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Abstract Due to the wide range of processes impacting the sea surface height (SSH) on daily‐to‐interannual
timescales, SSH forecasts are hampered by numerous sources of uncertainty. While statistical‐dynamical
methods like Linear Inverse Modeling have been successful at making forecasts, they often rely on assumptions
that can be hard to satisfy given the nonlinear dynamics of the climate. Here, we train convolutional
autoencoders with a dynamical propagator in the latent space to generate forecasts of SSH anomalies. Learning
a nonlinear dimensionality reduction and the prediction timestepping together results in a propagator that
produces better predictions for daily‐ and monthly‐averaged SSH in the North Pacific and Atlantic than if the
dimensionality reduction and dynamics are learned separately. The reconstruction skill of the model highlights
regions in which better representation results in improved predictions: in particular, the tropics for North Pacific
daily SSH predictions and the Caribbean Current for the North Atlantic.

Plain Language Summary Forecasts of sea surface heights are impacted by numerous sources of
uncertainty. While statistical methods for representing temporal changes in the climate system have been useful
for making predictions, they often rely on assumptions that do not always hold due to the complex interactions in
the climate system. Here, we make a machine learning model that learns a compressed representation of the
climate system which facilitates sea surface height predictions. The learned compressed representation of the
climate system results in better sea surface height predictions than would occur if the dimensionality reduction
and prediction is done separately. Our machine learning model also points to regions where more accurately
representing sea level can result in better regional‐scale predictions.

1. Introduction
The large variety of processes impacting sea surface heights (SSH) on daily‐to‐interannual timescales implies that
forecasts of SSH on these time horizons are hindered by numerous sources of uncertainty. SSH variability on
these timescales is driven by factors including barotropic adjustment to wind stress (Hermans et al., 2022; Kamp
et al., 2024; Vinogradova et al., 2007), air‐sea buoyancy fluxes (Cabanes et al., 2006; Gill & Niller, 1973), wind‐
driven Ekman pumping (Cabanes et al., 2006; Webb, 2021), changes in large‐scale Sverdrup balance (Cabanes
et al., 2006), advection of density anomalies (Piecuch & Ponte, 2011), Rossby waves (Calafat et al., 2018; Chelton
& Schlax, 1996), buoyancy‐driven changes in ocean circulation (Roberts et al., 2016), eddy variability due to
baroclinic instability (Marques et al., 2022), and atmospheric pressure anomalies (Piecuch et al., 2016). Devel-
oping forecasts for SSH amid these numerous drivers thus presents a challenge.

Over the past few decades, statistical‐dynamical methods have proven effective for developing forecasts directly
from data. Forecasts generated using Linear Inverse Models (LIM, Penland (1989), Penland and Sardesh-
mukh (1995)) have had substantial success in predicting the large‐scale evolution of geophysical fields on these
timescales (Albers & Newman, 2021; Fraser et al., 2019; Newman, Shin, & Alexander, 2011; Zanna, 2012). The
framework generally involves first applying dimensionality reduction to represent the system state using a low‐
dimensional embedding, and then determining a linear propagator from time‐lagged covariance statistics. The
premise of this approach is that the state evolution can be represented as the sum of slow, predictable, linear
dynamics and fast, unpredictable, nonlinear dynamics modeled by Gaussian noise (Hasselmann, 1976). Despite
their simplicity, LIMs have demonstrated skill comparable to operational forecasting models in some cases
(Albers & Newman, 2021; Richter et al., 2020; Shin & Newman, 2021).

