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Abstract15

Mesoscale eddies are a major sink of available potential energy (APE) in the ocean. When16

these eddies are not resolved or only partially resolved in a model, this effect needs to17

be parameterized to simulate a realistic large-scale state. Traditionally, the Gent-McWilliams18

(GM) parameterization has provided this sink of APE. However, the GM parameteri-19

zation, which diffuses isopycnal heights, is not accompanied by a skillful prescription for20

GM diffusivity rooted in data from observations or models. Also, at eddy permitting res-21

olutions, GM diffusion can negatively impact resolved eddies, and the only scale-aware22

prescription is to turn GM off in regions where eddies are permitted. Here we present23

a novel data-driven parameterization, as a substitute for GM, that extracts APE with-24

out overly negative impacts on the resolved flow. It is both flow-aware and scale-aware,25

and its magnitude can be tuned using an O(1) non-dimensional number. Features like26

non-dimensional inputs/outputs, lateral non-locality, flow-dependent coordinates, and27

range limitations improve the generalization of the data-driven scheme. Functional forms28

are learned via a small multi-layer perceptron, ensuring low computational cost and sim-29

ple implementation in ocean models. The parameterization performs skillfully in offline30

evaluation, especially at scales smaller than the largest eddies. It is implemented in NOAA31

GFDL?s MOM6 and shown to be skillful in online tests in two-layer idealized simula-32

tions of a zonal channel and wind-driven gyre, at both eddy-permitting and non-eddying33

resolutions. This work suggests a path towards leveraging high-resolution simulations34

for the reduction of structural error and improvement in the fidelity of climate simula-35

tions.36

Plain Language Summary37

Mesoscale ( 100 km) eddies are the dominant flows in the ocean and play a key role38

in shaping large-scale circulation features such as wind-driven gyres and the meridional39

overturning circulation. Since these eddies are not fully resolved in many modern ocean40

models – especially those that are run for long periods or include many ensemble mem-41

bers – their effects must be represented through parameterizations. A commonly used42

approach, the Gent-McWilliams (GM) parameterization, removes available potential en-43

ergy (APE) from the system but lacks a data-driven way to set its strength. Moreover,44

at eddy-permitting resolutions, GM can interfere with the resolved flows.45

We present a new data-driven parameterization designed to better represent eddy46

effects in ocean models. It learns a functional form from high-resolution simulations us-47

ing a compact neural network and is designed to be flow-aware, scale-aware, and com-48

putationally efficient. The parameterization is implemented in the MOM6 ocean model49

and shows skillful performance both offline and in idealized simulations, especially at scales50

smaller than the largest eddies. It extracts APE from large scale flow without degrad-51

ing resolved features, offering a promising alternative to GM for a wide range of ocean52

modeling applications.53

1 Introduction54

Ocean circulation models solve equations describing the motions in the ocean on55

a finite-size discrete grid, and are thus unable to resolve the phenomena at scales smaller56

than the grid scales. However, it is often the case that these sub-grid phenomena are more57

than just small-scale variability, and could have a profound impact on the characteris-58

tics of the resolved motions. To ensure fidelity of the model behavior at the resolved scales,59

the effects of these sub-grid phenomena need to be appropriately parameterized. One im-60

portant and often unresolved range of scales in ocean models are the mesoscales.61

Mesoscales(∼ 50−200km) are the dominant energy-containing scales in the ocean62

(Ferrari & Wunsch, 2009), and subsequently play an important role in shaping the mean63
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circulation and stratification (Gent, 2011), and in transporting tracers (Abernathey &64

Wortham, 2015). These eddies are believed to be largely generated as a result of baro-65

clinic instability (K. S. Smith, 2007), which has its fastest growth rate at scales close to66

the first baroclinic deformation radius (scales of ∼ 10− 100km) (Chelton et al., 1998;67

Tulloch et al., 2011). These instabilities have a tendency to grow at the expense of the68

available potential energy (APE), and thus their bulk effect is to flatten isopycnals in69

the ocean. The dominance of rotation at these scales also usually leads to a subsequent70

inverse energy cascade, which is why the dominant peak of energy is usually larger than71

the dominant scale of the instability (Tulloch et al., 2011). Thus, to properly resolve these72

eddies and their effects the model grid spacing needs to be at least as small as the de-73

formation radius (Hallberg, 2013). The inverse cascade also takes place in the vertical74

(K. S. Smith & Vallis, 2002), transferring energy to the barotropic and first couple of baro-75

clinic modes, and the associated flows tend to have weak vertical shear and do not gen-76

erate of small-scale turbulence or diapycnal mixing — mesoscale eddies are dominantly77

adiabatic processes in the interior of the ocean.78

Conventionally, mesoscale eddy effects have been parameterized using the Gent-79

McWilliams (GM) parameterization (Gent & Mcwilliams, 1990), particularly in mod-80

els that do not resolve the deformation radius. This parameterization was designed to81

respect two important aspects of mesoscale processes: (i) the parameterization is adi-82

abatic, and (ii) the net effect of the parameterization is to reduce available potential en-83

ergy. In models with depth as the vertical coordinate, this is achieved by representing84

the horizontal eddy fluxes in the form of a horizontally downgradient buoyancy diffu-85

sion and then setting the vertical component of the eddy flux to be upgradient, such that86

the net flux is along isopycnals and the resulting operator behaves like advection. In con-87

trast in isopycnal models, this is achieved by diffusing the interface heights, which can88

also be represented as extra eddy driven advection. These recipes led to dramatic qual-89

itative improvements in the ocean simulations, particularly the adiabatic aspect ensures90

that water masses were not eroded away in the interior by spurious diffusion. However,91

the associated eddy diffusivity has always been a major source of uncertainty and a very92

active topic of research for decades (e.g. Visbeck et al., 1997; Ferreira et al., 2005; Eden93

& Greatbatch, 2008; Marshall et al., 2012; Jansen et al., 2015). Also, as with all con-94

ventional ocean parameterizations, this scheme was designed to represent the bulk ef-95

fects of eddies and not to have any skill in representing the spatial or temporal struc-96

tures of the eddy effects, which leads to detrimental effects at resolutions where eddies97

are partially resolved (Hallberg, 2013; Mak et al., 2023).98

In recent years, machine learning (ML) based methods have started to show a lot99

of promise in improving different aspects of computational modeling, including improv-100

ing parameterizations (Bracco et al., 2025; Lai et al., 2024). While conventional param-101

eterizations require domain scientists to develop mathematical operators that are at best102

able to mimic the bulk effects of sub-grid phenomena, ML methods directly learn the103

functional relationship between the sub-grid effects and the large-scale fields using ap-104

propriate data. In many instances it is also possible to design the ML models to obey105

some physical properties. These methods have led to the development of parameteriza-106

tions for idealized systems (Ross et al., 2023; Srinivasan et al., 2023), thermodynamic107

and momentum tendencies in the atmosphere (Brenowitz & Bretherton, 2018; Yuval et108

al., 2021), boundary layers processes in the ocean (Sane et al., 2023; Ramadhan et al.,109

2020; Bodner et al., 2023), and momentum tendencies in the ocean (Zhang et al., 2023;110

Zanna & Bolton, 2020; Perezhogin et al., 2024). All these new parameterizations have111

shown improved skill over conventional parameterizations, and the potential issues raised112

about implementation, stability and generalization are rapidly being addressed. While113

some sub-grid effects of ocean eddies have been investigated using this approach, the im-114

pact of mesoscale eddies on the density or thickness field - the aspect parameterized by115

the GM parameterization - has not yet been addressed using data-driven parameteriza-116

tions.117
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Here we present a new data-driven parameterization to account for the impact that118

mesoscale eddies have on the thickness field in the ocean. Our parameterization is de-119

signed to ensure that it maintains the important adiabatic constraint that was introduced120

by the GM parameterization. However, unlike GM, our parameterization has not been121

designed to be a local sink of APE; rather it is optimized to capture the spatial struc-122

ture of the eddy effects. With an eye towards implementation, we use a small fully con-123

nected neural network - multi-layer perceptron (MLP), which can be easily added to any124

ocean model code. Here we implemented this into GFDL’s Modular Ocean Model 6 (MOM6).125

In section 2 we describe the filtering framework that is used to diagnose the sub-grid im-126

pact of eddies from high resolution (HR) simulations, and in section 3 describe how to127

cast these sub-grid effects into a functional form that potentially has some ability to gen-128

eralize to unseen data. Also, in section 3 we describe the machine learning architecture,129

and training process. In section 4 we describe the HR datasets and how they were pro-130

cessed. In section 5 we show that our parameterization is successful in both an offline131

and online sense, and finally, in section 6 we conclude with a discussion, potential caveats132

and an outlook towards future work.133

2 Sub-grid thickness fluxes134

The mesoscale processes can be most strictly isolated with the help of an isopyc-
nal model, as the adiabatic and diabatic processes are clearly distinguished in this frame-
work. In this framework (stacked shallow water or isopycnal coordinate) the flow can be
modeled using momentum and thickness equations (e.g. (Vallis, 2017; Loose, Marques,
et al., 2023)). The thickness equation, the primary focus of our study, can be written
for each layer as,

∂thn +∇ · (unhn) = 0, (1)

where hn and un = (un, vn) are the thickness and velocity in the nth layer respectively.135

This equation can simulate the flow over the full spectrum of scales where its as-
sumptions are valid, but with a finite grid size only a limited range of scales can be re-
solved. Here we distinguish between scales that can be resolved and are too small to re-
solved (sub-grid) using spatial filtering and coarse-graining (·), as is routinely done in
the large eddy simulation (LES) framework (Sagaut, 2005; Aluie et al., 2018). The high-
pass signal after applying this spatial operation is referred to as sub-grid flows in this
study. Consequently, the impact of sub-grid flow, on the resolved flows, can be elucidated
in the thickness equation as,

