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Key Points:6

• We train a neural network to learn a low-dimensional representation of sea sur-7

face height that facilitates regional predictions8
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for North Pacific daily sea surface heights12
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Abstract13

Due to the wide range of processes impacting the sea surface height (SSH) on daily-to-14

interannual timescales, SSH forecasts are hampered by numerous sources of uncertainty.15

While statistical-dynamical methods like Linear Inverse Modeling have been successful16

at making forecasts, they often rely on assumptions that can be hard to satisfy given the17

nonlinear dynamics of the climate. Here, we train convolutional autoencoders with a dy-18

namical propagator in the latent space to generate forecasts of SSH anomalies. Learn-19

ing a nonlinear dimensionality reduction and the prediction timestepping together re-20

sults in a propagator that produces better predictions for daily- and monthly-averaged21

SSH in the North Pacific and Atlantic than if the dimensionality reduction and dynam-22

ics are learned separately. The reconstruction skill of the model highlights regions in which23

better representation results in improved predictions: in particular, the tropics for North24

Pacific daily SSH predictions and the Caribbean Current for the North Atlantic.25

Plain Language Summary26

Forecasts of sea surface heights are impacted by numerous sources of uncertainty.27

While statistical methods for representing temporal changes in the climate system have28

been useful for making predictions, they often rely on assumptions that do not always29

hold due to the complex interactions in the climate system. Here, we make a machine30

learning model that learns a compressed representation of the climate system which fa-31

cilitates sea surface height predictions. The learned compressed representation of the cli-32

mate system results in better sea surface height predictions than would occur if the di-33

mensionality reduction and prediction is done separately. Our machine learning model34

also points to regions where more accurately representing sea level can result in better35

regional-scale predictions.36

1 Introduction37

The large variety of processes impacting sea surface heights (SSH) on daily-to-interannual38

timescales implies that forecasts of SSH on these time horizons are hindered by numer-39

ous sources of uncertainty. SSH variability on these timescales is driven by factors in-40

cluding barotropic adjustment to wind stress (Hermans et al., 2022; Kamp et al., 2024;41

Vinogradova et al., 2007), local air-sea buoyancy fluxes (Cabanes et al., 2006; Gill & Niller,42

1973), wind-driven Ekman pumping (Webb, 2021; Cabanes et al., 2006), changes in large-43

scale Sverdrup balance (Cabanes et al., 2006), advection of density anomalies (Piecuch44

& Ponte, 2011), Rossby waves (Chelton & Schlax, 1996; Calafat et al., 2018), buoyancy-45

driven changes in ocean circulation (Roberts et al., 2016), eddy variability due to baro-46

clinic instability (Marques et al., 2022), and the hydrostatic depression of the ocean sur-47

face due to atmospheric pressure anomalies (Piecuch et al., 2016). Developing forecasts48

for SSH amid these numerous drivers thus presents a challenge.49

Over the past few decades, statistical-dynamical methods have proven effective for50

developing forecasts directly from data. Forecasts generated using Linear Inverse Mod-51

els (LIM, Penland (1989); Penland and Sardeshmukh (1995)) have had substantial suc-52

cess in predicting the large-scale evolution of geophysical fields on these timescales (Newman,53

Shin, & Alexander, 2011; Zanna, 2012; Fraser et al., 2019; Albers & Newman, 2021). The54

framework generally involves first applying dimensionality reduction to represent the sys-55

tem state using a low-dimensional state vector, and then determining a linear propaga-56

tor using the time-lagged covariance statistics between the state variables. This approach57

is based on the assumption that the state evolution can be represented as the sum of slow,58

predictable, linear dynamics and fast, unpredictable, nonlinear dynamics modelled by59

Gaussian noise (Hasselmann, 1976). Despite the simplicity of such models, LIMs have60

demonstrated skill comparable to operational forecasting models in some cases (Albers61

& Newman, 2021; Shin & Newman, 2021; Richter et al., 2020).62
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One appealing aspect of LIMs is the simplified representation of the dynamics as63

a low-dimensional, linear propagator. While nonlinear dynamical systems can be chaotic,64

unpredictable, and nontrivial to solve, linear dynamical systems readily admit closed-65

form solutions and can be solved in a systematic manner. The eigenvalues of the prop-66

agator can be used to identify dominant timescales for the dynamics of the system as67

well as optimal initial conditions for producing anomaly growth (Penland & Sardeshmukh,68

1995; von Storch et al., 1995; Vimont et al., 2014; Zanna, 2012). However, ensuring that69

the state evolution is plausibly described by a linear stochastic dynamical system is of-70

ten challenging. Whether or not dynamics can be represented as such depends on the71

processes being represented and the temporal resolution of the data. The computed prop-72

agator typically depends on the time lag used to compute it, due to nonstationary statis-73

tics (Penland & Sardeshmukh, 1995), unrepresented processes (Penland & Ghil, 1993),74

fundamental deficiencies in representing dynamical systems using Markov models (DelSole,75

2000), and sampling of intrinsic oscillatory modes of the system (Penland, 2019).76

Another sensitivity lies in the application of dimensionality reduction. Clearly, the77

number of dimensions used to represent the state is a parameter (Newman, Alexander,78