One appealing aspect of LIMs is the simplified representation of the dynamics as a low‐dimensional, linear
propagator. While nonlinear dynamical systems can be chaotic, unpredictable, and nontrivial to solve, linear
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dynamical systems readily admit closed‐form solutions and can be solved systematically. The eigenvalues of the
propagator can be used to identify dominant timescales for the dynamics of the system as well as optimal initial
conditions for producing anomaly growth (Penland & Sardeshmukh, 1995; von Storch et al., 1995; Vimont
et al., 2014; Zanna, 2012). However, ensuring that the state evolution is plausibly described by a linear stochastic
dynamical system is often challenging, as it depends on the processes being represented and the temporal res-
olution of the data. The computed propagator typically depends on the time lag used to compute it, due to
nonstationary statistics (Penland & Sardeshmukh, 1995), unrepresented processes (Penland & Ghil, 1993),
fundamental deficiencies in representing dynamical systems usingMarkov models (DelSole, 2000), and sampling
of intrinsic oscillatory modes of the system (Penland, 2019).

Another sensitivity lies in the application of dimensionality reduction. Clearly, the number of dimensions used to
represent the state is a parameter (Newman, Alexander, & Scott, 2011). Additionally, the performance of a LIM
may depend on the dimensionality reduction technique applied. Typically, Principal Component Analysis (PCA),
also known as Empirical Orthogonal Function analysis, is used to reduce the dimensionality of the system
(Hotelling, 1933; Lorenz, 1956; Pearson, 1901). However, the requirement that modes are orthogonal can be
restrictive (Dommenget & Latif, 2002). Neural network autoencoders can relax the assumptions of linearity and
orthogonality to obtain more efficient low‐dimensional embeddings (Hinton & Salakhutdinov, 2006;
Kramer, 1991). Nevertheless, it is unclear whether a more efficient yet complex representation will result in better
predictions.

Complementing the linear‐stochastic dynamical systems framework in inverse modeling of the earth system is the
burgeoning set of data‐driven approaches based on the operator‐theoretic perspective of nonlinear dynamics.
Under Koopman operator theory, nonlinear dynamical systems are represented through the linear (but infinite‐
dimensional) Koopman operator, which temporally advances measurements of the system (Koopman, 1931).
Thus, obtaining low‐dimensional representations of the Koopman operator is a key goal of data‐driven dynamical
systems modeling. For instance, Dynamic Mode Decomposition seeks to find the best‐fit linear model that
advances linear measurements of the system (Schmid, 2010); however, such linear measurements may be
insufficient to capture the complexities of nonlinear systems. Therefore, recent deep‐learning approaches have
modified the autoencoder architecture to learn nonlinear transformations into latent spaces in which the dynamics
are approximately linear (Brunton & Kutz, 2022; Champion et al., 2019; Lusch et al., 2018; Mardt et al., 2018;
Yeung et al., 2019).

Here, we leverage the Koopman Autoencoder framework in Lusch et al. (2018) to construct a linear propagator
for SSH prediction on daily‐to‐interannual timescales in the North Pacific and North Atlantic. We assess forecasts
made by this model relative to baselines in which the dimensionality reduction and propagator are learned
separately. We examine the areas of reconstruction skill to interpret how the Koopman Autoencoder attains its
performance.

2. Methods
2.1. Data

We use daily‐ and monthly‐averaged simulated SSH fields from the Community Earth System Model, version 2
(CESM2) Large Ensemble data set (LENS2, Rodgers et al. (2021), Danabasoglu et al. (2021)). The data is from
the 250‐year simulation period spanning 1850–2100, with radiative forcing following the historical record from
1850 to 2014 and the CMIP6 SSP3–7.0 forcing scenario thereafter (Danabasoglu et al., 2020; O’Neill
et al., 2016). Fields are detrended using a locally‐fitted fifth‐degree polynomial and deseasonalized by removing
climatological daily averages.

Sea surface heights η are computed by

η(x,y, t) = ζ(x,y, t) + ηib(x,y, t) (1)

where ζ is the dynamic sea level simulated by CESM2 and ηib is the inverse barometer contribution to sea level
(Gregory et al., 2019; Ponte, 2006), given by
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ηib(x,y, t) = −
1

ρ0g
pá(x,y, t). (2)

Here, pá(x,y, t) = pa(x,y, t) − 1
A∫Apa(x,y, t) dA is the sea level pressure deviation from the spatial average over

the ocean area A at time t , ρ0 = 1025 kg m− 3 is the reference sea surface density (Fofonoff & Millard, 1983;
Smith et al., 2010), and g = 9.81  m s− 1 is the acceleration due to gravity.