∂thn +∇ · (unhn) = −∇ · (unhn − unhn) (2)

The impact of the sub-grid flow (e.g. un−un) on the resolved flow (e.g. hn) arises as
the divergence of a sub-grid flux on the RHS (∇ · Fn = ∇ · (unhn − unhn)). Hence-
forth, we shall refer to

Fn = unhn − unhn (3)

as the sub-grid scale (SGS) thickness flux, which will be the target of the parameteri-136

zations we develop below. It is common practice to represent this SGS thickness flux in137

terms of an eddy-driven stream function or velocity, as described in Appendix B. Also,138

in this theoretical framing we have assumed that our spatial filtering and coarse-graining139

commutes with the derivatives, which may not be true for all filter choices and near bound-140

aries (Moser et al., 2021); the exact choice of the operators used in this study is described141

in section 4.2.142

Note that, considering resolved and sub-grid flows to the momentum equation would143

result in complementary SGS forcing terms in the momentum equation as well. How-144

ever in this study, we focus our attention only on the SGS thickness fluxes , as these cor-145

respond to one of the major parameterizations - the GM parameterization - in ocean mod-146

els. Data-drive parameterizations of SGS momentum forcing were considered recently147
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(Perezhogin et al., 2024; Zhang et al., 2023; Zanna & Bolton, 2020), and in follow-up work148

we plan to target both thickness and momentum SGS parameterizations simultaneously.149

3 Machine learning model design and implementation150

The goal of this work is to develop a data-driven parameterization for the SGS thick-151

ness fluxes in terms of the resolved variables. Here, we use a multi-layer perceptron (MLP)152

with a few hidden layers to approximate this functional relationship. These MLPs will153

be trained by using data from high-resolution (HR) simulations, which have been filtered154

and coarse-grained to diagnose the SGS thickness fluxes and the corresponding resolv-155

able fields. The machine learning parameterizations will be tested in both offline and on-156

line evaluation settings.157

3.1 Parameterization function design158

MLPs are universal function approximators, and can represent a vast space of func-159

tions. While this flexibility is powerful, it also increases the risk of overfitting, allowing160

the MLP to approximate data using functions that do not generalize. To avoid overfit-161

ting and allow for a degree of generalizability, we implement certain design constraints162

into the MLP.163

Input features: Here we will search for functions of the form,

Fn = fθ(∇un,∇hn,4), (4)

where ∇un is the velocity gradient tensor and ∇hn is the thickness gradient, both for164

the resolved fields. 4 is a measure of the grid scale, which allows the parameterization165

to be scale-aware. fθ(·) is a MLP function with unknown parameters θ, which need to166

be learned, that represents the two components of the SGS flux vector. Note that in the167

offline setting the inputs to this function will be the filtered and coarse-grained fields,168

while in the online setting the inputs will be resolved fields from the coarse-resolution169

simulation.170

We found that functions of the above form can be trained to get remarkable offline171

success, but struggle when testing offline on data with distributional shifts (not shown).172

Adding some additional constraints discussed below, allows the model to generalize bet-173

ter to many more scenarios offline (Beucler et al., 2021).174

Lateral non-locality: The GM parameterization and the velocity gradient model175

(VGM) parameterization, a common model used in the LES literature, are horizontally176

local (see Appendix C and Appendix D), i.e. parameterization output depends only on177

inputs from the same horizontal grid box (i, j). Here, we relax this and allow for a small178

degree of non-locality in the horizontal, considering input information from regions sur-179

rounding the point where the prediction needs to be made. This is mathematically de-180

noted as Fn,(i,j) = fθ(∇un,(I,J),∇hn,(I,J),4i,j), where I = i + p and J = j + q, and181

p, q are integers in the range (−m,m) – thus I, J correspond to the wider stencil around182

i, j. For a purely local model (1 × 1 stencil) m = 0, for a model with a 3 × 3 stencil183

m = 1, for a model with a 5×5 stencil m = 2 and so on. Note, that for all input sten-184

cil sizes, the prediction is always made only at the central point (i, j). In principle, ver-185

tically non-local models can also be formulated, but these will not be considered here.186

Flow dependent coordinates: We do not expect the sub-grid impacts to be co-187

ordinate dependent. However, when learning from data that comes from limited setups,188

a data-driven model may erroneously learn details about the coordinate. For example,189

if learning from data that comes from a f-plane channel simulation oriented in the x-direction,190

a data-driven model has the potential to learn that the SGS flux directed in the y-direction191

results in an available potential energy (APE) reduction. This model may fail if the setup192

is rotated by 90 degrees - even though we expect the impacts to not have changed.193
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To ward against this issue, we work in a flow-dependent, rather than a coordinate194

dependent, frame (Prakash et al., 2022). In particular, we rotate all our variables into195

a frame of reference oriented with the thickness gradients in each layer (see Appendix196

E for details). We denote variables in the flow dependent frame as (̃·). When working197

with laterally non-local inputs, the rotation is done with respect to the thickness gra-198

dient at the center point of the stencil. Also in this frame of reference, we implicitly re-199

duce the number of inputs by one, as only the magnitude of the thickness gradient at200

the center of the stencil is now needed to quantify ∇hn. This frame of reference is also201

conceptually advantageous, as the projection of the SGS thickness flux in the direction202

of the thickness gradient is responsible for the dissipation of resolved thickness variance,203

which is linked to the mean APE dissipation (Loose, Bachman, et al., 2023).204

Non-dimensionalization and range limitation: The physics and sub-grid pa-205

rameterizations should be invariant to the units of measurement. However, ML models206

are not unit invariant by default, and this property needs to be built in. Here this is achieved207

by casting all inputs and outputs into non-dimensional forms. In particular, we use the208

following non-dimensional forms: Fn

42|∇un||∇hn|
, ∇un

|∇un| , and ∇hn

|∇hn|
. Here |∇un| is the For-209

benius norm of the velocity gradient tensor; this is
√
∂xu

2
n + ∂yu

2
n + ∂xv

2
n + ∂yv

2
n for a210

1× 1 stencil. For a larger stencil this takes the form211 √∑p=m
p=−m

∑p=m
p=−m(∂xu

2
n,(i+p,j+q) + ∂yu

2
n,(i+p,j+q) + ∂xv

2
n,(i+p,j+q) + ∂yv

2
n,(i+p,j+q)).212

Using the non-dimensionalization of the inputs using the magnitudes also ensures213

that all normalized input variables are limited in range between -1 and 1, helping con-214

strain the input domain of the samples. There can still be gaps inside this multi-dimensional215

unit-sphere that were not sampled in the input data, but range limiting is still better216

than having unconstrained inputs. While not explicitly apparent, normalizing by the norm217

reduces the degree of freedom in input variable group by one. Apart from providing unit-218

invariance and range limiting, non-dimensionalization can potentially also provide gen-219

eralization across some regimes where the energy levels are different but the underlying220

dynamics are similar.221

Final functional form: The above considerations, result in the following :222

F̃n,(i,j) = 42
i,j |∇un,(I,J)||∇hn,(I,J)|fθ

 ∇̃un,(I,J)

|∇un,(I,J)|
,
∇̃hn,(I,J)
|∇hn,(I,J)|

 , (5)

where subscripts i, j and I, J have been included to make the non-locality of the model223

explicitly clear. No rotation is needed for the norms of the inputs, as the norm is invari-224

ant to coordinate rotation. While the above function choice is more restrictive than equa-225

tion 4, it was chosen after some trial and error and we found that the functions estimated226

under these constraints are skillful.227

3.2 Neural network architecture, hyper-parameters, and software228

As mentioned above, we use a MLP to learn the function fθ(.). In this architec-229

ture the input layer is linked to the output layer through NH hidden layers. Each hid-230

den layer can have a different width (Ws, where s ∈ (1, NH)), such that there are
∑NH

s=1Ws231

hidden nodes. Each node applies a linear transformation to its inputs, followed by a non-232

linear activation function, which was chosen to be ReLU. The outputs of one layer serve233

as inputs to the next, enabling hierarchical feature learning. The final layer produces the234

output through a linear transformation.235

We conducted a comprehensive sensitivity study on various MLP design and train-236

ing choices, as detailed in Appendix F. Among all hyperparameters tested, we found model237

skill to be most sensitive to the total number of trainable parameters. For a given sten-238
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cil size and input/output configuration, performance improved with model size up to a239

threshold, beyond which additional parameters did not lead to further gains. Consequently,240

for discussion purposes in the results section, we restrict attention to models with ap-241

proximately the minimum number of parameters required to achieve maximal skill for242

each stencil size. We evaluate three MLP models that differ only in stencil size: 1X1, 3X3,243

and 5X5. Each model uses two hidden layers with 48 nodes per layer. As stencil size in-244

creases, the number of input features and thus the number of trainable parameters in-245

creases: from 2,786 (1X1), to 5,090 (3X3), to 9,698 (5X5). The models take non-dimensionalized246

velocity and thickness gradients as input and predict non-dimensionalized SGS thick-247

ness fluxes as output. Both inputs and outputs are rotated into local thickness gradi-248

ent coordinates. Also, in addition to the non-dimensionalization, all input and output249

features were also normalized by the order of magnitude of their standard deviations.250

