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The Signature of Oceanic Processes in Decadal
Extratropical SST Anomalies

Christopher H. O’Reilly’""’ and Laure Zanna'

T Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Oxford, UK

Abstract The relationship between decadal sea surface temperature (SST) and turbulent heat fluxes

is assessed and used to identify where oceanic processes play an important role in extratropical decadal
SST variability. In observational data sets and coupled climate model simulations from the Coupled Model
Intercomparison Project Phase 5 archive, positive correlations between upward turbulent heat flux and SSTs
indicate an active role of oceanic processes over regions in the North Atlantic, Northwest Pacific, Southern
Pacific, and Southern Atlantic. The contrasting nature of oceanic influence on decadal SST anomalies in the
Northwest Pacific and North Atlantic is identified. Over the Northwest Pacific, SST anomalies are consistent
with changes in the horizontal wind-driven gyre circulation on timescales of between 3 and 7 years, in both
the observations and models. Over the North Atlantic, SST anomalies are also preceded by atmospheric
circulation anomalies, though the response is stronger at longer timescales— peaking at around 20 years
in the observations and at around 10 years in the models.

Plain Language Summary Decadal climate variability is often attributed to decadal variability in
sea surface temperatures (or SSTs). However, the extent to which these decadal SST anomalies are linked to
active ocean processes or generated by atmospheric variability is unclear. By analyzing SSTs and turbulent
heat flux out of the ocean surface— using both observational data sets and coupled climate models—we
identify multiple regions in the extratropics where the ocean plays an active role in the evolution of decadal
SST anomalies. These include regions in the North Atlantic and Northwest Pacific as well as regions of the
Southern Ocean. Over the Northwest Pacific, SST anomalies are influenced by changes in the horizontal
wind-driven circulation, which the ocean responds on timescales of between 3 and 7 years, in both

the observations and models. Over the North Atlantic, SST anomalies are also influenced by atmospheric
circulation anomalies but though the response occurs on longer timescales—peaking at around 20 years
in the observations but only around 10 years in the models. This indicates that the active ocean processes
in Atlantic differ from Pacific, implying a further component—such as mixing or advection processes—is
important in the North Atlantic.

1. Introduction

The variability of sea surface temperatures (S5Ts) has been linked with regional climate anomalies on decadal
timescales. A prominent example is the Atlantic Multidecadal Oscillation (AMO), or Atlantic Multidecadal
Variability, in the North Atlantic (Enfield et al., 2001), which exhibits a substantial influence on the climate
over Europe (O'Reilly et al,, 2017; Sutton & Dong, 2012; Sutton & Hodson, 2005), the United States (Nigam
et al, 2011; McCabe et al., 2004; Zhang & Delworth, 2006), and the Sahel (Folland et al., 1986; Knight et al.,
2006). Variability in the ocean circulation has been cited as an important factor controlling the AMO. Many
modeling studies have suggested that variability in the Atlantic meridional overturning circulation plays an
important role in governing the multidecadal SST variability in the North Atlantic (Delworth et al., 1993;
Delworth & Mann, 2000; Drews & Greatbatch, 2017; Latif et al., 2004; Knight et al., 2005), while other stud-
ies have indicated that much of the observed SST variability in the subpolar North Atlantic is associated
with changes in the horizontal gyre circulation (Hakkinen & Rhines, 2009; Hakkinen et al., 2011; Piecuch
etal., 2017).

The study by Clement et al. (2015), however, argued that ocean circulation is not important for generating
the AMO. Clement et al. showed that climate models coupled to a slab ocean (i.e., without varying ocean cir-
culation) were able to generate multidecadal SST variability that resembled the observed AMO. However, on
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decadal timescales there are positive (upward) turbulent heat flux anomalies in the warm phase of the AMO
(and vice versa in the cool phase of the AMO) in both observations (Gulev et al., 2013) and fully coupled climate
models with varying ocean circulation (O'Reilly et al., 2016), whereas turbulent heat fluxes do not significantly
covary with North Atlantic SSTs in the climate models with a slab ocean (O'Reilly et al.,, 2016; Zhang et al.,
2016). This indicates that the processes, which participate in the coupled evolution of SSTs and turbulent
heat flux, rely on variability of ocean processes, such as variability in horizontal/overturning ocean circula-
tion or horizontal/vertical mixing processes. However, the nature and timescales of these oceanic processes
remain unclear.

