but for meridional surface wind stress

Figure 9S: As in 3S but for 10-meter wind magnitude

Figure 10S: As in 3S but for surface evaporation

Figure 11S: As in 3S but for near-surface shortwave radiation
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Figure 12S: As in 3S but for near-surface longwave radiation

Figure 13S: As in 3S but for model top shortwave radiation

Figure 14S: As in 3S but for model top longwave radiation

Figure 15S: As in 3S but for surface heat flux
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Figure 16S: As in 3S but for latent heat flux

Figure 17S: Time series of the latitude-weighted global average two-meter temperature (T2m) from CAM6 (purple)
and CAMulator (teal). (Top) Seasonal cycle of T2m from 1979 to 2003, showing interannual variations. (Bottom)
Climatological annual cycle of T2m, computed as the multi-year mean, with ±1 standard deviation shading representing
interannual variability in CAM6 (purple) and CAMulator (teal). The latitude-weighting accounts for the cosine of
latitude to ensure an accurate global mean representation.
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