The details of the Double Gyre (DG) and Phillips 2 Layer (P2L) HR simulations251

are presented in the Section 4, and the details of the training set choices are the follow-252

ing. Training was performed on the first 2,048 snapshots from both the DG and P2L sim-253

ulations, sampled every 10 days and including spin-up. For each snapshot, data from mul-254

tiple filter and coarsening scales (details presented later) were used simultaneously. To255

give equal weight to each scale during training, data from finer filters were sub-sampled256

to align with the grid points of the coarsest filter. Offline evaluation was conducted on257

snapshots 2,4000 to 3,6000.258

We used Python and JAX (https://docs.jax.dev/) for all our machine learn-259

ing pipelines. Specifically, we used Flax-Linen library (https://flax-linen.readthedocs260

.io/) for the design of our MLPs and used the Optax library (https://optax.readthedocs261

.io/) for optimization. The loss function was the mean absolute error in the non-dimensionalized262

outputs. Models were trained using the Adam optimizer with a learning rate of 0.01, and263

training was stopped when the validation loss failed to improve by more than 0.1% over264

10 consecutive epochs.265

3.3 Implementation in MOM6266

The MLP-based SGS thickness flux parameterization was implemented in MOM6267

via two new modules: an MLP module and a thickness flux prediction module. The MLP268

module, as the name suggests, reads a NetCDF file containing the model architecture,269

trained weights, and normalization factors, and performs inference as would be done by270

a standard feedforward MLP. This module is general-purpose and can be called from any-271

where within MOM6, enabling the integration of multiple MLP-based data-driven mod-272

els into the codebase.273

The thickness flux prediction module incorporates the design choices described in274

Section 3.1. To keep the implementation simple and in light of the limited guidance in275

the literature regarding appropriate numerical schemes for such models we interpolate276

the necessary input fields to the centers of grid cells. For a 3X3 model, this means that277

each input in the 3X3 stencil surrounding the prediction point is evaluated at the 3X3278

grid cell centers. After predicting the two components of the thickness flux at the cen-279

tral point, the fluxes are then interpolated to the appropriate edge locations. We also280

introduced a non-dimensional coefficient (CANN ) which can be used to adjust the strength281

of the parameterized flux if needed.282

Fluxes at solid boundaries are set to zero to ensure volume conservation. We also283

observed that regions with very thin fluid layers could produce numerical artifacts. To284

suppress these, we modified the computation of the thickness gradient magnitude that285

multiplies the MLP prediction in Equation (5). Specifically, we replaced |∇hn| with
∣∣∣h2n∇( 1

hn+ε

)∣∣∣,286

which preserves the overall scaling in well-resolved regions but naturally drives the flux287
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toward zero in layers thinner than ε. This adjustment maintains the desired magnitude288

in most regions while ensuring numerical stability in thin layers.289

While the P2L simulation does not contain vanishing layers, the lower layer in the290

DG simulation can vanish, as discussed in the next section. We tested the sensitivity of291

the results to different values of ε between 1 to 20 m and found the simulation outcome292

to be relatively insensitive to this choice.293

While, in principle, the boundary conditions described above should suffice for lay-294

ered models (Killworth, 2001), MOM6 additionally enforces the constraint that the barotropic295

sum of the SGS thickness fluxes within a water column must be zero. This is accomplished296

by expressing the SGS fluxes in terms of a streamfunction (see Appendix Appendix B)297

and setting the streamfunction to zero at the boundaries using sophisticated tapering298

techniques (Ferrari et al., 2008, 2010). In our case, the situation is simpler, as we con-299

sider only two layers in the simulations evaluated in this study. Accordingly, we predict300

the lower-layer flux and satisfy this constraint by setting the upper-layer flux to be equal301

and opposite to the lower-layer flux. We also tested the parameterization without this302

constraint; while those simulations remained numerically stable, they frequently exhib-303

ited noisy solutions. Although enforcing a zero barotropic component has minimal im-304

pact on the overall energetics of the simulation (see appendix G4), it could play a role305

in lateral tracer transport. This effect is not studied here.306

4 Data307

4.1 Ocean Model Simulations308

In this study, we work with two different idealized simulations in MOM6: Phillips309

2 Layer (P2L) - a 2 layer model of Phillips baroclinic instability, described in Hallberg310

(2013), and Double Gyre (DG) - 2 layer wind driven double gyre, described in Zhang et311

al. (2023). Both these setups have the minimum ingredients needed for the development312

of a rich baroclinic mesoscale field, while having a very simple vertical structure (Fig-313

ure 1). Some physical characteristics of the simulations are described in section 4.3 be-314

low. Simulations using both these setups were run over a range of resolutions. The high-315

est resolution output was filtered and coarsened for generating data to train and eval-316

uate the ML model offline, while the lower resolution simulations were used during on-317

line evaluation.318

4.2 Processing of HR simulation data for ML training and evaluation319

Filtering and Coarsening: To diagnose the input and output fields we processed320

the data using both filtering and coarse-graining. First for simplicity, we interpolated321

all the simulation prognostic variables onto the grid centers. The layer thickness and in-322

terface are already computed on the grid center, and u and v velocity components were323

linearly interpolated using the xgcm package (https://xgcm.readthedocs.io/). Also324

regions with layer thickness smaller than 20 m were masked and treated as land, which325

only impacted the lower layer in the DG simulation where the layer thickness vanishes326

at incropping locations. These centered and masked data were then filtered using a Gaus-327

sian filter, using the gcm-filters package (Loose et al., 2022). Specifically, we used the328

‘simple fixed factor filter’ in gcm-filters (https://gcm-filters.readthedocs.io/en/329

latest/examples/example filter types.html#simple-fixed-factor-filter), which330

does an area weighting. In the P2L simulation, with a Cartesian grid of size 4g = 4 km,331

we used filter scales Lf = 48, 100, 200 and 400 km, where fixed filter factors of 12, 25,332

50 and 100 are used. In the DG simulation, with a non-uniform grid of size 4g = 1/20o333

this leads to variable filter scales of sizes Lf = 0.55o, 1.10o, 2.20o and 4.40o, which are334

approximately equal to the scales used for filtering P2L.335
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After all the filtered variables and the corresponding SGS fluxes were computed,336

the data was further coarsened using box averages. This step only leads to a data re-337

duction, and for convenience we do not account for the SGS fluxes resulting from this338

operation. This is sufficient since the fields were already filtered, and the additional fluxes339

resulting from this coarsening operation are found to be very small (not shown). We de-340

cided to choose the ratio between the filtering scale and the coarsening scale, to be 5.341

For example, a filter scale Lf = 200 km was combined with a coarsening scale of 4c =342

40 km. This choice of the filter to grid ratio (FGR=Lf/4c) is based partially on con-343

sidering the spectra of ocean models, which often show a damped energy level or numer-344

ical artifacts emerging at scales larger than the grid scale - often upto 5 times in size (e.g.345

notice the small-scale bump in the EKE spectrum in Figure 7). This is a heuristic choice,346

and can be explored in more detail in future work. For the rest of this study we indi-347

cated the four filter scales nominally with Lf =50, 100, 200, and 400 km, and correspond-348

ing coarse grid scales nominally with 4c = 10, 20, 40 and 80 km. However this is only349

for the convenience of presentation, and in the computations, where 4c is needed (e.g.350

equation 5), the actual coarse grid scales were used.351

Currently there is no prescribed way to process data from a HR simulation to make352

it match a LR simulation in some objective sense. Hence, our approach to diagnosing353

filtered and coarsened data is relatively adhoc, and based on pragmatism. We believe354

and hope that the impact of these choices would likely be minimal, with the acknowl-355

edgement that a big shortcomings of these ML models in online settings would likely arise356

from the fact that the distribution of a low resolution simulation would be shifted rel-357

ative to a simplistically filtered version of a high resolution simulation, and some degree358

of tuning may be required to address this. Also, in future work more care can be taken359

for dealing with staggered grids, precisely accounting for the separate contributions from360

filtering and coarsening operations, and for handling boundaries differently when the fil-361

ters do not commute with the gradients.362

Layer thickness decomposition: When computing the thickness fluxes, special363

care was taken when the bottom topography (ηb) was not flat (in the DG case). We did364

not want to filter the bottom topography when filtering thickness, since the topography365

present in a coarse model is not a filtered version of the high resolution topography. So366

we chose to use the condition that ηb = ηb. Thus, thickness fluxes were dealt with by367

filtering interface heights only. To be more precise, in the bottom layer the filtered thick-368

ness would be hN = ηN−1/2−ηb and the filtered advection would be uhN = uηN−1/2−369

uηb, where ηN−1/2 is the upper interface height of the bottom layer N .370

Further, we decomposed thickness gradients into a steady and a deformable parts371

(∇hn = h
deformable

N +∇hsteadyn ). When applied to a layer where the lower interface is372

topography, (e.g. hN = ηN−1/2 − ηb) we get ∇hsteadyN = −∇ηb and ∇hdeformableN =373

∇ηN−1/2. In other layers, the steady contribution is zero (∇hsteadyn = 0) and the full374

layer thickness contributes to the deformable part (∇hdeformablen = ∇ηn−1/2−∇ηn+1/2 =375

∇hn). This decomposition allows us to distinguish the impact of dynamic layer thick-376

ness variations and bottom topography on the SGS fluxes. In this study, we only use the377

deformable contribution as inputs to our MLP, and henceforth replace the notation for378

the deformable part ∇hdeformableN by ∇hN for simplicity in most places, unless other-379

wise noted.380

4.3 Physical characteristics of the simulations and the filtered data381

4.3.1 Data distributions382

Both the P2L and DG simulations produce a turbulent flow field, with a rich ar-383

ray of eddies and jets (Figure 1). The magnitude of the SGS fluxes are greater in the384

top layer than the bottom layer, and are larger in P2L than DG (Figure 2). Also the SGS385
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fluxes vary by three to four orders of magnitude in each layer, and the magnitude of these386

fluxes increase by about an order of magnitude from filter scales of 50 km to 400 km (coarse387

grid scales of 10 km to 80 km). In contrast, the non-dimensionalized fluxes have a much388

narrower distribution, with little variation of the median across filter scales and layers389