We use nine ensemble members, with seven members for training and one member for validation and testing. We
focus on two regions: the North Pacific (15°S–60°N, 115°E− 60°W) and the North Atlantic (5°–65°N,
60°W–0°E). For training, fields are standardized using the area‐weighted mean and standard deviation averaged
over all training samples (LeCun et al., 2002). Land points are masked with zeros.

2.2. Koopman Autoencoder

Figure 1 illustrates the Koopman Autoencoder, which is inspired by Lusch et al. (2018). The network functions as
a propagator for a dynamical system with the entire SSH field as its state variable: it consumes input fields of SSH
at a given timestep n (xn) and outputs the predicted SSH field at the next timestep ( x̂n+ 1). We use a timestep of
one day for networks trained on daily averages and one month for networks trained on monthly averages.

We employ a convolutional architecture well‐suited for the spatial fields comprising our system state (Fukush-
ima, 1980; LeCun et al., 1989). The encoder E takes in the state vector xn, extracts features using convolutional
filters and transforms the inputs to a lower dimensional embedding zn. Then, a linear layer L is applied to the latent
embedding, functioning as a single propagation timestep. Finally, the decoder D transforms the encoded pre-
diction back into the state space, using the state at the next timestep xn+ 1 as the target.

During training, parameters in the Koopman Autoencoder are adjusted through backpropagation (Rumelhart
et al., 1986) to optimize a combination of different objective functions in accordance with Lusch et al. (2018):

1. The reconstruction error

Lreconst (xn) = ‖xn − D(E(xn))‖22,w, (3)

Figure 1. Koopman Autoencoder schematic. The encoder and decoder are denoted by the brackets labeled E(x) and D(z), respectively, and the inset shows the linear
propagator. Yellow blocks indicate convolutional layers, and orange shading indicates ReLU activations. Red and green blocks indicate pooling and upsampling layers,
respectively.
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where ‖ ⋅ ‖2,w is the area‐weighted ℓ2‐norm (see Text S2 in Supporting Information S1). This loss ensures
that the encoder and decoder learns a maximally‐efficient representation of the SSH in the d‐dimensional latent
space.

2. The prediction error

Lpred (xn,… ,xn+k) =
1
k
∑
k

ℓ=1
‖xn+ℓ − D(LℓE(xn))‖22,w. (4)

The norm ‖xn+ 1 − D(LE(xn))‖22,w indicates the prediction error incurred during a single propagation
timestep. In practice, better predictions are obtained by penalizing ℓ‐timestep predictions for ℓ ∈ {1,… ,k},
where the ℓ‐timestep prediction x̂n+ℓ is given by ℓ applications of the propagator L to the latent
embedding: x̂n+ℓ = D(LℓE(xn)). In order to balance prediction performance with computational feasibility,
we use k = 20 recurrent passes for all networks (see Text S1 in Supporting Information S1).

We also add a latent space prediction error

Llinear (xn,xn+1) = ‖LE(xn) − E(xn+1)‖22 (5)

which further ensures that the linear prediction ẑn+ 1 = Lzn = LE(xn) approximates the latent state at the next
timestep zn+ 1 = E(xn+ 1). This term may be redundant as our propagator L is not equipped with activations,
but is added for consistency with the methodology of Lusch et al. (2018).

The net loss is given by

L(xn,… ,xn+k) = λ1Lreconst (xn) + λ2Lpred (xn,… ,xn+k) + λ3Llinear (xn,xn+1) (6)

where λ1, λ2, and λ3 are hyperparameters. By optimizing this loss, the dimensionality reduction and the time-
stepping are learned together. Thus, the dimensionality reduction is constructed in such a way that predictions are
improved.