& Scott, 2011). Additionally, the performance of a LIM may depend on the dimension-79

ality reduction technique applied. Typically, Principal Component Analysis (PCA), also80

known as Empirical Orthogonal Function analysis in the geosciences, is used to reduce81

the dimensionality of the system (Hotelling, 1933; Pearson, 1901; Lorenz, 1956). How-82

ever, the requirement that modes are orthogonal can be restrictive (Dommenget & Latif,83

2002). Alternatively, neural network autoencoders can relax the assumptions of linear-84

ity and orthogonality to obtain more efficient low-dimensional embeddings (Kramer, 1991;85

Hinton & Salakhutdinov, 2006). Nevertheless, it is unclear whether a more efficient yet86

complex representation will result in better predictions.87

Complementing the linear-stochastic dynamical systems framework in inverse mod-88

eling of the earth system is the burgeoning set of data-driven approaches based on the89

operator-theoretic perspective of nonlinear dynamics. Under Koopman operator theory,90

nonlinear dynamical systems are represented through the linear (but infinite-dimensional)91

Koopman operator, which advances measurements of the system through time (Koopman,92

1931). Thus, obtaining low-dimensional representations of the Koopman operator is a93

key goal of data-driven dynamical systems modeling. For instance, Dynamic Mode De-94

composition seeks to find the best-fit linear model that advances linear measurements95

of the system (Schmid, 2010); however, such linear measurements may be insufficient to96

capture the complexities of nonlinear systems. Therefore, recent deep-learning approaches97

have modified the autoencoder architecture to learn nonlinear transformations into la-98

tent spaces in which the dynamics are approximately linear (Mardt et al., 2018; Lusch99

et al., 2018; Champion et al., 2019; Yeung et al., 2019; Brunton & Kutz, 2022).100

Here, we leverage the Koopman Autoencoder framework in Lusch et al. (2018) to101

construct a linear propagator for SSH prediction on daily-to-interannual timescales in102

the North Pacific and North Atlantic. We assess the forecasts made by this model rel-103

ative to baselines in which the dimensionality reduction and propagator are learned sep-104

arately. We examine the areas of reconstruction skill to interpret how the Koopman Au-105

toencoder attains its performance.106

2 Methods107

2.1 Data108

We use daily- and monthly-averaged simulated SSH fields from the Community Earth109

System Model, version 2 (CESM2) Large Ensemble dataset (LENS2, Rodgers et al. (2021);110

Danabasoglu et al. (2021)). The data is from the 250-year simulation period spanning111

1850–2100, with radiative forcing following the historical record from 1850–2014 and the112
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CMIP6 SSP3–7.0 forcing scenario thereafter (Danabasoglu et al., 2020; O’Neill et al., 2016).113

Fields are detrended using a locally-fitted fifth-degree polynomial and deseasonalized by114

removing climatological daily averages.115

Sea surface heights η are computed by116

η(x, y, t) = ζ(x, y, t) + ηib(x, y, t) (1)

where ζ is the dynamic sea level simulated by CESM2 and ηib is the inverse barometer117

contribution to sea level (Ponte, 2006; Gregory et al., 2019), given by118

ηib(x, y, t) = − 1

ρ0g
p′a(x, y, t). (2)

Here, p′a(x, y, t) = pa(x, y, t) − 1
A

∫
A
pa(x, y, t) dA is the sea level pressure deviation119

from the spatial average over the ocean area A at time t, ρ0 = 1025 kg m−3 is the ref-120

erence sea surface density (Smith et al., 2010; Fofonoff & Millard Jr, 1983), and g = 9.81 m s−1
121

is the acceleration due to gravity.122

We use nine ensemble members, with seven members for training and one mem-123

ber for validation and testing. We focus on two regions: the North Pacific (15◦S–60◦N,124

115◦E–60◦W) and the North Atlantic (5◦−65◦N, 60◦W−0◦E). For training, fields are125

standardized using the area-weighted mean and standard deviation averaged over all sam-126

ples in the training set (LeCun et al., 2002). Locations corresponding to land points are127

masked with zeros.128

2.2 Koopman Autoencoder129

Figure 1 illustrates the Koopman Autoencoder (Lusch et al., 2018). The network130

functions as a propagator for a dynamical system with the entire SSH field as its state131

variable: it consumes input fields of SSH at a given timestep n (xn) and outputs the pre-132

dicted SSH field at the next timestep (x̂n+1). We use a timestep of one day for networks133

trained on daily averages and one month for networks trained on monthly averages.134

We employ a convolutional architecture that is well-suited for the spatial fields com-135

prising our system state (Fukushima, 1980; LeCun et al., 1989). The encoder E takes136

in the state vector xn, extracts features using convolutional filters and transforms the137

inputs to a lower dimensional embedding zn. Then, a linear layer L is applied to the la-138

tent embedding, functioning as a single propagation timestep. Finally, the decoder D139

transforms the encoded prediction back into the state space, using the state at the next140

timestep xn+1 as the target.141

During training, parameters in the Koopman Autoencoder are adjusted through142

backpropagation (Rumelhart et al., 1986) to optimize a combination of different objec-143

tive functions in accordance with Lusch et al. (2018).144

1. The reconstruction error145

Lreconst(xn) = ∥xn −D(E(xn))∥22,w, (3)

where ∥ · ∥2,w is the area-weighted ℓ2-norm (see Supporting Text S2). This loss146

ensures that the encoder and decoder learns a maximally-efficient representation147

of the SSH in the d-dimensional latent space.148

2. The prediction error149

Lpred(xn, . . . , xn+k) =
1

k

k∑
ℓ=1

∥xn+ℓ −D(LℓE(xn))∥22,w (4)