Recently, Cane et al. (2017) used a simple stochastic model to demonstrate that uncorrelated white noise
forcing from ocean processes—in addition to atmospheric white noise forcing—is sufficient to generate the
coupled evolution of decadal SST and turbulent heat flux anomalies seen in observations and fully coupled
models. This result is important as it indicates that although ocean processes are necessary for SST and tur-
bulent heat flux anomalies to be correlated on decadal timescales, it is not necessary for the ocean processes
themselves to exhibit coherent decadal forcing. Cane et al. showed that the low-pass correlation (r) of SST and
turbulent heat flux is directly related to the fraction of the total forcing from oceanic processes (b?), through
the relation r? = b?. However, Zhang (2017) argued, through comparison of SST and salinity anomalies, that
the ocean’s role is somewhat underestimated in the study of Cane et al. (2017), due to the lack of oceanic
damping processes. Nonetheless, the simple relation of Cane et al. (i.e., > = b?) shows that oceanic processes
play a role in determining the nature of decadal SST anomalies where they covary significantly with turbulent
heat fluxes (Zhang, 2017). Moreover, the magnitude of the correlation gives an approximate measure of the
strength of the oceanic contribution in this framework. In addition to ocean processes, external forcing has
been shown to explain some of the AMO variance over the observational period (Bellomo et al., 2018; Booth
etal., 2012; Mann & Emanuel, 2006; Murphy et al., 2017; Ting et al., 2014).

While much work on the ocean’s role in governing decadal SST anomalies in the extratropics has focused on
the North Atlantic, decadal SST variability has also been extensively documented in North Pacific (Mantua
et al,, 1997; Minobe, 1997; Newman et al,, 2016, 2003). Decadal SST variability has also been documented in
the Southern Ocean (Gille, 2008; G. Wang & Dommenget, 2016), although to a lesser extent owing to the spar-
sity of observations over the twentieth century. In this paper we analyze the relationship between decadal
SSTs and turbulent heat fluxes across the global oceans. We use the decadal SST and turbulent heat flux
correlation, based on Cane et al. (2017), as a diagnostic to identify where oceanic processes are important
for decadal SST variability. The variability of SST in these regions is analyzed and compared with the North
Atlantic, using observational data sets and coupled climate models. Our results highlight the contrasting
nature of oceanic control on maintaining decadal SST anomalies in the North Pacificand North Atlantic—with
a particular emphasis on the role of large-scale atmospheric forcing and the characteristic timescales of the
oceanic response.

2. Data and Methods

2.1. Observation-Based Gridded Data Sets

We analyze observational data sets between 1880 and 2014. We use monthly SSTs from the National Oceanic
and Atmospheric Administration Extended Reconstructed SST version 4 data set (Huang et al., 2015). We use
monthly turbulent heat flux (i.e.,, sensible plus latent heat flux) and sea level pressure (SLP) data from the
20th Century Reanalysis (20CR) Project v2c (Compo et al., 2011). The 20CR is a reanalysis product produced
by assimilating only surface pressure observations with a prescribed SST boundary condition, such that the
turbulent heat fluxes are calculated by the model and should be interpreted cautiously. However, Gulev et al.
(2013) showed that the relationship between decadal turbulent heat fluxes and SSTs in the North Atlantic are
qualitatively similar to the turbulent heat fluxes calculated only from ship observations (although the latter are
reconstructed from sparse observations in some periods). Therefore, the 20CR provides one plausible estimate
of the turbulent heat fluxes over the observational period. All products were linearly detrended and regridded
to a common 5° x 5° grid prior to the analysis to focus on relatively large-scale SST anomalies. We tested the
sensitivity to the linear detrending method by quadratically detrending and also removing a warming trend
based on historical CO, concentrations (Meinshausen et al., 2017), neither of which qualitatively changed the
results. More quantitatively, the correlation values and anomalies in the key regions identified below all differ
by less than 10% with different detrending methods.
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2.2. Preindustrial Control and Historical Simulations