Separate networks are trained for each region and timescale. Full details about the data preparation, network
architecture, and training procedure are given in Text S1 in Supporting Information S1.

2.3. Baselines

We contrast the predictions made with our Koopman Autoencoders with baselines in which the dimensionality
reduction and predictions are done separately. For dimensionality reduction, we consider Principal Component
Analysis (PCA) and Convolutional Autoencoders (CAE). For forecasting, we apply Damped Persistence (DP)
and Linear Inverse Modeling (LIM). Prediction baselines are thus determined by combining the two techniques,
and are denoted according to the dimensionality reduction and propagator used, for example, “PCA‐LIM” or
“CAE‐DP.”

2.3.1. Dimensionality Reduction Techniques

As a first baseline, PCA is applied to reduce the dimensionality of the state. In PCA, the data is linearly projected
onto the d‐dimensional subspace that maximizes the variance of the data. Therefore, dimensions describing the
data are linear and orthogonal, a restriction that may result in poor representation of nonlinear data manifolds.

As a nonlinear alternative, we also train Convolutional Autoencoders (CAE). Autoencoders generalize PCA by
allowing for nonlinear transformations to a latent space and can learn more efficient representations than PCA
(Hinton & Salakhutdinov, 2006; Kramer, 1991; Oommen et al., 2022; Shamekh et al., 2023). For the CAE, we use
an encoder and decoder with the same architectures as those of the Koopman Autoencoder, and we train it with
nearly identical hyperparameters (see Text S1 in Supporting Information S1).
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2.3.2. Latent Space Timestepping

We compare forecasts made by the Koopman Autoencoder to Damped Persistence (DP, Lorenz (1973)). Given a
latent state zn, the prediction at lag τ is given by

ẑn+τ = D(τ)zn (7)

where D(τ) is a diagonal matrix whose entries give the autocorrelation of each of the latent variables at lag τ.
The propagator D(τ) is computed iteratively for each time lag by first selecting a training timescale τ0, computing
the lag‐τ0 autocorrelations D0 = D(τ0), and then defining D(τ) = (D0)

τ/τ0. For a fair comparison with the
Koopman Autoencoder, we set τ0 by fitting DP models using τ0 ∈ {1,… ,k} and selecting the model with the
lowest average prediction error on timesteps 1 to k on the validation data set.

We also explore predictions made by a Linear Inverse Model (LIM, Penland (1989)). The underlying assumption
behind LIM is that the dynamics of a system can be well‐represented as a linear dynamical system forced by noise:

dz
dt
= Az + ξ (8)

where ξ is normally‐distributed white noise. Then, the evolution matrix A can be estimated through an error
minimization procedure as

A =
1
τ0
log(C(τ0)C(0)− 1) (9)

where C(τ) = 〈z(t + τ)zT(t)〉 gives the time‐τ lagged covariance (with angled brackets denoting a time average)
and τ0 is a fitted timescale. Predictions are then given by

ẑn+τ = B(τ)zn (10)

with

B(τ) = exp (Aτ) = exp[
τ
τ0
log(C(τ0)C(0)− 1)]. (11)

The covariance matrix is computed over all ensemble members, and again τ0 is selected by fitting LIMs for
τ0 ∈ {1,… ,k} and selecting the model with the lowest error over timesteps 1 through k.

In order for a LIM to be valid, several conditions should be met. One basic criterion is that the learned propagator
should be stable with decaying eigenvalues. (Similarly, eigenvalues of the propagator learned by the Koopman
Autoencoder should also decay). Figure S1 in Supporting Information S1 verifies that all propagators considered
in this study are stable. Another requirement is that the evolution matrix defined by Equation 9 must be inde-
pendent of the time lag τ0 used to compute it. This is a strong criterion to meet; common practice is to compute
the evolution matrix norm ‖A‖2 for different τ0 and to select a propagator based on a timescale τ0 in which the
matrix norm is relatively constant. Figure S2 in Supporting Information S1 shows the ℓ2‐matrix norms of the
evolution matrix of the LIM baselines on the range τ0 ∈ {1,… ,k}; over this range, the matrix norm varies by over
300% for all of the regions and timescales considered.