– indicating that the non-dimensionalization choices made here are quite successful at390

collapsing the data distribution and may help with generalization. However, note that391

the width of non-dimensionalized flux distribution does increases slightly with filter scale,392

indicating that there may still be some room for further improved non-dimensionalization393

factors in the future, which may be able to address this scale dependence.394

Parameterizations in Z-level models and MOM6 impose that the eddy driven stream395

function takes a boundary condition of the zero at the surface, which is equivalent to say-396

ing that there is no barotropic (depth integrated) SGS flux (see Appendix B). This con-397

dition is not naturally satisfied by the diagnosed data (red distributions in Figure 2), and398

is not even expected based on the eddy-mean decomposition of the thickness equation399

in layered models (Killworth, 2001). In the diagnosed data, we notice that the fluxes in400

the two layer have a very slight opposing tendency, which slightly increases with larger401

filter scales. Only in the long time average, and if the mean flow is weak, would we ex-402

pect the vertical sum of the eddy thickness fluxes to go to zero based on volume conser-403

vation. However, it is worth noting that even though the depth integrated SGS thick-404

ness flux is far from negligible, its impact on the APE tendency, which is the primary405

target of our parameterization, is very small (see Appendix G4).406

The distributions of other model fields, particularly those relevant for our neural407

network design, are shown in Figure 3. The velocity gradients have a large range across408

scales, and their magnitude decreases with increasing filter scale. Generally, the upper409

layer has stronger velocity gradients than lower layer, and the P2L simulation has stronger410

velocity gradients than the DG simulation. In contrast to velocity gradients, the deformable411

thickness gradients vary less with filter scale. Additionally, since the surface variations412

are much weaker than the interface variations (Figure 3c), the deformable thickness gra-413

dients are essentially the same for the two layers. Also, the deformable thickness gra-414

dients are slightly weaker in the DG simulation relative to the P2L simulation. The bot-415

tom topography slopes in the DG simulation are very strong relative to the interface vari-416

ations, which was one reason for us to decompose the thickness gradients into its steady417

and deformable contributions.418

4.3.2 Bulk properties419

The rich turbulent eddies impact the mean or large spatial and temporal scale flow,420

and the target of traditional parameterizations has been to skillfully model some of these421

effects. Here we describe what some of these feedback are when the eddies are resolved.422

In the P2L simulation the mean state is a zonal jet, which is sustained by slowly423

relaxing the middle interface to a sloping state and thus the relaxation works as a source424

of APE (Hallberg, 2013). The eddies in this simulation work to flatten this interface, thus425

removing the APE that is input by the relaxation forcing. To achieve this the eddies flux426

volume to the north in the upper layer and to the south in the lower layer, generating427

an eddy driven overturning circulation. This overturning is sustained because the relax-428

ation also leads to a diapycnal transformation of watermasses from one layer to the other.429

When the eddies are not resolved or only partially resolved, this eddy-driven overturn-430

ing circulation weakens and a parameterization is needed to ensure that the appropri-431

ate levels of APE are removed and the overturning circulation is maintained (Hallberg,432

2013).433

In the DG simulation (Zhang et al., 2023), the mean state is maintained by forc-434

ing with a steady wind stress. The wind stress peaks at the intermediate latitude (40N)435

and generates a region of Ekman downwelling to the south and Ekman upwelling to the436
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north, which pushes and pulls the middle interface (”thermocline”) to create an inter-437

face slope. The sloping interface has APE that is siphoned out by the mesoscale eddies,438

which work to reduce the APE and thus counteract the impact of the wind.439

5 Results440

Data-driven models may be evaluated along two interconnected aspects: offline skill441

and online skill. Offline skill refers to the accuracy in predicting SGS thickness fluxes442

for a given set of inputs, with the reference or ”truth” diagnosed from high-resolution443

simulations. In contrast, online skill assesses the ability of a data-driven parameteriza-444

tion to improve the fidelity of a lower-resolution simulation, where the truth is defined445

in terms of large-scale behavior - either from high-resolution models or observations.446

Here, we first evaluate the offline skill of the machine learning model on filtered and447

coarsened data. We then turn to the arguably more important question: how well does448

the model perform online, when it is embedded within a simulation and actively inter-449

acts with and modifies the resolved state?450

5.1 Offline Evaluation451

Here we discuss three particular MLP models that differ only in stencil size: 1X1,452

3X3, and 5X5 (details in section 3.2). We also contrast these models against the GM pa-453

rameterization and the VGM parameterization, where the free parameters in these con-454

ventional schemes were estimated using least-squares fitting to the SGS thickness fluxes455

for each parameterization separately at each filter scale and for each simulation setup.456

This is in contrast to the MLPs, which were trained across the entire range of filter scales457

and simulations simultaneously. Given the large variation in the estimated parameters458

for the conventional parameterizations, their performance would be worse if they were459

trained across the entire range of data simultaneously.460

Point-wise skill: Mostly, all the MLP models demonstrate relatively high skill461

in predicting the SGS thickness fluxes point-wise. As an example, the true and predicted462

SGS fluxes from the 3X3 model at a filter scale of 100 km are shown in Figure 4. The463

MLP model does extremely well, and produces the right patterns and magnitudes of both464

the along and across thickness gradient components of the SGS flux in both layers. Note465

in the figure that the error is so small that it had to be multiplied by 5 to bring it to the466

same color scale as the SGS flux.467

In a more quantitative sense, we find that the MLP skill, compared across all MLP468

configurations considered here and quantified using R2 or correlation score (Appendix469

A), depends on the input stencil size and the filter scale (Figure 5); the skill also depends470

on other factors as discussed in Appendix G but those sensitivities can be alleviated with471

enough data or free parameters. The ML model skill increases with stencil size, with a472

large improvement in going from 1X1 to 3X3 and a smaller improvement when going fur-473

ther to 5X5. Also, model skill decays as filter scales get larger, which is more rapid in474

the case of DG relative to P2L. We think that this might have to do with the different475

deformation radii, which is on average 40 km in P2L and 20 km in DG (Figure H1), and476

ML models may be less skillful as the filter scale gets much larger than the deformation477

radius or larger than the largest resolved eddies.478

In figure 5, we also contrasted the skill of the MLPs against the conventional pa-479

rameterizations. The VGM parameterization, which is sometimes used in LES studies,480

has essentially the same point-wise skill as our 1X1 ML model. The GM parameteriza-481

tion in contrast has very little point-wise skill (both R2 and correlation are usually less482

than 0.2), which only marginally increases at larger filter scales. This is to be expected,483

as the GM parameterization is a bulk model and not designed to have skill in produc-484
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ing the right local structural patterns in the SGS fluxes. Notice that in contrast, the skill485

of the 3X3 and 5X5 models is significantly higher than both the 1X1 ML model and the486

VGM parameterization.487

Bulk (time-averaged) skill: While pointwise skill is a useful metric, we are of-488

ten (also) interested in ensuring that our parameterizations produce the appropriate bulk489

effects. One way to quantify the bulk effects is in terms of time averages. In Figure 6490

we consider the skill over different temporal averaging windows, here the skill is quan-491

tified for both layers and flux components.492

We expect that the GM parameterization skill may improve in this bulk sense as493

the time averaging duration is increased, and as expected this is found to be the case.494

In Figure 6 last column, this effect is seen quite clearly for the P2L data but not for the495

DG data. Even for the P2L case the correlation skill only rises to 0.5, rather than 1, which496

is because GM only predicts the along gradient fluxes, and so when averaging skill over497

along and across gradient fluxes, we can only achieve a maximum of 0.5. The reason for498

the discrepancy between DG and P2L arises because GM did not turn out to be a good499

model for upper layer fluxes in the DG case (even when quantified just in terms of cor-500

relation), which might be a result of mean flows and inhomogeneity in the turbulent statis-501

tics. The skill of the GM model on the lower layer along gradient fluxes in the DG data502

is higher, but still not as large as for P2L data (not shown).503

The 1X1 MLP, and similarly the VGM parameterization (Khani & Dawson, 2023),504

have R2 skill decrease with increasing temporal averaging. In contrast, the correlation505

is not impacted, suggesting that the decrease in skill has less to do with the functional506

form and more to do with the parameterization coefficient or amplitude. In contrast the507

3X3 and 5X5 MLPs have almost no impact on either R2 or correlation skill with aver-508

aging, if anything there is a very slight increase in skill at longer temporal averaging. The509

fact that the skill score is usually close to 1, except for larger filter sales in DG, also shows510

that these models do very well in predicting both the along and across fluxes.511

Overall, we found that the offline skill of the MLP models, particularly those with512

wider stencils, is very promising. Also, we show in Appendix Figure G4 that a MLP trained513

on data from one simulation shows relatively high skill when tested on the unseen sim-514

ulation. Thus, these new models are scale and context aware, and no retraining or tun-515

ing is needed when testing over different datasets. This is contrast to the traditional mod-516

els, which are unable to match the MLP skill even after the corresponding coefficients517

were estimated separately for each scale and dataset. Thus, we are compelled to eval-518

uate the performance of these MLPs in an online setting.519

In the online setting we only evaluate the skill of the 3X3 MLP discussed above,520

as this model provides a good compromise between computational cost and offline skill521