The norm ∥xn+1 −D(LE(xn))∥22,w indicates the prediction error incurred dur-150

ing a single propagation timestep. In practice, better predictions are obtained by151
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Figure 1. Koopman Autoencoder schematic. The encoder and decoder are denoted by the

brackets labelled E(x) and D(z), respectively, and the inset shows the linear propagator. Yellow

blocks indicate convolutional layers, and orange shading indicates ReLU activations. Red blocks

indicate pooling layers, and green blocks indicate upsampling layers.

penalizing ℓ-timestep predictions for ℓ ∈ {1, . . . , k}, where the ℓ-timestep pre-152

diction x̂n+ℓ is given by ℓ applications of the propagator L to the latent embed-153

ding: x̂n+ℓ = D(LℓE(xn)). We use k = 20 recurrent passes for all of our net-154

works.155

We also add a latent space prediction error156

Llinear(xn, xn+1) = ∥LE(xn)− E(xn+1)∥22 (5)

which further ensures that the linear prediction ẑn+1 = Lzn = LE(xn) approximates157

the latent state at the next timestep zn+1 = E(xn+1). This term may be redundant158

as our propagator L is not equipped with activations, but is added for consistency with159

the proposed methodology of Lusch et al. (2018).160

The net loss is given by161

L(xn, . . . , xn+k) = λ1Lreconst(xn) + λ2Lpred(xn, . . . , xn+k) + λ3Llinear(xn, xn+1) (6)

where λ1, λ2, and λ3 are hyperparameters. By optimizing this loss, the dimensionality162

reduction and the timestepping are learned together. This way, the dimensionality re-163

duction is constructed in such a way that predictions are improved.164

Separate networks are trained for each region and timescale. Full details about the165

training architecture and procedure are given in Supporting Text S1.166

2.3 Baselines167

We contrast the predictions made with our Koopman Autoencoders with baselines168

in which the dimensionality reduction and predictions are done separately. For dimen-169

sionality reduction, we consider Principal Component Analysis (PCA) and Convolutional170
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Autoencoders (CAE). For forecasting, we apply Damped Persistence (DP) and Linear171

Inverse Modeling (LIM). Prediction baselines are thus determined by combining the two172

techniques, and are denoted according to the dimensionality technique and propagator173

used, e.g. “PCA-LIM” or “CAE-DP.”174

2.3.1 Dimensionality reduction techniques175

As a first baseline, PCA is applied to reduce the dimensionality of the state. In PCA,176

the data is linearly projected onto the d-dimensional subspace that maximizes the vari-177

ance of the data. As a result, dimensions describing the data are linear and orthogonal,178

a restriction that may result in poor representation of nonlinear data manifolds.179

As a nonlinear alternative to PCA, we also train Convolutional Autoencoders (CAE).180

Autoencoders generalize PCA by allowing for nonlinear transformations to a latent space181

and can learn more efficient representations than PCA (Kramer, 1991; Hinton & Salakhut-182

dinov, 2006; Shamekh et al., 2023; Oommen et al., 2022). For the CAE, we use an en-183

coder and decoder with the same architectures as those of the Koopman Autoencoder,184

and we train it with nearly identical hyperparameters (see Supporting Text S1).185

2.3.2 Predictions in the latent space186

We compare the forecasts made by the Koopman Autoencoder to Damped Persis-187

tence (DP, Lorenz (1973)). Given a latent state zn, the prediction at lag τ is given by188

ẑn+τ = D(τ)zn (7)

where D(τ) is a diagonal matrix whose entries give the autocorrelation of each of the189

latent variables at lag τ . The propagator D(τ) is computed iteratively for each time lag190

by first selecting a training timescale τ0, computing the lag-τ0 autocorrelations D0 =191

D(τ0), and then defining D(τ) = (D0)
τ/τ0 . For a fair comparison with the Koopman192

Autoencoder, we set τ0 by fitting DP models using τ0 ∈ {1, . . . , k} and selecting the193

model with the lowest average prediction error on timesteps 1 to k on the validation dataset.194

We also explore predictions made by a Linear Inverse Model (LIM, Penland (1989)).195

The underlying assumption behind LIM is that the dynamics of a system can be well-196

represented as a linear dynamical system forced by noise:197

dz

dt
= Az + ξ (8)

where ξ is sampled from a Normal distribution. Then, the evolution matrix A can be198

estimated through an error minimization procedure as199

A =
1

τ0
log

(
C(τ0)C(0)−1

)
(9)

where C(τ) = ⟨z(t + τ)zT (t)⟩ gives the time-τ lagged covariance (with angled brack-200

ets denoting a time average) and τ0 is a fitted timescale. Predictions are then given by201

ẑn+τ = B(τ)zn (10)

with the propagator B(τ) given by202

B(τ) = exp(Aτ) = exp

[
τ

τ0
log

(
C(τ0)C(0)−1

)]
(11)