3. Results
In this section, we compare the forecasts made by the Koopman Autoencoder to the baselines. Predictions are
assessed using the Mean Square Error (MSE), Pattern Correlation Coefficient (Legates & Davis, 1997), and
MSE‐based skill scores (Murphy, 1988). Metrics are defined explicitly in Text S2 in Supporting Information S1.
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3.1. Evaluating Prediction Performance

Figure 2 compares the area‐weighted prediction MSE and pattern correlation of SSH predictions of the Koopman
Autoencoder to the baselines using d = 20 latent dimensions on forecast leads up to τmax = 120 days (daily data)
and τmax = 36 months (monthly data). The CAE generally has the lowest reconstruction error for all dimen-
sionality reduction techniques, beating PCA MSE by a margin of 2%–4% at lead τ = 0 for all regions and
timescales except in the North Atlantic on monthly data (See Table S1 in Supporting Information S1). The
Koopman Autoencoder has the worst reconstructions of all the methods: over all regions and timescales, MSE is
on average 32% higher for the Koopman Autoencoder than for PCA. Although the Koopman Autoencoder has an
encoder and decoder with identical architectures as those of the CAE, the inclusion of additional loss functions for
prediction and linearity during training creates competing objectives that result in less efficient reconstructions.

However, the better reconstruction error of the CAE does not necessarily result in better predictions. In fact,
predictions made by applying propagators to CAE modes are often worse than predictions made using PCA for
dimensionality reduction (e.g., using a DP propagator for North Pacific daily SSH, Figure 2a). In contrast, the
Koopman Autoencoder generally results in better predictions than the baselines as measured by the area‐weighted
MSE and pattern correlation. Predictions from all models devolve to climatological errors as forecast leads in-
crease (indicating the loss of predictability in the system) but errors generally grow most slowly for the Koopman
Autoencoder. Table S2 in Supporting Information S1 quantitatively summarizes the forecast performance of the
models in Figure 2 through the skill score of the different prediction methods relative to PCA‐DP, averaged over
forecast leads up to τmax. Skill of the models relative to PCA‐DP depends significantly on the region and
timescales considered but averaged over all regions and timescales, PCA‐LIM has about 6.8% skill over PCA‐DP,
skill of CAE‐LIM is slightly worse than PCA‐LIM (6.4%), and skill of the Koopman Autoencoder is the highest
(8.4%). In effect, by learning the dynamics and the dimensionality reduction together, the Koopman Autoencoder
learns a nonlinear latent‐space representation of the state that implicitly results in better SSH predictions.

The advantages of using the Koopman Autoencoder over, for example, PCA‐LIM are more apparent on daily
timescales than on monthly timescales. In the North Pacific, prediction skill of the Koopman Autoencoder relative
to PCA‐DP on daily‐averaged data is 4.5% higher than that of PCA‐LIM but is only 3.0% higher for monthly‐
averaged data; in the North Atlantic, Koopman skill is 1.1% higher than PCA‐LIM on daily data but is 1.3%
lower on monthly data. One potential reason is that the assumptions underlying LIM may be better satisfied for
monthly averages than daily averages, because monthly‐averaged fields smooth out small‐scale, nonlinear fea-
tures (Sardeshmukh & Sura, 2009; Stephenson et al., 2004). The Koopman Autoencoders also outperform PCA‐
LIM by a wider margin in the North Pacific than in the North Atlantic. This may be because the inverse barometer
component constitutes a larger share of SSH variability in the North Atlantic region (about 71% in the North
Atlantic on daily timescales vs. 32% in the North Pacific; see Figure S3 in Supporting Information S1). This high‐
frequency variability may be well‐represented by white noise, underpinning the relative success of PCA‐LIM.