(skill of the 5X5 MLP is only marginally better than the 3X3 MLP). Also since the of-522

fline performance of the 1X1 model (and VGM) is worse and degrades in a bulk sense,523

we chose to not evaluate it either.524

5.2 Online Evaluation - Phillips 2 Layer525

We first test the MLP in the P2L simulation, which is the simpler of the two sim-526

ulation setups considered in this study. To assess the sensitivity of this setup to model527

resolution and parameterizations, we performed a suite of simulations (see Appendix H).528

In this section, we focus on the 20 km simulations – both parameterized and un-529

parameterized – and compare them with a 4 km HR simulation. The deformation radii530

in this setup range from 25 to 50 km, placing the 20 km grid in the “gray zone” where531

mesoscale eddies are only partially resolved, whereas the 4 km grid resolves them more532

fully. The parameterized simulations were selected to approximately match the total over-533
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turning transport of the HR case. For the GM parameterization, we include two con-534

figurations: one with low diffusivity (1000 m2/s), often cited as a canonical value in the535

literature, and another with high diffusivity (8000 m2/s), chosen because it yields an over-536

turning close to the HR simulation. These values are not fine-tuned to exactly match537

the HR overturning, but instead represent two qualitatively distinct regimes. Notably,538

1000 m2/s also marks a threshold beyond which the GM scheme begins to strongly damp539

the resolved eddy field (also see Appendix H). In contrast, the MLP-based parameter-540

ization with a tuning coefficient (CANN ) of 1 produced overturning transport closely aligned541

with the HR simulation. All simulations reached a spun-up state within 2 years, and time-542

averaged statistics are computed over years 2 to 10.543

Snapshots of upper layer relative vorticity and the EKE spectrum averaged tem-544

porally and meridionally in all simulations evaluated in this section are shown in Fig-545

ure 7. The variability in the 20 km simulations without any parameterization and with546

the MLP is very similar, while the addition of the GM parameterization leads to a sub-547

stantial reduction in flow variability. The low GM diffusivity simulation permits some548

eddies, while the eddies are entirely suppressed in the high GM diffusivity simulation.549

Also, the HR filtered and coarsened simulation state matches the low-resolution unpa-550

rameterized simulation at large scales, but has lower energy levels at smaller scales. This551

is the result of the specific properties of the Gaussian filter that was chosen to filter the552

simulation, and more refined filters could definitely be employed if needed.553

The peak overturning transport in the upper layer is shown in Figure 8a (the lower554

layer’s overturning is identical but with the opposite sign). The HR simulation produces555

approximately 13 Sv of transport, with 9.5 Sv attributed to scales larger than the filter556

scales and 3.5 Sv from SGS fluxes. In contrast, the unparameterized 20 km simulation557

produces only about 10.5 Sv of transport. The 20 km simulation with the MLP sustains558

about 12.5 Sv of transport, reducing the resolved component to 9.5 Sv while adding around559

3 Sv from parameterized fluxes. The low GM diffusivity case similarly reduces the re-560

solved transport marginally, but is unable to generate enough parameterized flux to match561

the total overturning transport of the high-resolution simulation. As the GM diffusiv-562

ity is increased, the resolved transport is drastically reduced, with only a slight increase563

in the total transport. When the GM diffusivity becomes large enough, the total trans-564

port can match that of the high-resolution simulation, but at the expense of completely565

eliminating the resolved contribution. Note that we can further fine tune the MLP and566

the high GM diffusivity case to exactly match the HR simulation. However, this is not567

possible for the low GM diffusivity case because the resolved transport drops much more568

rapidly than the rate at which the parameterized transport increases with changing the569

coefficient (can also see Figure 7 in Hallberg (2013)).570

While the parameterizations were tuned to approximately match the overturning,571

here we focus on contrasting their impact on other relevant metrics (details of these met-572

rics are described in Appendix G). The kinetic energy (KE) and available potential en-573

ergy (APE) from various contributions are shown in Figures 8b and c. The unparam-574

eterized 20 km simulation exhibits lower KE and APE than the HR simulation, as ex-575

pected, and the LR simulation KE and APE are close to the filtered KE and APE from576

the filtered HR data. The 20 km simulation with the MLP results in a slight reduction577

in the EKE and EAPE, but the overall KE and APE is roughly in line with the KE and578

APE from the filtered HR simulation. The low GM diffusivity simulation shows lower579

KE and APE than both the unparameterized and MLP-based simulations, while the high580

GM diffusivity case has no EKE or EAPE.Since in this simulation setup the interface581

height is restored to a prescribed state, the MKE and MAPE remain nearly unchanged582

across the different setups. Only in the high GM diffusivity case does the parameteri-583

zation forcing become large enough to cause a very small reduction in MKE and MAPE,584

and the EKE and EAPE are completely wiped out.585
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The tendency of the APE arising from the SGS or parameterized fluxes is shown586

in Figure 8d. We display the contribution to both the MAPE tendency and the EAPE587

tendency. In the filtered HR simulation, the SGS fluxes contribute just over half of their588

tendency towards reducing the MAPE. The 20 km simulation with the MLP parame-589

terization produces an APE tendency that is relatively close to the HR filtered case, with590

a slightly larger impact on the MAPE. In contrast, the low GM diffusivity case leads to591

a disproportionately large impact on the EAPE, without sufficiently reducing the MAPE.592

The high GM diffusivity case produces a similar MAPE tendency to the low diffusivity593

case but has no impact on the EAPE, as no eddies remain to be damped out.594

While the APE tendency analysis is illustrative, it has some limitations due to the595

changes in the simulation state across different cases. To further emphasize this point,596

we also evaluated the APE tendency that would arise from the MLP in the 20 km sim-597

ulation, where the MLP was not actually coupled to the resolved state of the simulation598

(see bar labeled 20 km in Figure 8d). In this scenario, the APE tendency is much larger599

than in the filtered case, likely because this unparameterized simulation has a higher eddy600

kinetic energy (EKE) than the filtered EKE. The non-linear interaction between the pa-601

rameterized and resolved flow makes it difficult to predict a priori how the system will602

respond to the parameterization. This non-linearity is also evident in the sensitivity study603

plots shown in Appendix H, where the response to the parameterization coefficients is604

non-monotonic. Note that at eddy-permitting resolutions, even the response to the GM605

parameterization is non-trivial and non-monotonic.606

In summary, while both the MLP and GM parameterizations can be tuned to pro-607

duce approximately the correct overturning circulation in the P2L simulation, only the608

MLP is able to achieve this without significantly damaging the resolved flow and eddies.609

In contrast, as also shown by (Hallberg, 2013), the GM parameterization excessively dis-610

sipates the eddies.611

5.3 Online Evaluation - Double Gyre612

Next, we test the MLP parameterization in the DG simulation, a canonical system613

for studying wind-driven gyre dynamics. In contrast to the P2L setup discussed earlier,614

the DG exhibits strong boundary currents and pronounced spatial inhomogeneity in eddy615

statistics. Additionally, unlike the P2L system, the mean state here is not maintained616

through relaxation, but is rather a result of balance between winds and eddies. These617

differences lead to two key consequences that are different from P2L: (i) mean-state bi-618

ases can emerge as resolution and parameterizations are varied, and (ii) the system is619

purely adiabatic, with no overturning circulation.620

Similar to the P2L case, we conducted a suite of simulations to assess the sensi-621

tivity of the DG setup to both resolution and parameterization coefficients (see Appendix622

H). Here, we focus on the 1/5◦ (∼20 km) simulations, which only marginally resolve the623

deformation radius - ranging between 5 and 30 km in this configuration. In addition to624

the unparameterized baseline, we analyze simulations that employ MLP and GM param-625

eterizations. The coefficients for these parameterized runs were selected to minimize the626

mean state error in sea surface height (SSH), which is strongly correlated with thermo-627

cline depth in this system.628

The mean sea surface height (SSH) and kinetic energy (KE) fields, averaged over629

years 3-13 of the simulations, are shown in Figure 9. In the 1/5◦ simulation without any630

parameterization, a standing eddy forms just downstream of the boundary current sep-631

aration point - a region that also exhibits stronger flow than in the high-resolution ref-632

erence simulation. This eddy feature vanishes, and the mean state bias is reduced, in both633

the MLP- and GM-parameterized simulations, since the parameterizations coefficients634

were explicitly chosen to reduce this bias. However, consistent with the P2L results, the635
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MLP achieves this correction without the substantial loss of KE observed in the GM sim-636

ulation.637

This result is quantified in the KE and APE metrics shown in Figure 10. The mean638

state of the 1/5◦ simulation without parameterization is overly energetic compared to639

the HR filtered simulation, as evident in both the MKE and MAPE. While both param-640

eterizations reduce this excess energy, the GM parameterization does so at the cost of641

a much larger reduction in EKE and EAPE compared to the MLP parameterization.642

To further assess the role of the parameterizations in influencing the mean flow and643

eddies, we examine the APE tendency induced by SGS fluxes – both in the filtered HR644

simulation and in the parameterized fluxes of the coarser simulations (Figure 11). The645

APE tendencies affecting both the MAPE and EAPE exhibit qualitative similarities be-646

tween the filtered HR and the MLP parameterized simulations, generally acting to re-647

duce APE. However, this impact is not spatially or temporally uniform and in many in-648

stances there is even APE gain, resulting in localized regions of APE gain even in the649