The covariance matrix is computed over all ensemble members, and again τ0 is selected203

by fitting LIMs for τ0 ∈ {1, . . . , k} and selecting the model with the lowest error over204

timesteps 1 through k.205
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In order for a LIM to be valid, several conditions should be met. One basic crite-206

rion is that the learned propagator should be stable with decaying eigenvalues. (Simi-207

larly, the eigenvalues of the propagator learned by the Koopman Autoencoder should also208

decay.) Supporting Figure S1 verifies that all propagators considered in this study are209

stable. Another requirement is that the evolution matrix defined by Equation 9 must210

be independent of the time lag τ0 used to compute it. However, this is a strong crite-211

rion to meet; common practice is to compute the matrix norm of the propagator ∥A∥2212

for different τ0 and to select a propagator based on a timescale τ0 in which the matrix213

norm is relatively constant. Supporting Figure S2 shows the ℓ2-matrix norms of the evo-214

lution matrix of the LIM baselines on the range τ0 ∈ {1, . . . , k}; over this range, the215

matrix norm varies by over 300% for all of the regions and timescales considered.216

3 Results217

In this section, we compare the forecasts made by the Koopman Autoencoder to218

the other baselines. We use the Mean Square Error (MSE) and Pattern Correlation Co-219

efficient (Legates & Davis, 1997) to assess our predictions, as well as MSE-based skill220

scores (Murphy, 1988). Metrics are defined explicitly in Supporting Text S2.221

3.1 Evaluating prediction performance222

Figure 2 compares the area-weighted prediction MSE and pattern correlation of223

SSH predictions of the Koopman Autoencoder to the baselines using d = 20 latent di-224

mensions on forecast lead times τ of up to τmax = 120 days (daily data) and τmax =225

36 months (monthly data). The CAE generally has the lowest reconstruction error for226

all dimensionality reduction techniques, beating PCA MSE by a margin of 2–4% at lead227

τ = 0 for all regions and timescales except in the North Atlantic on monthly data (See228

Supporting Table S1). The Koopman Autoencoder has the worst reconstructions of all229

the methods considered: over all regions and timescales, MSE is on average 32% higher230

for the Koopman Autoencoder than for PCA. However, the better reconstruction error231

of the CAE does not necessarily result in better predictions. In fact, predictions made232

by applying propagators to CAE modes are often worse than predictions made using PCA233

for dimensionality reduction (e.g., using a DP propagator for North Pacific daily SSH,234

Figure 2a). In contrast, the Koopman Autoencoder generally results in better predic-235

tions than the baselines as measured by the area-weighted MSE and pattern correlation.236

Supporting Table S2 quantitatively summarizes the forecast performance of the mod-237

els in Figure 2 through the skill score of the different prediction methods relative to PCA-238

DP, averaged over forecast leads up to τmax. Skill of the models relative to PCA-DP de-239

pends significantly on the region and timescales considered but averaged over all regions240

and timescales, PCA-LIM has about 6.8% skill over PCA-DP, skill of CAE-LIM is slightly241

worse than PCA-LIM (6.4%), and skill of the Koopman Autoencoder is the highest (8.4%).242

In effect, by learning the dynamics and the dimensionality reduction together, the Koop-243

man Autoencoder learns a nonlinear latent-space representation of the state that implic-244

itly results in better SSH predictions.245

The advantages of using the Koopman Autoencoder over, for example, PCA-LIM246

are more apparent on daily timescales than on monthly timescales. In the North Pacific,247

prediction skill of the Koopman Autoencoder relative to PCA-DP on daily-averaged data248

is 4.5% higher than that of PCA-LIM but is only 3.0% higher for monthly-averaged data;249

in the North Atlantic, Koopman skill is 1.1% higher than PCA-LIM on daily data but250

is 1.3% lower on monthly data. One potential reason is that the assumptions underly-251

ing LIM may be better satisfied for monthly averages than daily averages, because monthly-252

averaged fields smooth out small-scale, nonlinear features (Sardeshmukh & Sura, 2009;253

Stephenson et al., 2004). The Koopman Autoencoders also outperform PCA-LIM by a254

wider margin in the North Pacific than in the North Atlantic. This may be due to the255
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fact that the inverse barometer component constitutes a larger share of the SSH vari-256

ability in the North Atlantic region considered (about 71% in the North Atlantic on daily257

timescales vs 32% in the North Pacific; see Supporting Figure S3). This high-frequency258

variability may be well-represented by white noise, again underpinning the relative suc-259

cess of PCA-LIM.260
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(f) Pacific Monthly-Averaged SSH Correlation
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Figure 2. Forecast MSE and Pattern Correlation in the North Pacific and North Atlantic on

daily and monthly timescales. Colors indicate dimensionality reduction techniques (red for the

Koopman Autoencoder, blue for PCA, and light green for CAE), while markers indicate propa-

gation techniques (x’s for the Koopman Autoencoder, filled circles for LIM, and open circles for

DP). The black dotted line indicates the climatological MSE of SSH.
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3.2 Sensitivity to the number of dimensions261

Both the dimensionality reduction and learned propagator’s predictions may be sen-262

sitive to the dimensionality of the latent space. Figure 3 explores both of these sensitiv-263

ities. Due to the computational cost of training each network, sensitivity is examined264

only in one region and timescale; we focus on forecasts of daily-averaged SSH in the North265