In addition to the observational products, we analyze output from the Coupled Model Intercomparison
Project Phase 5 (CMIP5) archive (Taylor et al., 2012). The first set of experiments consist of the first member
of each of the preindustrial control (piControl) simulations in the CMIP5 archive. Monthly turbulent heat flux,
SST, and SLP data were used for the 38 models in the archive that had at least 200 years of preindustrial sim-
ulation output. The preindustrial control simulation has no changes in external forcing (i.e., greenhouse gas
emissions, anthropogenic aerosols, and volcanic eruptions); in these simulations we are therefore analyzing
the internal variability of the coupled models. The second set of experiments consist of the first member of
each of the historical simulations in the CMIP5 archive. Monthly turbulent heat flux, SST, and SLP data were
used for the 35 models (a subset of the 38 preindustrial models) in the archive that have historical simu-
lation output that covers the period 1861-2005. The historical simulations include estimates of historical
greenhouse gas concentrations, anthropogenic aerosols, and volcanic eruptions, and studies have argued
that—through radiative effects—these external forcings may be responsible for significant decadal SST vari-
ability (e.g., Bellomo et al., 2018; Booth et al.,, 2012). As with the observational data sets, the data from the
historical simulations were linearly detrended prior to the analysis (though the results are not sensitive to
this particular detrending method). All model variables were regridded to a common 5° x 5° grid prior to the
analysis to simplify the analysis across the models and to aid comparison with the observational data sets.

Results from the preindustrial control and the detrended historical simulations are found to be qualitatively
very similar. The main difference between the two ensembiles is that the agreement between the models is
larger in the preindustrial control models. This is likely due to the greater sample size in each of the preindus-
trial control models, which have an average length of 512 years, compared to the data sets from the historical
simulations, which are all 145 years. Both CMIP5 ensembles are discussed throughout but the preindustrial
simulations are primarily presented in some figures, with the corresponding plots for the CMIP5 historical
simulation included in the supporting information.

2.3. Significance Tests

The significance of the correlation and regressions calculated from the observational data sets is estimated
using a Monte Carlo procedure. For each calculation, 1,000 surrogate time series were generated by taking
the Fourier transform and randomizing the phase of each component before taking the inverse transform,
such that the resulting time series replicate the spectral properties of the original (Ebisuzaki, 1997; Kaplan &
Glass, 2012). The resulting distribution of correlation or regression coefficients was then used to estimate the
probability that the observed magnitude could occur by chance.

3. Results

3.1. Signature of Oceanic Processes in Regional Decadal SST Anomalies

To assess where oceanic processes appear important in influencing decadal SST anomalies, we first analyze the
correlation between the decadal SST and turbulent heat flux anomalies (defined as positive out of the ocean).
Here and in the analysis that follows we use a simple 10-year moving average to define the decadal anomalies.
Figure 1 shows maps of these grid point correlations for the observational data sets and the ensemble means
of the CMIP5 preindustrial control simulations and the CMIP5 historical simulations. The correlation between
the observational SST and turbulent heat fluxes is large (r > 0.6) over the North Atlantic. Despite the use of
a different heat flux data set, this result is similar to that of Gulev et al. (2013), albeit peaking slightly further
east. The CMIP5 models, which are very similar for the preindustrial and the historical simulations, also show
positive correlations between decadal SST and turbulent heat flux anomalies over the North Atlantic, although
the region of positive correlations extends further poleward than in the observational data sets. Therefore, in
both the observations and models, the nature of decadal SST and turbulent heat flux variability indicates a
dependence on active ocean processes, as previously highlighted by Cane et al. (2017), O'Reilly et al. (2016),
and Zhang et al. (2016). Many studies have argued that in observations, the SSTs are also likely influenced by
external forcing (e.g., Bellomo et al., 2018; Booth et al., 2012; Mann & Emanuel, 2006; Swingedouw et al., 2017;
Ting et al., 2014). However, the relationship between SSTs and turbulent heat flux anomalies in the historical
simulations are very similar to the pre industrial control simulations, suggesting that external forcing does not
play animportant role in determining this relationship, though it could impact the amplitude of the variability
(e.g., Murphy et al., 2017; Swingedouw et al., 2017).

The most striking aspect of Figure 1, however, is that there are numerous regions across the global oceans
where decadal SSTs and turbulent heat fluxes are positively correlated. While we emphasize that correlation
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Figure 1. Correlation of the decadal low-pass-filtered SST and turbulent heat flux (i.e., Q) in (a) the observational data
sets (Extended Reconstructed SST and 20th Century Reanalysis), (b) the CMIP5 preindustrial control experiments, and