10-year mean shown here. In contrast, the GM parameterization acts as a sign-definite650

sink of APE, producing a much stronger and more widespread reduction in both MAPE651

and EAPE compared to the MLP parameterization or the diagnosed tendencies from the652

filtered HR simulation.653

In summary, as in the P2L case, the MLP parameterization outperforms the GM654

parameterization in the DG simulation. It effectively reduces the mean state bias with-655

out causing an excessive suppression of eddy energy.656

6 Discussion and Conclusions657

In this work we developed and implemented a data-driven parameterization for sub-658

grid scale (SGS) thickness fluxes produced by mesoscale eddies. This was achieved by659

training a relatively small multi-layer perceptron (MLP) to learn a functional relation-660

ship between the gradients of the large-scale/resolved fields and the SGS fluxes, using661

data from high resolution (HR) simulations. By introducing features like lateral non-locality,662

coordinate invariance, and non-dimensionalization into the MLP design, we were able663

to produce a more generalizable and stable data-driven parameterization (Perezhogin664

et al., submitted). Of these features, the lateral non-locality and the non-dimensionalization,665

particularly the aspect that produces range-limited inputs, were found to be the most666

important design choices. The trained models have very high offline skill (Figure 5), even667

when testing on data coming from unseen simulations (Figure G4). The skill relatively668

degrades at scales larger than the largest eddies, or as we transition from eddy permit-669

ting to non-eddying resolutions, but even at these scales the offline skill is comparable670

or higher than traditional approaches like an appropriately tuned Gent-McWillims (GM)671

parameterization (Figure 6).672

This new data-driven parameterization was implemented into GFDL’s Modular Ocean673

Model 6 (MOM6) and tested in two idealized simulation setups: Phillps 2 Layer (P2L)674

and Double Gyre (DG), where baroclinic mesoscale eddies play a first order role in the675

dynamics. In both these setups the MLP enhanced the simulation performance at coarse676

resolutions (grid scales on the order of the deformation radius or coarser), reducing bi-677

ases in aspects like the meridional overturning transport and mean state. In the MOM6678

implementation, we also introduced a non-dimensional tuning parameter that controls679

the global amplitude of the parameterization. Sensitivity studies showed that O(1) val-680

ues of this parameter, values of 1 for P2L and 0.5 for DG, were optimal in online set-681

ting across all eddy permitting resolutions. At coarser resolutions the values needed to682

be slightly adjusted, a value of 2 for P2L and 0.75 for DG seemed optimal. In contrast,683

the GM diffusivity had to be adjusted for every resolution and setup individually, with684
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optimal values of the diffusivity ranging between three orders of magnitude (102 to 104685

m2/s) across resolutions and setups.686

The development of the GM parameterization more than three decades ago pro-687

vided a step change in the quality and fidelity of ocean simulations. However, it has been688

clear since the beginning that while GM parameterization is phenomenologically appro-689

priate, reduction of APE and adiabatic conservation of watermass volume are appropri-690

ate bulk expectations for the effects of mesoscale eddies, it has structural shortcomings.691

Much of the work over the past decades has gone towards improved parameter estima-692

tion (Visbeck et al., 1997), but progress towards reducing the structural errors has been693

very limited (R. D. Smith & Gent, 2004). Our work attempts to address this gap, and694

provide a data-driven model that seems to have lower structural errors and provides a695

path towards improving the GM parameterization along a new axis.696

One of the well known drawbacks of using the GM parameterization is its tendency697

to dissipate the resolved eddies, reducing the effective resolution of a simulation (Hallberg,698

2013). This has led to development of adhoc fixes, like turning off the GM parameter-699

ization using a resolution function, or not using the GM parameterization at all in sim-700

ulations that run in the gray zone resolution (Adcroft et al., 2019). Our parameteriza-701

tion does not suffer from this problem, and is able to improve properties of the large scale702

without being overly detrimental towards the resolved eddies. One major advantage of703

the GM parameterization is that it is essentially guaranteed to be stable, which can not704

be claimed unequivocally for our data-driven parameterization. All the simulations we705

tested were stable, but this may not hold to be true if the tuning coefficient is pushed706

to larger values.707

Our data-driven parameterization has produced very promising results, but a few708

aspects can likely be improved. Firstly, as is common with machine learning models, there709

is a spectral bias in the predictions. This means that the MLP’s offline performance de-710

grades at scales where the signal variance is low (Figure G3 and G4, and also implicit711

in Figure 4). This did not end up being an issue for model stability in our online tests,712

likely because the thickness variance has a tendency to cascade down-scale and the er-713

rors get cascaded to model dissipation scales. Improved loss functions or experimenting714

with smoother non-linearities could help alleviate this issue. Secondly, it came almost715

as a surprise that the model performed so well across resolutions and setups with such716

limited class of inputs. We think that at eddy permitting resolutions this is the case be-717

cause the structure of largest eddies that are resolved already contain a lot of informa-718

tion about dynamically important environmental conditions, which shape the mesoscale719

eddy field. Reduction in offline skill at scales larger than the size of the largest eddies720

and change in tuning parameters at non-eddying resolutions led us to this hypothesis.721

This suggests that in future work it may be worth paying more attention to these scales,722

and potentially introducing more model inputs or vertical non-locality to be able to per-723

form well over a larger range of scales without much tuning. Thirdly, our parameteri-724

zation mainly acts on reducing the APE in the system, and is not designed to improve725

the MKE or EKE of the resolved state that may arise if the removed APE was appro-726

priately cascade upscale in an inverse KE cascade. Coupling our parameterization with727

a backscatter parameterization in an energetically consistent manner could be investi-728

gated to produce further improvements in ocean models. Lastly, we chose to use a rea-729

sonably small MLP to keep the computational burden due to the parameterization low730

in principle. However, we have not performed a comprehensive testing and optimization731

to get the best possible computational performance for our model in MOM6, yet.732
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Figure 1. Snapshots exemplifying the high-resolution vorticity (left), filtered vorticity (second

column), and sub-grid fluxes (last two columns) from the Phillips 2 layer (top) and Double Gyre

(bottom). The filtered fields are shown from the case of coarse-graining scale of 20 km. Only the

upper layer data is shown, and different panels have different color ranges.

Open Research733

All the code to generate the simulation data and machine learning data, do the ma-734

chine learning training, and do the analysis and figure generation can be found at https://735

github.com/dhruvbalwada/mesoscale buoyancy param ML.736
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Appendix A Offline Skill Metrics743

To evaluate the skill of our ML model in an offline setting we use two main skill
metrics. The first is the coefficient of determination or R2 skill, defined as,

R2 = 1− (y − ŷ)2

(y − y)2
, (A1)

y is the truth value and ŷ is the prediction. The (·) corresponds to average over all sam-744

ples being considered, which is chosen to be over both flux components from both lay-745

ers, full spatial domain, and all temporal snapshots in the test data (unless indicated oth-746

erwise). The R2 skill will be 1 when prediction is perfect and reduces as prediction gets747

worse.748

The second metric is the Pearson correlation coefficient,

C =
(y − y)(ŷ − ŷ)√
(y − y)2(ŷ − ŷ)2

, (A2)

which is 1 when the truth and the prediction are perfectly correlated, -1 for inverse cor-749

relation, and 0 for no correlation.750
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Figure 2. Distribution of output data: Distributions of the logarithm of the thickness flux

magnitudes (|Fn|) in both layers and their sum (barotropic contribution), and the normalized

thickness flux ( |Fn|
42

c|∇un||∇hn| ) in both layers for the different experiments (top and bottom panel)

and different coarse-graining scales (indicated on the x-axis). The legend in the lower panel is

used to indicate the different elements in both the panels. The density of the distribution is indi-

cated by the width of each patch, with wider regions, usually in the middle, indicating a higher

concentration of data points near those values.
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Figure 3. Distribution of input data: Distributions showing the logarithmic magnitude

range of different filtered fields, which may be used as input variables for neural network design

from both simulations and at different layers and interfaces. Similar to Figure 2 the width of the

patch corresponds to values with a higher probability of occurence.
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Figure 4. The true (1st column), predicted (2nd column), and prediction error (3rd column)

in the along (1st and 3rd row) and across (2nd and 4th row) thickness gradient fluxes for the top

(1st and 2nd row) and bottom (3rd and 4th row) layers of the Double Gyre simulations. Here the

results are shown for the ML model of the following configuration: 3X3 stencil, trained on data

from DG+P2L, and 5090 learnable parameters. These offline skill results are shown for the filter

scale of 100km. Note that the prediction error has been multiplied by a factor of 5 to be easily

visible on the same scale as the true and predicted fluxes.
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Figure 5. Pointwise offline skill in terms of the R2 skillscore (left column) and correlation

(right column) for 5 different models (indicated in the legend) at different scales (x-axis) and in

the double gyre (top) and Phillips 2 layer (bottom) simulations. The metrics were evaluated over

both layers and across the full test dataset spanning X years. The gray shaded area indicates the

deformation radius range (10 to 90th percentile) in the simulation.
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Figure 6. Offline skill in predicting the time average of the subgrid fluxes, using five different

models (columns). For all models the skill in predicting the time averaged flux is quantified as

the average skill over the two layers and for both the along and across thickness gradient direc-

tion.
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Figure 7. Snapshots of relative vorticity and the EKE spectra from different Phillips 2 layer

simulations discussed in section 4.2. Note that the colorbar on the bottom right panel has been

adjusted to show the range of values in that simulation.
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Figure 8. Bulk metrics to evaluate the online skill of the parameterizations in different ex-

periments of Phillips 2 layer simulation (indicated along the x-axis). (a) Peak value of the total

meridional transport in the upper layer for the resolved, parameterized and sub-filter compo-

nents. (b) Kinetic energy and (c) available potential energy of the mean and eddy flow coming

from the resolved and SGS contributions. (d) The impact of the parameterized or SGS fluxes

on the mean and eddy APE tendency; no bar plot is shown for the high-resolution simulation as

in this instance there are no sub-grid or parameterized thickness flux, and the bar for the 20km

simulation is calculated using SGS fluxes predicted by a MLP that was not coupled with the

resolved fields of the simulation.
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Figure 9. Mean SSH (top row) and EKE (bottow row) the for the Double gyre simulations

discussed in section 4.3. The RMSE in the SSH and middle interface height are indicated for the

three 1/5o resolution simulations.