Pacific as the Koopman Autoencoder was shown to generate skillful predictions for these266

dynamics.267

As shown in Figure 3a and Supporting Table S3, reconstruction performance im-268

proves as the number of latent dimensions is increased up to d = 40 for all dimension-269

ality reduction techniques considered. Just as in Section 3.1, for any given number of270

dimensions, the CAE has the best reconstructions, outperforming PCA by 2–4%, while271

the Koopman Autoencoder has the worst reconstructions, with reconstruction MSE 1–272

13% higher than that of PCA.273

Like the reconstruction skill, the predictions of the Koopman Autoencoder also im-274

prove as the dimensionality is increased, as shown in Figure 3b. Koopman operator the-275

ory suggests that this should be the case, as it states that infinitely many observables276

must be prescribed to guarantee a nonlinear dynamical system is fully determined. Nev-277

ertheless, the utility of using the Koopman Autoencoder for building propagators dimin-278

ishes as the number of dimensions is increased. Figure 3c shows the domain-averaged279

prediction skill of the Koopman Autoencoder relative to PCA-LIM predictions using the280

same dimensionality. For all dimensionalities, the Koopman Autoencoder outperforms281

PCA-LIM forecasts up to τ = 120 days; however, up to forecast leads of τ = 60 days,282

the skill of the Koopman Autoencoder decreases as the dimensionality increases. Much283

of this seems to be simply because the Koopman Autoencoder becomes worse at recon-284

structions relative to PCA for higher latent dimensionalities (e.g., 1% higher MSE for285

d = 10 vs 13% higher MSE for d = 40; see Supporting Table S3). This suggests that286

the Koopman Autoencoder approach may be most useful for developing low-dimensional287

propagators.288

3.3 Regions of skill289

To understand how the Koopman Autoencoder attains its performance, Figure 4290

shows the MSE-skill score of the Koopman Autoencoder relative to PCA-based prop-291

agators for daily SSH forecasts in the North Pacific and North Atlantic. We focus on PCA-292

based propagators because of the simplicity and interpretability of linear, orthogonal di-293

mensionality reduction, which the CAE cannot afford. For example, due to the orthog-294

onality of modes, applying damped persistence to the principal components results in295

purely local dampening of SSH at each location.296

Figure 4a shows domain-averaged MSE skill scores for the Koopman Autoencoder297

and PCA-LIM relative to PCA-DP. Skill scores for the Koopman Autoencoder and PCA-298

LIM relative to PCA-DP start at about 0, increase to a maximum at a lead of about 30299

days, and gradually taper for longer-term forecasts. However, the Koopman Autoencoder300

skill is much higher than that of PCA-LIM at all lags—by 72% at lead 5 days and by301

at least 47% for leads up to 120 days.302

Figures 4c-e and 4f-h show the regional variations of Koopman Autoencoder skill303

relative to PCA-DP and to PCA-LIM, respectively, for a few different lead times. No-304

tably, the Koopman Autoencoder is better at reconstructing SSH than PCA at low lat-305

itudes but is worse at midlatitudes (Figure 4c). However, by lag τ = 5 days, the neg-306

ative skill in the midlatitudes has diminished compared to PCA-LIM (Figure 4g), and307

there is positive skill relative to PCA-DP over the entire domain (Figure 4d). Because308

the midlatitude SSH variability is dominated by the high-frequency inverse-barometer309

component (Supporting Figure S3), midlatitude SSH dynamics are inherently less pre-310
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Figure 3. Sensitivity of the Koopman Autoencoder to number of dimensions for predicting

North Pacific daily-averaged SSH. (a) Reconstruction error by dimensionality for PCA (blue),

CAE (light green), and the Koopman Autoencoder (red). (b) Domain-averaged MSE skill scores

of the Koopman Autoencoder predictions relative to climatology for different latent space dimen-

sionalities. (c) Domain-averaged skill score of the Koopman Autoencoder relative to equivalent

dimensionality PCA-LIM as a function of forecast lead.

dictable than low-latitude dynamics. Therefore, for North Pacific regional-scale predic-311

tions, quality representations of SSH in the tropics are much more helpful for regional-312

scale predictions than representations in the midlatitudes. Because the dimensionality313

reduction and propagation are learned together in the Koopman Autoencoder, it can de-314

ploy its latent dimensions to focus on representing low-latitude SSH initial conditions315

particularly well. In contrast, when the dimensionality reduction is done separately, di-316

mensions may be wasted on characterizing variability that is not predictable.317

The skill maps also highlight dynamics that the PCA-based propagators do not fully318

capture. For instance, since PCA-DP characterizes the local predictability of SSH, skill319

of the Koopman Autoencoder relative to PCA-DP indicates that it is capturing nonlo-320

cal drivers of SSH. Midlatitude skill in the Northeastern Pacific at leads of τ = 5 days321

(Figure 4d) could come from the advection of sea level pressure anomalies via midlat-322

itude Westerlies, which traverse the Pacific basin on O(5–10 days). In the low latitudes,323

the skill of the Koopman Autoencoder with respect to PCA-DP and PCA-LIM increases324

until about 30 days (Figures 4a), with the strongest skill occurring in narrow, zonal bands325

adjacent to the equator (Figure 4h). This timescale and region of enhanced skill is con-326

sistent with the timescale and westward propagation of Equatorial Rossby waves.327