(c) the CMIP5 historical experiments. For the CMIP5 ensembles, the mean is shown after the calculation was performed
for each model separately. The stippling in (a) indicates where the correlation is significant at the 5% level according to a
Monte Carlo phase randomization test (see section 2). The stippling in (b) and (c) indicates where more than 80% of the
models exhibit a correlation of the same sign. The black boxes indicate the regions of the SST indices analyzed in the
paper. SST = sea surface temperature; CMIP5 = Coupled Model Intercomparison Project Phase 5.
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is not causation, we will highlight possible mechanisms for the regional differences in the remaining parts of
the paper. Relying on either the observational data sets and CMIP5 models alone might be unwise, due to
observational sparsity (e.g., Deser et al., 2010) and various model biases (e.g., C. Wang et al., 2014). Therefore,
we will only focus on regions where decadal SSTs and turbulent heat fluxes are positively correlated in both the
observational data sets and CMIP5 model ensembles. One such region is the tropical Pacific, where the positive
correlations indicate that ocean processes are important in the evolution of decadal SST and turbulent heat
flux anomalies. This is likely associated with the decadal variability of the El Nifilo/Southern Oscillation, with El
Nifo (La Nifa) periods characterized by warm (cold) SST anomalies and large turbulent heat flux anomalies
out of (in) the tropical Pacific (e.g., C. Wang, Deser, et al., 2017), induced by the thermocline adjustment via
Kelvin waves in the tropical Pacific (e.g., McPhaden, 1999).

Perhaps more interesting though are the regions in the extratropics where decadal SSTs and turbulent heat
fluxes are positively correlated. Along with the North Atlantic, there are also broadly consistent signatures of
active ocean processes in the Northwest Pacific, the South Pacific, and the South Atlantic, highlighted by the
black boxes in Figure 1. The region in the Northwest Pacific is within the Kuroshio-Oyashio Extension region,
where the confluent western boundary currents detach from Japan (Qiu, 2001). Similar covariability between
decadal SST and turbulent heat flux anomalies in this region using observation-based data sets have been
identified (e.g., Tanimoto et al., 2003) with the turbulent heat flux out of the ocean associated with ocean heat
flux convergence (Qiu et al., 2017). Finally, the regions of positive correlation in the South Pacific and South
Atlantic are both located on the equatorward side of the Antarctic Circumpolar Current and the surface west-
erlies, where there is wind-driven downwelling associated with the Southern Ocean overturning circulation
(Marshall & Speer, 2012).

3.2. The Role of Decadal Large-Scale Extratropical Atmospheric Circulation Anomalies

The decadal SST anomalies in the extratropical regions highlighted in Figure 1 are clearly not directly forced by
turbulent heat fluxes associated with anomalous large-scale atmospheric circulation. However, they may be
linked to ocean processes (advection or mixing) driven by wind and/or buoyancy forcing that are associated
with large-scale atmospheric circulation anomalies. To initially gauge the role of large-scale atmospheric circu-
lation anomalies we defined decadal-averaged SST indices computed over the regions highlighted in Figure 1
(the SST anomalies associated with these indices are shown in Figure S1). We then regressed the annual SLP
and turbulent heat flux anomalies onto the decadal SST anomalies using both the observational data sets
and the CMIP5 models, which are shown in Figure 2 (n.b. equivalent results are found if the SLP and turbulent
heat flux and also decadally averaged prior to the regression calculations). Due to the relatively small sample
size, the observational maps are much noisier than the CMIP5 model ensembles, therefore the color scales
and contour intervals for the panels related to observations in Figure 2 are chosen to be double those for
the CMIP5 models. Nonetheless, the SLP and turbulent heat flux anomalies associated with the decadal SST
indices in the observations are broadly consistent with the corresponding anomalies in the CMIP5 models.