3.2. Sensitivity to the Number of Dimensions

Both the dimensionality reduction and learned propagator's predictions may be sensitive to the latent space
dimensionality. Figure 3 explores both of these sensitivities. Due to the computational cost of training each
network, sensitivity to dimensionality is examined only for daily‐averaged North Pacific SSH, as the Koopman
Autoencoder was shown to generate skillful predictions for these dynamics.

As shown in Figure 3a and Table S3 in Supporting Information S1, reconstruction performance improves as the
latent space dimensionality is increased to d = 40 for all dimensionality reduction techniques. Just as in
Section 3.1, for any given number of dimensions, the CAE has the best reconstructions, outperforming PCA by
2%–4%, while the Koopman Autoencoder has the worst reconstructions, with reconstruction MSE 1%–13%
higher than that of PCA.

Like the reconstructions, the predictions of the Koopman Autoencoder also improve as the dimensionality in-
creases (Figure 3b). This is implied by Koopman operator theory, which states that infinitely many observables
must be prescribed to guarantee a nonlinear dynamical system is fully determined. Nevertheless, the utility of
using the Koopman Autoencoder for building propagators diminishes as dimensionality increases. Figure 3c
shows the domain‐averaged prediction skill of the Koopman Autoencoder relative to PCA‐LIM predictions using
the same dimensionality. For all dimensionalities, the Koopman Autoencoder outperforms PCA‐LIM forecasts up
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Figure 2. Forecast MSE and Pattern Correlation in the North Pacific and North Atlantic on daily and monthly timescales. Colors indicate dimensionality reduction
techniques (red for the Koopman Autoencoder, blue for PCA, and light green for CAE), while markers indicate propagation techniques (x's for the Koopman
Autoencoder, filled circles for LIM, and open circles for DP). The black dotted line indicates the climatological MSE of SSH.
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to τ = 120 days; however, up to forecast leads of τ = 60 days, skill of the Koopman Autoencoder decreases as
the dimensionality increases. Much of this seems to be simply because the Koopman Autoencoder becomes worse
at reconstructions relative to PCA for higher latent dimensionalities (e.g., 1% higher MSE for d = 10 vs. 13%
higher MSE for d = 40; see Table S3 in Supporting Information S1). Thus, due to the challenges of optimizing
autoencoders with higher‐dimensional latent spaces, the Koopman Autoencoder approach may be most useful for
developing low‐dimensional forecasts.

3.3. Regions of Skill

To understand how the Koopman Autoencoder attains its performance, Figure 4 shows the MSE‐skill score of the
Koopman Autoencoder relative to PCA‐based propagators for daily SSH forecasts in the North Pacific and North
Atlantic. We focus on PCA‐based propagators because of the simplicity and interpretability of linear, orthogonal
dimensionality reduction. For example, due to the orthogonality of modes, applying damped persistence to the
principal components results in purely local dampening of SSH at each location.

Figure 4a shows domain‐averaged MSE skill scores for the Koopman Autoencoder and PCA‐LIM relative to
PCA‐DP in the North Pacific. Skill scores for the Koopman Autoencoder and PCA‐LIM relative to PCA‐DP
increase from about zero to a maximum at a lead of about 30 days, and gradually taper for longer‐term fore-
casts. However, the Koopman Autoencoder skill is much higher than that of PCA‐LIM at all lags—by 72% at lead
5 days and by at least 47% for leads up to 120 days.