In the North Atlantic, we note that reconstruction errors for the Koopman Autoen-328

coder at time τ = 0 are poor, with a domain-average skill of −0.14 relative to the PCA329

reconstructions. However, once again, the latent space representation of the state results330

in better skill at nonzero time lags up to τ = 100 days (Figure 4b). Figures 4i-k show331
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that the prediction skill of the Koopman Autoencoder occurs primarily in the Atlantic332

Subtropical Gyre and Gulf Stream separation. Because gyre dynamics are associated pri-333

marily with low-variability geostrophic balance, such variability may be underrepresented334

in variance-targeting PCA-based reconstructions, even though this variability may be335

predictable on the daily-to-seasonal timescale. Reconstruction skill relative to PCA sug-336

gests that the Caribbean Current may be a source of this gyre predictability for SSH pre-337

dictions in the North Atlantic (Figure 4i).338

4 Discussion339

Statistical-dynamical models—and linear inverse models in particular—have be-340

come indispensable forecasting tools in the past few decades, owing to their simplicity,341

interpretability, and skill (Penland & Sardeshmukh, 1995; Alexander et al., 2008; von342

Storch et al., 1995). Modern techniques can help extract more information from data343

for nonlinear systems. In this study, we trained convolutional neural networks with em-344

bedded time-stepping to learn a low-dimensional latent space that facilitates predictions345

of SSH. Training the network to learn the dimensionality reduction and propagation si-346

multaneously tends to result in better forecasts than if the reduction and propagation347

are learned separately, as done typically with LIM for example.348

We examined some sensitivities of the Koopman Autoencoder method compared349

to LIM. The skillfulness of the Koopman Autoencoder is most apparent in situations when350

the assumptions for LIM are least valid (such as on daily data, where the state vector351

includes highly nonlinear, small-scale features). Additionally, we examined the sensitiv-352

ity to the dimensionality of the latent space. Our results suggest that the Koopman Au-353

toencoder framework is best for building low-dimensional propagators; however, com-354

putational considerations led us to consider only one region and timescale and up to 40355

latent dimensions, so the robustness of this result to different dynamics and a wider range356

of dimensionalities should be further investigated.357

Spatial variations in the reconstruction skill of the Koopman Autoencoder point358

to sources of predictability that the Koopman Autoencoder leverages to make better pre-359

dictions than LIM. We identified tropical Pacific SSH as a source of predictability for360

North Pacific daily-averaged SSH and the Caribbean Current SSH for North Atlantic361

SSH. One limitation of this study is that a univariate field variable is used for SSH pre-362

dictions. Previous studies have demonstrated that including multiple variables can im-363

prove LIM predictions (Newman, Alexander, & Scott, 2011; Capotondi et al., 2022; Bren-364

nan et al., 2023). Using multiple input channels to incorporate different fields may im-365

prove the Koopman Autoencoder’s SSH predictions and reveal additional sources of pre-366

dictability.367

The focus of this study has been to develop an efficient propagator for SSH and368

to assess its forecasting skill. The imposed linearity of the dynamics in the latent space369

could be relaxed (for instance, to obtain better predictions). However, the comprehen-370

sive theory underpinning linear systems makes the linear propagator potentially appeal-371

ing for interpretation, yielding possible advantages in applications like predictability (Vimont372

et al., 2014; Tziperman et al., 2008), emulation (Beucler et al., 2021; Bi et al., 2023), and373

inference (Baldovin et al., 2020; Falasca et al., 2024).374

One question is how the latent state can be physically interpreted (Shamekh et al.,375

2023; Behrens et al., 2022). In the context of Koopman operator theory, the latent space376

variables are nonlinear observables of the dynamical system state, but the nonlineari-377

ties in the encoder and decoder make it challenging to interpret what these observables378

measure. One approach to gaining physical understanding of the latent space could be379

to probe the sensitivity of the decoder to changes in the latent space, either through ob-380

serving the sensitivity of the outputs to perturbations to the latent space variables (Oring381
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Figure 4. Koopman Autoencoder MSE skill scores for daily-averaged North Pacific (a, c–h)

and North Atlantic (b, i–n) SSH predictions. (a, b): Domain-averaged skill as a function of lead

time. Red: Skill of Koopman Autoencoder relative to PCA-DP. Purple: Koopman Autoencoder

relative to PCA+LIM. Cyan: Skill of PCA-LIM relative to PCA-DP. Black dotted lines indicate

forecast leads used for panels c–h. (c, d, e, i, j, k): Skill scores of Koopman Autoencoder relative

to PCA-DP at select time lags. (f, g, h, l, m, n): Same but for skill relative to PCA-LIM.

et al., 2021; Leeb et al., 2022) or examining the gradients of the decoder (Mamalakis et382

al., 2022; Baehrens et al., 2010). Such methods for interpreting the latent space, cou-383

pled with eigenanalysis for understanding the timescales for the propagator, could help384

elucidate the physical processes represented in the latent space, and is left for future work.385
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Nevertheless, we believe this study has demonstrated a potentially useful approach for386

developing efficient, low-dimensional linear propagators for climate fields.387

Appendix A Open Research388

The CESM2 Large Ensemble Dataset is available from the NCAR Climate Data389

Gateway at https://doi.org/10.26024/kgmp-c556 (Danabasoglu et al., 2021). The390

code used for data processing, training, analysis and visualization in this study, as well391

as the files for reproducing the software environment, are provided under the MIT license392

at https://github.com/andrewbrettin/koopman autoencoders ssh prediction (Brettin,393