Warm decadal SST anomalies in the Northwest Pacific are associated with an anticyclonic SLP anomaly over
the extratropical North Pacific and a narrow band of strong positive turbulent heat flux anomalies in both the
observations (Figure 2a) and CMIP5 models (Figures 2e and S2e). The anticylonic SLP anomaly corresponds
to a poleward shift in the climatological westerlies. The Northwest Pacific SST response to large-scale atmo-
spheric circulation anomalies has been noted in observations (e.g., Schneider & Miller, 2001). The latitudes of
the Kuroshio and Oyashio Extensions both exhibit a northward shift (not necessarily coherent) in response
to the poleward shift of the westerlies (and the zero wind stress curl line) a few years prior (Nonaka et al.,
2006; Sasaki et al., 2013; Schneider & Miller, 2001; Seager et al., 2001; Qiu et al., 2017). These shifts are due to
wind-driven changes in the horizontal gyre circulation in the extratropical North Pacific. In the CMIP5 mod-
els, the Kuroshio and Oyashio Extensions are not well resolved and there is a single boundary current that
detaches from Japan at 40-45°N. This potentially explains the a band of negative turbulent heat flux anoma-
lies to the south of the SST index region in the CMIP5 models, which likely reflects a shift in the region of
maximum turbulent heat flux along the Kuroshio-Oyashio Extension larger than seen in observations, which is
only 2-3°in latitude (e.g., O'Reilly & Czaja, 2015; Qiu & Chen, 2005). The SST and turbulent heat flux anomalies
are therefore consistent with a wind-driven northward shift of the Kuroshio-Oyashio Extension—associated
with a poleward shift of the westerlies in the CMIP5 models—similar to that seen in previous individual model
studies (e.g., Kwon & Deser, 2007; Schneider et al., 2002; Seager et al., 2001). Therefore, Figures 2a, 2e, and
S2e indicate that the Northwest Pacific decadal SST anomalies in the observations and CMIP5 models are
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SLP & Q regressed onto decadal SST indices (Reanaly5|s)
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Figure 2. SLP (contours) and turbulent heat flux (shaded) anomalies regressed onto the normalized decadal SST indices
in (a-d) the reanalysis and (e—h) the CMIP5 preindustrial control experiments. The contour interval is 0.2 hPa for the
reanalysis and 0.1 hPa for the CMIP5 models, where red contours are positive, blue contours are negative, and the zero
contour has been omitted. Stippling in (a)-(d) indicates where the SLP anomalies are significant at the 5% level,
stippling in (e)-(h) indicates where more than 75% of the models exhibit regression coefficients of the same sign. The
turbulent heat flux anomalies in (a)-(d) are only shaded where they are significant at the 10% level and in (e)-(h) are
only shaded where more than 80% of the models exhibit regression coefficients of the same sign. The black boxes
indicate the region used to calculate the SST index in each panel. SLP = sea level pressure; CMIP5 = Coupled Model
Intercomparison Project Phase 5; SST = sea surface temperature.
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consistent with being generated by changes in the horizontal wind-driven ocean circulation (though here
this is only inferred and not demonstrated explicitly).

Unlike over the Northwest Pacific, the decadal SST anomalies over the North Atlantic do not seem to be asso-
ciated with significant large-scale atmospheric circulation anomalies in the observations (Figure 2b) or in
CMIP5 models (Figures 2f and S2f). This indicates that the decadal SST signals are not generated by large-scale
atmospheric circulation anomalies on subdecadal timescales, otherwise we would expect substantial SLP
anomalies in the regression maps, as in the Northwest Pacific. It is also worth noting that in these regression
maps the positive turbulent heat fluxes that are significant seem to be located in the mid-Atlantic in the obser-
vations but in the subpolar gyre region in the CMIP5 models. These are only contemporaneous regression
maps on decadal timescales and do not offer clear insight into whether the atmosphere or ocean are leading.
We will analyze the response timescales in the next subsection.

Over the South Pacific region, decadal SST anomalies are associated with a deepening of the Amundsen Sea
Low (e.g., Raphael et al., 2016) and a poleward shift of the climatological westerlies—in both the observa-
tions and the CMIP5 models. Directly over the index region, there is a weakening of westerlies (i.e., of the
climatological SLP gradient). Over the South Atlantic region, there is also a consistent weakening of the local
westerlies; however, the hemispheric SLP anomalies have the opposite sign over the polar region in obser-
vations and the CMIP5 models. This inconsistency is perhaps not surprising, given the paucity of Southern
Hemisphere observations and the significant inadequacies in the simulations of Southern Ocean climate in
the CMIP5 models (e.g., Sallée et al., 2013). Nonetheless, the weakening of the westerlies over both the South
Pacific and South Atlantic regions indicates that the evolution of the decadal SST, and covarying turbulent
heat flux anomalies are linked to local wind forcing.

A dominant term in the Southern Ocean mixed-layer heat budget is the horizontal Ekman heat flux con-
vergence term, that is, ‘;—: ~ —ug - VT, where T is mixed-layer temperature, V,, is the horizontal gradient
operator, and ug, = (Ug, Vg ) is the Ekman transport (S. Dong et al., 2007; Tamsitt et al., 2016). Specifically,
this is dominated by the meridional advection, which is proportional to the zonal wind stress, z, (i.e., Vg = %
where p is density and f the Coriolis frequency). In the climatological mean, the meridional Ekman advection
transports cold water equatorward and acts to cool the SSTs in the southern midlatitudes. In both the South
Pacific and South Atlantic SST regions, the weakening of the local westerlies reduces the meridional equator-
ward Ekman transport and thereby reduces the cooling of the midlatitude SSTs, which results in warm decadal

SST anomalies in these regions along with positive turbulent heat flux anomalies.