Figures 4c–4e and 4f–4h show the regional variations of Koopman Autoencoder skill relative to PCA‐DP and to
PCA‐LIM, respectively, for a few different lead times. Notably, the Koopman Autoencoder is better at recon-
structing SSH than PCA at low latitudes but is worse at midlatitudes (Figure 4c). However, by lag τ = 5 days, the

Figure 3. Sensitivity of the Koopman Autoencoder to dimensionality for predicting North Pacific daily‐averaged SSH. (a) Reconstruction error by dimensionality for
PCA (blue), CAE (light green), and the Koopman Autoencoder (red). (b) Domain‐averaged MSE skill scores of the Koopman Autoencoder predictions relative to
climatology for different latent space dimensionalities. (c) Domain‐averaged skill score of the Koopman Autoencoder relative to equivalent dimensionality PCA‐LIM
for different forecast leads.

Geophysical Research Letters 10.1029/2024GL112835

BRETTIN ET AL. 8 of 13

 19448007, 2025, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024G

L
112835 by C

ochrane France, W
iley O

nline L
ibrary on [29/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Figure 4. Koopman AutoencoderMSE skill scores for daily‐averaged North Pacific (a, c–h) and North Atlantic (b, i–n) SSH predictions. (a, b): Domain‐averaged skill as
a function of lead time. Red: Skill of Koopman Autoencoder relative to PCA‐DP. Purple: Koopman Autoencoder relative to PCA + LIM. Cyan: Skill of PCA‐LIM
relative to PCA‐DP. Black dotted lines indicate forecast leads used for panels (c–h). (c, d, e, i, j, k): Skill scores of Koopman Autoencoder relative to PCA‐DP at select
time lags. (f, g, h, l, m, n): Same but for skill relative to PCA‐LIM.
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negative skill in the midlatitudes has diminished compared to PCA‐LIM (Figure 4g), and there is positive skill
relative to PCA‐DP over the entire domain (Figure 4d). Because the midlatitude SSH variability is dominated by
the high‐frequency inverse‐barometer component, midlatitude SSH dynamics are inherently less predictable than
low‐latitude dynamics. Therefore, for North Pacific regional‐scale predictions, quality representations of SSH in
the tropics are much more helpful for regional‐scale predictions than representations in the midlatitudes. Because
the Koopman Autoencoder learns dimensionality reduction and propagation together, it can deploy its latent
dimensions to focus on representing low‐latitude SSH initial conditions particularly well. In contrast, when the
dimensionality reduction is done separately, dimensions may be wasted on characterizing variability that is not
predictable.

The skill maps also highlight dynamics that the PCA‐based propagators do not fully capture. For instance, since
PCA‐DP characterizes the local predictability of SSH, skill of the Koopman Autoencoder relative to PCA‐DP
indicates that it is capturing nonlocal drivers of SSH. Midlatitude skill in the Northeastern Pacific at leads of
τ = 5 days (Figure 4d) could come from sea level pressure anomalies advected by midlatitude Westerlies, which
traverse the Pacific basin on O(5–10 days). In the low latitudes, the skill of the Koopman Autoencoder with
respect to PCA‐DP and PCA‐LIM increases until about 30 days (Figure 4a), with the strongest skill occurring in
narrow, zonal bands adjacent to the equator (Figure 4h). This timescale and region of enhanced skill is consistent
with the timescale and westward propagation of Equatorial Rossby waves.

In the North Atlantic, reconstruction errors for the Koopman Autoencoder at time τ = 0 are poor, with domain‐
average skill of − 0.14 relative to the PCA reconstructions. However, once again, the latent space representation of
the state results in better skill at nonzero time lags up to τ = 100 days (Figure 4b). Figures 4i–4k show that
prediction skill of the Koopman Autoencoder occurs primarily in the Atlantic Subtropical Gyre and Gulf Stream
separation. Because gyre dynamics are associated primarily with low‐variability geostrophic balance, such
variability may be underrepresented in variance‐targeting PCA‐based reconstructions, although this variability
may be predictable on the daily‐to‐seasonal timescale. Reconstruction skill relative to PCA suggests that the
Caribbean Current may be a source of this gyre predictability for SSH predictions in the North Atlantic
(Figure 4i).