2024). Figure 1 was built using the PlotNeuralNet software preserved at https://doi394

.org/10.5281/zenodo.2526396, which is available via the MIT license (HarisIqbal88,395

2018).396
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Introduction

Here, we describe methodological training details and analysis metrics used in this study

(Text S1, Text S2), provide supplementary figures describing the validity of the propa-

gators (Figure S1 and S2), show the SSH variability due to different components to give

context for the performance differences between regions (Figure S3), and provide tables

to quantify the reconstruction and prediction performance of the different dimensionality

reduction and propagation techniques (Tables S1, S2, and S3).
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Text S1. Architecture and training configurations for the convolutional

neural networks

The encoder and decoder of our Convolutional Autoencoder and Koopman Autoencoder

are composed of convolutional “blocks,” where each block consists of a convolutional layer

equipped with ReLU activations followed by another convolutional layer with ReLU ac-

tivations (Fukushima, 1969, 1980). The convolutional layers use a 3-by-3 filter with a

stride of 1 and employ zero-padding to preserve the shape of the input fields. In the

encoder, convolutional blocks are succeeded by max-pooling operations using a 2-by-2

kernel, whereas in the decoder, convolutional blocks are preceded by bilinear upsampling

using a 2-by-2 kernel. We use an architecture somewhat similar to Oommen, Shukla,

Goswami, Dingreville, and Karniadakis (2022), where the number of filters per block is

decreased closer to the bottleneck. In the encoder, the first two convolutional blocks con-

tain convolutional layers with 64 channels, the third block contains layers of 32 channels,

and the fourth contains layers of 16 channels. The last convolutional layer is fully con-

nected to the latent space encoding. The decoder essentially has the reverse structure of

the encoder: the encoding is fully connected to a convolutional block employing layers of

16 channels, followed by a block with layers of 32 channels, and then two blocks of 64

channels. Additionally, the decoder applies a 1-by-1 convolution to the outputs of the last

convolutional block in order to return values in the range (−∞,∞).

We optimize the parameters of the networks using the Adam optimizer (Kingma & Ba,

2014) with batches of 64 samples and a fixed learning rate of 10−4. For the Koopman

autoencoders, L2 regularization is applied over all network weights to mitigate overfitting.

For the daily-averaged data, an L2 weight of 10−3 is applied, whereas for the monthly-
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averaged data, a higher regularization rate of 10−2 was necessary to prevent overfitting.

Networks are trained for 500 epochs, with an early stopping threshold of 50 epochs. Check-

points for the network with the best overall validation loss were saved. Additionally, for

the Koopman Autoencoder, we save the checkpoints with the best validation-set predic-

tion MSE such that the learned propagator has decaying eigenvalues. This checkpoint

with the best prediction loss is used.

The training capacity of both the Convolutional Autoencoder and Koopman Autoen-

coder was found to be sensitive to the network weight initializations: for certain initial

weights, the network only converged to a constant function. Therefore, for the Convo-

lutional Autoencoder, we initialize weights using Kaiming uniform random values (He et

al., 2015), and reinitialize the weights with a different set of Kaiming uniform random

values if the network does not converge to a lower loss than that of a constant function.

For the Koopman Autoencoder, we leverage information gained about the loss landscape

during the training process for the Convolutional Autoencoder. The Koopman Autoen-

coder’s encoder and decoder weights are initialized from the weights of the Convolutional

Autoencoder at the 10
th

epoch of training. This is based on the principle that lower-order

features are learned first during training (Kalimeris et al., 2019; Refinetti et al., 2023):

by beginning the training from the 10
th

epoch, the encoder and decoder contain enough

complexity to converge to something more expressive than a constant function, but not

so much complexity that the KAE overfits. Furthermore, the weights for the linear prop-

agator L are initialized as a multiple of the identity matrix αI, where α ∈ (0, 1). Thus,
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the propagator is learned by making gradual adjustments to a type of damped-persistence

forecast. We set α = 0.5 for these experiments.

The data consists of 32,060 training samples for the daily data, and 21,014 samples for

the monthly data (daily data is subsampled by a factor of 20 to reduce the computational

cost). We use k = 20 recurrent passes for the prediction loss, and set the relative weights

of the three different loss functions λ1 = λ2 = λ3 = 1. The networks are trained in

Pytorch using the distributed data parallel approach on two NVIDIA 32GB V100 GPUs

(Paszke et al., 2019; Li et al., 2020).

Text S2. Metrics

Here we define metrics used for assessing reconstruction and prediction performance.

Let X be the tensor of target values for a specific geophysical field, and let X̂ be the

predicted values. These tensors have entries xi,j,n, and x̂i,j,n, where i ∈ {1, . . . ,Mx}

indexes the longitudes, j ∈ {1, . . . ,My} indexes the latitudes, and n ∈ {1 . . . , N} indexes

the samples.