Figure 10. The volume integrated KE (top) and APE (bottom) for the Double Gyre simula-

tions (indicated along x-axis) discussed in section 4.3. The mean, eddy, and sub-filter contribu-

tions are indicated.
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Figure 11. APE tendency exerted on the mean (top) and eddy (bottom) APE by the sub-

grid or parameterized fluxes in the Double Gyre simulations discussed in section 4.3. The volume

integrated value for each panel is indicated at the top left.

Appendix B Eddy driven stream function751

The SGS thickness flux corresponds to a volume flux in a layer (Fn), and the net
SGS volume flux below a certain interface can be represented as a stream function (McDougall
& McIntosh, 2001):

Ψn−1/2 =

n∑
i=N

Fi. (B1)

Inversely, the SGS thickness flux in any layer can be expressed in terms of these SGS stream
function as:

Fn = unhn − unhn (B2)

= Ψn−1/2 −Ψn+1/2 (B3)

= δnΨ (B4)

(B5)

This streamfunction represents a 2D divergent bolus velocity, u∗n = δnΨ/hn.752

While we have presented the problem entirely in terms of thickness fluxes to be used753

in layered models (section 2), a comparable representation of SGS buoyancy fluxes in terms754

of a stream function can be done for depth-level models. When representing the SGS buoy-755

ancy fluxes in depth-level models, a 3D non-divergent velocity field is constructed us-756

ing this streamfunction - the quasi-stokes velocity - with no-flow boundary conditions757

at the top and bottom may be used.758
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Appendix C Interface Diffusion and Gent-McWilliams (GM) Param-759

eterization760

This SGS thickness flux in MOM6 is parameterized by the interface diffusion pa-
rameterization, which prescribes the eddy driven streamfunction as,

ΨGM
n−1/2 = −κGM∇ηn−1/2, 2 ≤ n ≤ N. (C1)

In this scheme, the stream function at the top and bottom of the water column are pre-761

scribed to be zero (ΨGM
1/2 = ΨGM

N+1/2 = 0), which ensures that the sub-grid thickness762

fluxes do not result in any barotropic SGS volume transport. This parameterization al-763

ways flattens isopycnal surfaces and reduces APE.764

This parameterization is a close cousin of the Gent-McWilliams parameterization765

(Gent & Mcwilliams, 1990; Gent et al., 1995), which is designed for use in z-level mod-766

els, and also reduces APE of the resolved state.767

Appendix D Velocity Gradient Model (VGM)768

The velocity gradient model is a structural model, where the goal is to accurately769

predict the patterns in the SGS forcing. It is derived based on a Taylor series expansion,770

and by keeping only the first term of the expansion (see derivation in Aluie et al. (2022)771

or appendix B of Khani and Dawson (2023)).772

For thickness fluxes, the VGM predicted flux is:

FV GMn = CV GM42
c∇un∇hn (D1)

where

∇un =

[
∂xun ∂yun
∂xvn ∂yvn

]
, (D2)

∇hn =

[
∂xhn
∂yhn

]
, (D3)

4c is a coarse-graining scale, and CV GM is a scaling coefficient corresponding to the fil-773

ter scale. Note that in the presence of topography, we defined our filters such that ηb =774

ηb. So, the sub-grid thickness flux in the bottom layer is just the sub-grid deformable775

thickness flux.776

Unlike the GM parameterization, the VGM based expression is not guaranteed to777

the APE reducing, and the impact depends non-linearly on the resolved flow.778

Appendix E Rotation to thickness gradient frame779

In this work we often rotate all directional quantities: SGS flux vectors, the veloc-
ity gradient tensor and all thickness gradients, to a thickness gradient frame. This thick-
ness gradient frame is defined using a set of orthogonal vectors in the horizontal plane.
The first of these vectors,

T̂ =
∇hn
|∇hn|

=
∂xhn

|∇hn|
î +

∂yhn

|∇hn|
ĵ, (E1)

points down the thickness gradient. The orthogonal (second) vector, following the right
hand rule, is defined as,

N̂ = k̂× ∇hn
|∇hn|

=
−∂yhn
|∇hn|

î +
∂xhn

|∇hn|
ĵ. (E2)
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The corresponding rotation matrix is defined as

Rn =
[
T̂ N̂

]
=

1

|∇hn|

[
∂xhn −∂yhn
∂yhn ∂xhn

]
. (E3)

This matrix can be used to rotate vector components and tensor components into
the thickness gradient frame. Example, the SGS flux vector components in rotated frame
can be diagnosed as

F̃n = RT
nFn, (E4)

and the velocity gradient tensor components in can be rotated as,

∇̃un = RT
n (∇un)R. (E5)

When the operation in Equation E4 is applied to the thickness gradient itself, we
get the expected result

∇̃hn = |∇hn|T̂ + 0N̂, (E6)

since this vector does not have any projection orthogonal to the thickness gradient di-780

rection by definition.781

Appendix F ML Model Design Sensitivity782

There is a vast range of design choices that need to be made when working with783

machine learning models and designing parameterizations. For example there can be sen-784

sitivity and interdependence on (i) ML model size and architecture (e.g. we chose MLP785

here), (ii) training data size, (iii) training data source (which idealized simulation is used786

to train), (iv) learning rate and optimizers, (v) random parameter initialization, (vi) train-787

ing targets, (vii) norms optimized in loss functions, (viii) input stencil/ domain of in-788

fluence, (ix) selection of input features etc. It is infeasible to do a complete search over789

the entire parameter space and some human intuition is often used to guide the design,790

here we show the impact of some choices that helped guide our decisions.791

F1 Impact of different network sizes792

We want the most skillful predictions at the lowest cost (least number of opera-793

tions per evaluation of the MLP). We expect that the skill will increase with increasing794

the number of trainable parameters, but likely saturate beyond a certain point as there795

may be no more predictive power in the input features left to be extracted. In Figure796

F1 we quantify this behavior for one particular class of models (these were trained with797

following choices: trained using data from the double gyre experiment, where all the data798

was rotated to the thickness gradient frame. Non-dimensional velocity and thickness gra-799

dients were used as inputs. Mean absolute error was used for the loss, with dimensional800

fluxes (equation 4) as output targets. Both inputs and outputs were normalized using801

order of magnitude estimates. We used the model snapshots 0-640 for training, 672-736802

for evaluation and 736-800 for testing. Adam optimizer was used with a learning rate803

of 0.01, and training was continued till the relative improvement in the loss saturated804

within a relative tolerance of 0.01 (1% error) for at least 10 epochs).805

The model skill, measured as the R2 value, improves as the number of parameters806

increase, and this is particularly apparent at larger filter scales and when the model sten-807

cil is wider. However, since skill is already very high at filter scales of 50 and 100 km this808

effect is minor, and at larger filter scales the skill seems to asymptote to its maximum809

value approximately around 10K parameters.810
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Figure F1. ML model skill, defined as the R2 value, as a function of number of parameters

for different filter scales. The details ML model being tested is described in F1.

F2 Impact of training data size811

To test the impact that the amount of training data has, we experimented with the812

same setup as the one used in the previous section with varying amount of data. We fixed813

all aspects, and performed the test in the case where the stencil size is 3X3 and ML model814

has 3386 parameters (model shape 54,36,36,2). We created batches of 16 model snap-815

shots, and tested the effect that increasing the number of batches had. As shown in Fig-816

ure F2 the model skill increases upto about 128 batches (2048 model snapshots), but sat-817

urates past that point. This led us to use this data volume for training the model used818

in the main text.819

F3 Impact of different loss functions and targets820

Non-dimensionalization of the sub-grid fluxes leads to a significant collapse in the821

distributions (see Figure 2), but also produces outliers (due to possibility of division by822

small velocity or thickness gradients). We have two choices of loss during training, ei-823

ther training on the dimensional fluxes Ldim = ||F−Fpred|| = ||F−(42|∇u||∇h|)fθ(.)||824

or training on non-dimensional fluxes Lnon−dim = ||F/(42|∇u||∇h|) − fθ(.)||. Both825

these forms should give us the same functional representation if a unique function fθ(.)826

exists, but in the more realistic situation where fθ(.) is an approximation and we want827

it to equally balance data coming from many regimes (different simulations, varying en-828

ergy levels at different depths, etc) it would seem that Lnon−dim might be a better choice.829

Along with this we also compared the use of mean square error (MSE) vs mean abso-830

lute error (MAE), since MAE is generally considered to be more tolerant to outliers.831
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Figure F2. ML model skill, defined as the R2 value, as a function of filter scales for different

number of data batches used for training.