3.3. Dominant Timescales of the Atmospheric Forcing and SST Anomalies in Regions of Active
Ocean Processes

The contemporaneous regression maps in Figure 2 indicate that the SST anomalies over the North Atlantic
are less clearly associated with large-scale atmospheric forcing on decadal timescales than in the Northwest
Pacific or Southern Ocean regions. In an attempt to gain further insight into how atmospheric anomalies force
the SST anomalies in the regions where ocean processes are important, we analyze lagged regressions. Cane
et al. (2017) advocated that low-pass filtering can induce false lead-lag relationships; we therefore opt for an
alternative method. Specifically, atmospheric SLP anomalies averaged over the interval t = [t, — 7,t,] are
regressed onto the normalized SST index averaged over the interval t = [t, + 1, t, + 1 + 7]. This gives the SLP
and turbulent heat flux anomalies that are leading the (normalized) SST indices. Here 7 is the length of the
averaging period (in years), used to characterize the timescale of the atmospheric forcing and SST response.
The lagged regression maps for two example timescales, ¢ = 3 years and = = 10 years, are shown for the
Northwest Pacific and North Atlantic SST regions in Figure 3.

On the 7 = 3-year timescale, in both the observations and CMIP5 models, there are anticyclonic anomalies
over the extratropical North Pacific leading the SST index (Figures 3a, 3e, and S3e). This shows that the change
in the wind-driven circulation by poleward shift in the westerlies leads to warmer SSTs in the Northwest Pacific
region, consistent with increased poleward advection of warm water through the subtropical western bound-
ary current. There are also positive turbulent heat flux anomalies in the Northwest Pacific region in both the
observations and CMIP5 models, which is likely caused by the westerlies shifting poleward such that there
is more upward turbulent heat flux over the Northwest Pacific region. In the North Atlantic, the SLP anoma-
lies leading the North Atlantic SST index are relatively weak and inconsistent between the observations and
CMIP5 models (Figures 3¢, 3g, and S3g) —though there are some warm turbulent heat flux anomalies leading
the SSTs in both, albeit only significant in the subpolar gyre region in the CMIP5 models.
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SLP & Q leading SST (10-year) reanalysis
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Figure 3. SLP (contours) and turbulent heat flux (shaded) anomalies averaged over the interval t = [t, — 7, t;] regressed onto the SST index averaged over the
interval t = [ty + 1,ty + 1 + 7] such that the SLP and turbulent heat flux anomalies are leading the (normalized) SST indices. Anomalies are shown from the
reanalysis (in a-d) and CMIP5 models (in e-h) for the Northwest Pacific and North Atlantic SST indices with (a, ¢, e, and g) = =3 years and (b, d, f,and h) z =10
years. The contour interval is 0.15 hPa in (a) and (c), 0.05 hPa in (b) and (d), 0.075 hPa in (e) and (g), and 0.025 hPa in (f) and (h). Stippling in (a)-(d) indicates
where the SLP anomalies are significant at the 5% level, stippling in (e)-(h) indicates where more than 75% of the models exhibit regression coefficients of the
same sign. The turbulent heat flux anomalies in (a)-(d) are only shaded where they are significant at the 10% level and in (e)-(h) are only shaded where more
than 80% of the models exhibit regression coefficients of the same sign. The black boxes indicate the region used to calculate the SST index in each panel. The
lime green boxes indicate the regions used to define the Aleutian Low and Icelandic Low SLP indices. The bottom row shows the correlation between anomalous
SLP indices averaged over the interval t = [ty — 7, ty] regressed onto the SST index averaged over the interval t = [ty + 1,ty + 1 + 7], for (i) the Northwest Pacific
and (j) the North Atlantic. The correlation for each timescale—in number of years, z—is shown for the reanalysis (blue); each CMIP5 preindustrial control
simulation (gray points) and the median of the preindustrial control ensemble (black line); each CMIP5 historical simulation (pink points) and the median of the
preindustrial control ensemble (red line). The blue circles indicate where the correlation in the reanalysis is significant at the 5% level. SST = sea surface
temperature; SLP = sea level pressure; CMIP5 = Coupled Model Intercomparison Project Phase 5.
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On the 10-year timescale, the anticyclonic anomalies over the North Pacific still lead the warm SST anoma-
lies in the Northwest Pacific region (Figures 3b, 3f, and S3f), although these circulation anomalies are not
statistically significant in the observations and occur in a smaller proportion of the models. Over the North
Atlantic, however, there is a striking difference between the 10-year and the 3-year timescales. In both the
observations and CMIP5 models, strong negative SLP anomalies over the northern part of the North Atlantic
basin—a deepening of the Icelandic Low—leads warm SST anomalies (Figures 3d, 3h, and S3h). One notable
difference, however, is the large-scale hemispheric wave train pattern seen in the observations, whereas in
the models the SLP pattern looks similar to the Northern Annular Mode (NAM). This difference could simply
be due to aliasing of decadal signals in the relatively short observations. However, it is also possible that the
models are missing a teleconnection between the Pacific and Atlantic basins on decadal timescales associ-
ated, for example, with the Interdecadal Pacific Oscillation (B. Dong & Dai, 2015; Henley et al., 2015; Mantua
et al.,, 1997). Indeed, the recent study by Henley et al. (2017) showed that the CMIP5 models underestimate
the amount of decadal variance in Pacific SSTs. A common feature of both the observations and models is the
strong turbulent heat fluxes out of the ocean over the North Atlantic, associated with the anomalous westerly
and northwesterly winds during the 10 years preceding the warm SSTs in the North Atlantic region, mean-
ing that oceanic processes are likely acting to provide additional heat in the mixed layer in the following 10
years. This demonstrates that the dominant timescales governing the development of the North Atlantic SSTs
are seemingly significantly longer than in the Northwest Pacific, indicating that different oceanic processes
are responsible.