We first define domain averaged metrics for a specific sample. Using a wildcard “∗” to

indicate dimensions of aggregation, the area-weighted Mean Squared Error (MSE) for a

specific sample is given by

MSE(∗,∗,n) =

∑Mx

i=1

∑My

j=1 w
2
i,j(xi,j,n − x̂i,j,n)

2∑Mx

i=1

∑My

j=1 w
2
i,j

(1)

where wi,j gives the (i, j)th weight, which is proportional to grid-cell area on nondegen-

erate points and 0 on masked points. Similarly, the area-weighted pattern Correlation
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Coefficient (CC) for a given sample is given by

CC(∗,∗,n) =

∑Mx

i=1

∑My

j=1w
2
i,j xi,j,n x̂i,j,n√∑Mx

i=1

∑My

j=1(wi,j xi,j,n)2
∑Mx

i=1

∑My

j=1(wi,j x̂i,j,n)2
(2)

Global metrics over all gridpoints and samples can be obtained by averaging over all

samples:

MSE =
1

N

N∑
n=1

MSE(∗,∗,n) (3)

CC =
1

N

N∑
n=1

CC(∗,∗,n) (4)

The area-weighted ℓ2-norms ∥ · ∥2,w given in Eqs. (3) and (4) use the globally-averaged

area-weighted MSE in Eq. (3).

We can also consider the sample averaged MSE at each location, given by

MSE(i,j,∗) =
1

N

N∑
n=1

(xi,j,n − x̂i,j,n)
2 (5)

It is often useful to assess the predictions of a model relative to another baseline. The

skill score is an often used metric that assigns a value between 0 and 1 to assess the

performance of the model relative to a baseline (Murphy, 1988). For a prediction model

f and a baseline f0, we define the total skill score by

SS = 1− MSE(f)

MSE(f0)
. (6)

where MSE(f) gives the error given by the model f . This can be interpreted as the

percentage of improvement in MSE gained by using model f instead of f0.

Likewise, the sample-averaged skill score for each location by

SSi,j = 1−
MSE(i,j,∗)(f)

MSE(i,j,∗)(f0)
(7)
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where MSE(i,j,∗)(f) is the sample-averaged MSE using prediction model f . Finally,

domain-averaged skill is found by area-weighted averaging over all spatial indices (i, j):

SS =

∑Mx

i=1

∑My

j=1wi,jSSi,j∑Mx

i=1

∑My

j=1wi,j

(8)
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Eigenvalues of discrete propagator matrix

Figure S1. Eigenvalues of discrete propagators of LIM, B(1), for both PCA and CAE latent

modes, as well as the eigenvalues of the Koopman Autoencoder propagator L. The unit circle

demarcates the region in which the eigenvalues must lie for the propagator to be stable.
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Figure S2. PCA+LIM evolution matrix norms by fitted propagator lead time. The blue line

shows the matrix norm itself, with a star indicating the model with the lowest average prediction

MSE over timesteps 1–k on the validation dataset. The red line shows the norm of an average

propagated latent space vector σ, as in Penland and Sardeshmukh (1995) Fig. 12.
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Figure S3. Explained variance of daily SSH variability by component in the North Pacific (a,

b, c) and North Atlantic (d, e, f). Panels (a) and (d) show the proportion of SSH variability due

to dynamic sea level, while panels (b) and (e) show the proportion due to the inverse barometer

component. Because the random variates ζ and ηib are not completely decorrelated, the explained

variance by the two terms do not exactly sum to 1. Therefore, the closure term due to covariance

2Cov(ζ, ηib)/Var(η), which is negligible at most locations, is included in panels (c) and (f).
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Table S1. Reconstruction MSE for different dimensionality reduction techniques with d = 20

latent dimensions. Parentheses show the percent difference in MSE from PCA.

Pacific Daily Atlantic Daily Pacific Monthly Atlantic Monthly
model
PCA 0.191 0.065 0.167 0.082

CAE 0.185 (-3.61%) 0.063 (-2.00%) 0.161 (-3.83%) 0.086 (+5.26%)

KAE 0.198 (+3.27%) 0.078 (+20.69%) 0.231 (+38.39%) 0.135 (+64.10%)

Table S2. Total skill score (expressed as a percentage) of different prediction methods relative

to PCA-DP, averaged over forecast leads up to 120 days for daily data and 36 months for monthly

data.
Pacific Daily Atlantic Daily Pacific Monthly Atlantic Monthly

Prediction method
CAE-DP -15.4% -0.4% -1.0% -0.9%

PCA-LIM 9.4% 0.6% 13.9% 3.3%

CAE-LIM 9.6% 0.2% 12.8% 3.0%

KAE 13.9% 1.7% 16.0% 2.0%

Table S3. Reconstruction MSE for different dimensionality reduction techniques in the North

Pacific on daily timescales for different numbers of latent dimensions. Lighter shading represents

lower MSE. Parentheses show the percent difference in MSE from PCA.

D=10 D=20 D=30 D=40
Technique
PCA 0.308 0.191 0.137 0.106

CAE 0.301 (-2.35%) 0.185 (-3.61%) 0.131 (-4.01%) 0.103 (-2.11%)

KAE 0.311 (+0.92%) 0.198 (+3.27%) 0.149 (+8.80%) 0.119 (+12.72%)
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