As seen in Figure F3, the impact of these choices is relatively minor in the model832

considered in the previous section. Generally, the models trained using MAE seem to833

go better, except at the largest filter scales - where the model trained using non-dimensionalized834

outputs and MSE does better. However, this model is the worst performer at all other835

scales. The models trained using MAE also generally perform well across a wide range836

of scales (bottom panel). To our surprise, the impact of this choice was smaller than we837

had expected. For the main study we used Lnon−dim along with MAE.838

F4 Impact of choice of training data839

We want to build ML models that are easily generalizable and training data ag-840

nostic. For example, a model trained on data from the P2L simulation should be able841

to make good predictions on data from DG experiment, and vice versa. Developing ap-842

propriate non-dimensionalizations, as highlighted in section 3, is a step in this direction.843

In Figure F4 we show that the model trained using data from both simulations simul-844

taneously generally performs the best or close to the best, which is why we chose this845

training strategy for the model in the main text.846

It is worth noting that in fact even models trained on a single experiment, perform847

relatively well when tested on the other experiment. This is a result of the design choices848

we made. During the initial phase of our development, when we trained models to have849

the form of equation 4, the skill on unseen data was extremely poor (not shown), also850

see Perezhogin et al. (submitted).851

F5 Impact of other aspects852

The random seed, which sets the random initializations of the ML model weights,853

seems to have a small impact on the skill. The model skill averaged across all filter scales,854

for the case discussed in the above section, varied between values of 0.7 - 0.725 over dif-855

ferent random seeds. Since this effect seems small, in the main text we use only a sin-856

gle trained model.857

The learning rate, similarly has a minor impact on the final skill but impacts the858

nature of decrease in the loss. Large learning rates (∼ 0.1) lead to noisy training, while859

smaller rates (< 0.005) take too many epochs to train. We found than a learning rate860
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Figure F3. Top row shows the model skill in terms of R2 and correlation as a function of

filter scale for different choices of loss function. Bottom two rows show the relative error, which

is defined as the power spectrum of the (truth - prediction) divided by the power spectrum of the

truth; value of greater than 1 implies that the variance in the anomaly field is greater than in the

truth.
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Figure F4. Top two rows show the model skill in terms of R2 and correlation as a function

of filter scale for different choices of training datasets. Bottom two rows show the relative error,

which is defined as the power spectrum of the (truth - prediction) divided by the power spectrum

of the truth; value of greater than 1 implies that the variance in the anomaly field is greater than

in the truth. The title of the panels indicate the dataset on which testing is done, and the legend

indicated the dataset that is used for training.
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around 0.01 was optimal in not taking too many epochs and not being too noisy, which861

is what we used for the models discussed in the main text.862

Appendix G Simulation evaluation metrics863

Here we describe the metrics used to assess the physical properties of our simula-864

tions.865

G1 Overturning Circulation866

The overturning circulation (V n(y)) is defined as the volume transport across a lon-
gitude band in a particular layer,

V n(y) =

∮
vnhn

t
dx+

∮
F yn

t
dx, (G1)

where F yn (x, y, z, t) is the sub-grid or sub-filter meridional flux in layer n,
∮

(.)dx corre-867

sponds to a zonal integral over the full longitudinal domain, and (.)
t

indicates a time av-868

erage. The first term on the RHS corresponds to the resolved overturning and includes869

the contribution from both the mean and the variable parts of the flow, and the second870

term corresponds to the parameterized overturning.871

G2 Eddy Kinetic Energy Spectrum872

The EKE spectrum provides an effective measure of the flow variability at differ-
ent scales. Here, we define it as the zonal wavenumber (k) power spectrum of the u′n(x, y, t) =
un(x, y, t)− utn(x, y),

EKEn(k) =
1

2
(|u′n(k, y, t)|2

t,y
+ v′n(k, y, t)|2

t,y
), (G2)

where (.)
t,y

is a time and meridional average and u′n(k, y, t) is the zonal Fourier trans-
form of u′n(x, y, t). By Parseval’s theorem we have∑

k

EKEn(k) =
1

2

∫
(u′n(x, y, t)2

t,y
+ v′n(x, y, t)2

t,y
)dx, (G3)

which shows the scale-wise decomposition aspect of the zonal wavenumber EKE spec-873

trum in the x-direction. We used the xrft package (https://xrft.readthedocs.io/)874

for this analysis.875

G3 Integral Kinetic and Available Potential Energies876

The volume integrated KE in Joules is defined as:

KE =
1

2

∑
k

∫
ρ0|uk|2hkdxdy (G4)

The KE of the mean flow (uk
t, hk

t
) is referred to as MKE, and the EKE is defined877

as EKE = KE
t −MKE.878

The volume integrated APE in Joules is defined as:

APE =
1

2

∑
k

∫
ρ0g
′
k−1/2(ηk−1/2 − ηrefk−1/2)2dxdy (G5)

The MAPE is the APE of the mean state (ηk−1/2
t), and the EAPE is given by879

EAPE = APE
t − EAPE880
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For filtered and coarsened flow (uk
4, hk

4
) we can also define the total kinetic en-881

ergy (KE4), which has its corresponding mean (MKE4, for uk
4,t, hk

4,t
) and eddy882

(EKE4) components. Accordingly, we also define the SGS kinetic energies for the to-883

tal (KE −KE4), mean (MKE −MKE4), and eddy (EKE − EKE4) flow. Simi-884

larly APE and its components can be defined for the filtered and coarsened flow and the885

SGS contribution.886

G4 Available potential energy tendency due to sub-filter or parameter-887

ized fluxes888

Following (Loose, Marques, et al., 2023), we can compute the impact that the SGS
fluxes have on volume integrated APE tendency as,

(∂tAPE)SF =

N∑
n=1

ρ0Fn · ∇Mn, (G6)

where Fn are the SGS fluxes and Mn is the dynamic pressure of the resolved.889

In a 2 layer fluid we have,

(∂tAPE)SF = ρ0g
r
1/2(F1 + F2) · ∇η1/2 + ρ0g

r
3/2F2 · ∇η3/2. (G7)

Notably, only the last term on the RHS, which arises due to SGS fluxes in the bottom890

layer, makes a significant contribution to the APE tendency, since |∇η3/2| >> |∇η1/2|.891

The barotropic contribution to APE, first term on RHS, is small.892

We decompose this tendency into the time mean and eddy contribution, by defin-
ing the contribution from the mean as

(∂tAPE)SF,mean = ρ0g
r
3/2(F2

t · ∇η3/2t), (G8)

where the barotropic contribution is neglected. The eddy contribution is defined as (∂tAPE)SF,eddy =893

(∂tAPE)SF
t
− (∂tAPE)SF,mean.894

Appendix H Online sensitivity to grid-size and parameterization co-895

efficients896

Simulation of oceanic mesoscale turbulence is relatively sensitive to how well the897

first baroclinic deformation radius (shown in Figure H1 for the two simulations consid-898

ered here) is resolved. In this study we chose our coarsening scale and simulation grid-899

size to lie in a range that encompasses the deformation radius, so that skill of the new900

parameterization at both the eddy permitting and non-eddying resolutions can be in-901

vestigated. Here we provide details of the sensitivity of the coarse simulations to both902

grid spacing and parameterization coefficients.903

H1 Phillips 2 Layer904

For P2L simulation we tested the sensitivity of the overturning transport to the905

grid size and parameterization coefficients, shown in Figure H2.906

In this case, the unparameterized low resolution simulation always has lower over-907

turning transport relative to the HR simulation. The response of the parameterized flux908

contribution to the GM diffusivity is almost linear and insensitive to grid size, and ad-909

justing the GM diffusivity allows us to increase the total overturning transport to the910

appropriate value. However, this is only achieved when the diffusivity is relatively large911

(κGM ∼ 8, 000−10, 000 m2/s), which is also a parameter regime in which the resolved912

eddying flow has been entirely suppressed. Consequently the contribution of the resolved913
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flow to the overturning has been completely eliminated and the entire contribution comes914

from parameterized fluxes (Figure H2 second column). There seems to be no lower dif-915

fusivity value at which the appropriate overturning can be achieved with only marginal916

impact to the resolved flow.917

In contrast, the simulations with the ANN based parameterization are usually able918

to achieve the appropriate level of overturning with minimal damage to the resolved flow.919

The response of the parameterized flux to the grid size and parameterization amplifica-920

tion coefficient (CANN ) is non-linear. At grid sizes of 10 and 20 km, which are smaller921

than the deformation radius everywhere in the domain, the appropriate overturning is922

achieved at CANN = 1 and with minimal damage to the resolved overturning. At a grid923

size of 80 km, which is larger than the deformation radius everywhere in the domain, the924

appropriate overturning is achieved at CANN = 2. At the intermediate grid size of 40 km,925

the ANN parameterization does produce improvements to overall overturning with lit-926

tle damage to the resolved flow (also at CANN = 1), but is unable to achieve similar927

overturning to the HR simulation. We anticipate that combining the thickness flux pa-928

rameterization with a momentum flux parameterization may be able to produce further929

improvements at these intermediate resolutions.930

H2 Double Gyre931

Unlike the P2L simulation, in the DG case there is no overturning circulation. In932

the context of the thickness flux parameterization, the error in the MAPE is the most933

relevant, which is also linked to the error in mean SSH. We tested the sensitivity of these934

quantities and a few others to the parameterization coefficients and grid-size (Figure H3).935

For the GM parameterization, a diffusivity of about 200 m2/s is able to achieve936

the appropriate MAPE at all resolutions, which similar to the P2L also comes an almost937

complete damping of the resolved eddies. The ANN is able to achieve the best MAPE938

with CANN ∼ 0.5−0.75, and this happens with relatively less deterioration in the re-939

solved eddies.940

4c [km] κGM [m2/s] CV GM [nondim]

P2L DG P2L DG

10 137 40 0.110 0.075

20 596 105 0.077 0.072

40 2287 192 0.077 0.067

80 6266 108 0.091 0.048

Table H1. Estimated GM diffusivity (κGM ) and VGM coefficient (CV GM ) from the data using

least squares fitting, for both the Phillips 2-Layer (P2L) and Double Gyre (DG) setups.
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