We performed similar analysis over the South Pacific and South Atlantic SST indices (Figure S4). On the 3-year
timescale, the atmospheric forcing closely resembles the decadal regression maps (i.e., Figures 2 and S2) in
both the observations and CMIP5 models. These results show that the SST anomalies on these timescales fol-
low shifts in the local westerlies and are most likely due to the accompanying changes in the meridional Ekman
transport as described previously, though the turbulent heat flux response is quite inconsistent between the
CMIP5 models (in both the preindustrial control and historical ensembles). On the 10-year timescale there is
little coherence between the observations and the CMIP5 models. For example, the observations show very
large anomalies over the South Pacific, but there are negligible anomalies in the CMIP5 models. These are
likely due to spurious decadal trends in the observations owing to the very sparse observations in this region
and the performance of model in the region, owing to these inconsistencies we will not discuss these results
in further detail.

To further investigate the dominant timescale of the atmospheric forcing of multiyear SST anomalies in the
Northwest Pacific and North Atlantic SST regions, we performed lagged correlation analysis for a range of 7.
We calculated area-averaged SLP indices over the Aleutian Low region (for the Northwest Pacific SST index)
and the Icelandic Low region (for the North Atlantic SST index), as shown by the green boxes in Figure 3. The
SLP indices were then averaged over the interval t = [t, — 7, t;] and correlated with the SST indices averaged
over the interval t = [ty + 1,t, + 1 + 7], such that the SLP indices are leading the SST indices. These lagged
correlations are shown in Figures 3i and 3j for timescales (z) from 1 to 40 years.

In the observations, the SLP anomalies in the Aleutian Low region—where positive anomalies represent a
weakening of the Aleutian Low—are positively correlated with the Northwest Pacific SSTs that follow. The
positive correlation peaks for timescales between z = 2 and 6 years, but the correlation drops off substantially
beyond = = 10 years (Figure 3i). Similar behavior is seen in the ensemble mean of both the preindustrial con-
trol and historical CMIP5 models, albeit peaking at slightly shorter timescales of r = 2-3 years. The individual
models themselves span a wide range of correlation values in the preindustrial control simulations (gray dots)
and even more so in the historical simulations (red dots); however, the observed correlations that are signifi-
cant for 7 = 6-7 years are close to the upper end of the model range. The SLP anomalies in the Icelandic Low
region are negatively correlated with the North Atlantic SSTs, with the magnitude of the observed correlation
being largest (r ~ —0.6) at a timescale of ¢ = 20 years. The correlation of the CMIP5 models are strongest at
a timescale of about © = 10 years, somewhat less than in the observations. However, negative correlations
are found across a wide range of timescales, which are clearly longer than the timescale in the North Pacific.
Interestingly, in the North Atlantic none of the preindustrial control simulations and only one of the historical
simulations exhibit a stronger correlation than the observations at = = 20 years, despite the wide range of
correlations. This suggests that while the models are qualitatively capturing the correct sign of covariability
in the North Atlantic, which is encouraging, the processes that determine the timescale of the North Atlantic
response to anomalous forcing by the Icelandic Low are not correctly represented in the CMIP5 models.
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For completeness, we also performed this analysis on the South Pacific region. The meridional SLP gradient
across the South Pacific region clearly leads SST anomalies on timescales between = = 1 and 3 years in both
the models and observations and weakens on longer timescales (Figure S3). Again, however, none of the
preindustrial control simulations and only one of the historical simulations exhibits a relationship as strong
as in the observations for timescales of = = 2 and 3 years.