4. Discussion
Statistical‐dynamical models—and linear inverse models in particular—have become indispensable forecasting
tools, owing to their simplicity, interpretability, and skill (Penland & Sardeshmukh, 1995; Alexander et al., 2008;
von Storch et al., 1995). Modern techniques can help extract more information from data for nonlinear systems.
Here, we trained convolutional neural networks with embedded time‐stepping to learn a low‐dimensional latent
space that facilitates SSH prediction. Training the network to learn dimensionality reduction and propagation
simultaneously tends to result in better forecasts than if the reduction and propagation are learned separately,
as done typically with LIM for example.

We examined some sensitivities of the Koopman Autoencoder method compared to LIM. The skillfulness of the
Koopman Autoencoder is most apparent in situations when the assumptions for LIM are least valid (such as on
daily data, where the state vector includes highly nonlinear, small‐scale features). Additionally, we examined the
sensitivity to the dimensionality of the latent space. Our results suggest that the Koopman Autoencoder frame-
work is best for building low‐dimensional propagators; however, computational considerations led us to consider
only one region and timescale and up to 40 latent dimensions, so the robustness of this result to different dynamics
and a wider range of dimensionalities should be further investigated.

Spatial variations in the reconstruction skill of the Koopman Autoencoder point to sources of predictability that
the Koopman Autoencoder leverages to outperform LIM. We identified tropical Pacific SSH as a source of
predictability for North Pacific daily‐averaged SSH and the Caribbean Current SSH for North Atlantic SSH.
Although this study was limited to univariate fields, previous studies have demonstrated that including multiple
variables can improve LIM predictions (Brennan et al., 2023; Capotondi et al., 2022; Newman, Alexander, &
Scott, 2011). Using multiple input channels to incorporate different fields may improve the Koopman Autoen-
coder's SSH predictions and reveal additional sources of predictability.

The focus of this study has been to develop an efficient propagator for SSH and to assess its forecasting skill.
The imposed linearity of the dynamics in the latent space could be relaxed to obtain better predictions. However,
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the comprehensive theory underpinning linear systems makes the linear propagator potentially appealing for
interpretation, yielding possible advantages in applications like predictability (Tziperman et al., 2008; Vimont
et al., 2014), emulation (Beucler et al., 2021; Bi et al., 2023), and inference (Baldovin et al., 2020; Falasca
et al., 2024).

One question is how the latent state can be physically interpreted (Behrens et al., 2022; Shamekh et al., 2023).
Under Koopman operator theory, the latent space variables are observables of the dynamical system state, but the
nonlinearities in the encoder and decoder make it challenging to interpret what these observables measure. One
approach to gaining understanding of the latent space could be to probe the sensitivity of the decoder to changes
in the latent space, either through observing the sensitivity of the outputs to latent space perturbations
(Leeb et al., 2022; Oring et al., 2021) or examining the gradients of the decoder (Baehrens et al., 2010; Mamalakis
et al., 2022). Such methods for interpreting the latent space, coupled with eigenanalysis for understanding the
timescales for the propagator, could help elucidate the physical processes represented in the latent space, and is
left for future work. Nevertheless, we believe this study has demonstrated a potentially useful approach for
developing efficient, low‐dimensional linear propagators for climate fields.

Data Availability Statement
The CESM2 Large Ensemble Data set is available from the NCAR Climate Data Gateway at https://doi.org/10.
26024/kgmp‐c556 (Danabasoglu et al., 2021). The code used for data processing, training, analysis and visual-
ization in this study, as well as the files for reproducing the software environment, are provided under the MIT
license at https://github.com/andrewbrettin/koopman_autoencoders_ssh_prediction (Brettin, 2025). Figure 1 was
built using the PlotNeuralNet software preserved at https://doi.org/10.5281/zenodo.2526396, which is available
via the MIT license (HarisIqbal88, 2018).
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