4. Summary and Discussion

In this study, we have analyzed the relationship between decadal SST and turbulent heat fluxes to identify
where oceanic processes may play a nonnegligible role in extratropical decadal SST variability. Positive corre-
lations between decadal turbulent heat flux and SSTs indicate an active role of oceanic processes over regions
in the North Atlantic, Northwest Pacific, Southern Pacific, and Southern Atlantic (Figure 1). Of particular inter-
est is the contrasting nature of the oceanic influence on decadal SST anomalies in the Northwest Pacific and
North Atlantic (i.e., Figure 2). Over the Northwest Pacific, SST anomalies respond to atmospheric forcing via
changes in the horizontal wind-driven gyre circulation on timescales of 3-7 years, in both observations and
CMIP5 models (Figure 3i). Over the North Atlantic, SST anomalies are also influenced by atmospheric circula-
tion anomalies, though the response is stronger at longer timescales than in the Northwest Pacific—peaking
at about 20 years in the observations, compared to only 10 years in the CMIP5 models (Figure 3j).

The longer timescales in the North Atlantic are not consistent with solely a wind-driven gyre response, as in
the Northwest Pacific. Instead, upward turbulent heat fluxes over the subpolar gyre (particularly the Labrador
Sea region) in the preceding decades seem particularly important prior to decades with warm North Atlantic
SST (i.e., Figure 3). Robson et al. (2012) and Williams et al. (2015) found that anomalous northward ocean
heat transport in recent decades was largely a response to anomalous buoyancy forcing in the subpolar gyre,
associated with turbulent heat flux out of the ocean. In addition, recent modeling simulations indicate that
most of the decadal SST variability over the recent observational period can be reproduced in models that
are forced with the large-scale observed buoyancy flux forcing (Delworth et al., 2017). While traditionally the
North Atlantic subpolar gyre SST response to buoyancy forcing has often been interpreted as due to changes
in the meridional overturning circulation (e.g., Delworth & Zeng, 2016), some of the observed variability has
been attributed to changes in the horizontal gyre circulation (Piecuch et al., 2017; Williams et al., 2014), though
their relative contributions are unclear. Finally, intrinsic variability from entrainment, overflow, and mixing
affecting the deep mixed layer in the subpolar North Atlantic might be influencing the region on decadal
timescales contributing to the upward heat fluxes.

Despite the qualitative consistencies between the CMIP5 models and the observations that have been high-
lighted here, there are some potentially important differences. The correlation between the decadal turbulent
heat flux and SST over the North Atlantic in the CMIP5 models is weaker than in observations. More gen-
erally, the atmospheric circulation anomalies that lead the SST anomalies exhibit stronger relationships in
the observations than the vast majority of models—in both the North Atlantic and Northwest Pacific—and
also exhibit longer characteristic timescales of variability (i.e., Figure 3). The disparity between observations
and the CMIP5 models could potentially be due to weaker atmospheric circulation anomalies on decadal
timescales, as seen in most CMIP5 models (X. Wang, Li, et al., 2017) and also in other coupled models (Kim et al.,
2018; Parker et al., 2007). While the lack of low-frequency atmospheric variability may explain why the domi-
nant timescales of variability are too short, it does not account for the relatively weak response in the models.
We hypothesize that the weak model response is related to deficiencies in the oceanic model components
and to overly strong oceanic damping processes (including air-sea feedbacks and mixing) —particularly in
the North Atlantic midlatitude and subpolar gyre region, where there are significant model biases (e.g., Heuzé,
2017). Further investigation of the mixed-layer dynamics in climate models—and the fidelity with which the
relevant processes compare to observations—is necessary to isolate the source of the relatively weak decadal
SST anomalies in response to large-scale atmospheric circulation anomalies.
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