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a b s t r a c t 

The role of mesoscale eddies is crucial for the ocean circulation and its energy budget. The sub-grid scale 

eddy variability needs to be parametrized in ocean models, even at so-called eddy permitting resolutions. 

Porta Mana and Zanna (2014) propose an eddy parametrization based on a non-Newtonian stress which 

depends on the partially resolved scales and their variability. In the present study, we test two versions 

of the parametrization, one deterministic and one stochastic, at coarse and eddy-permitting resolutions in 

a double gyre quasi-geostrophic model. The parametrization leads to drastic improvements in the mean 

state and variability of the ocean state, namely in the jet rectification and the kinetic-energy spectra as 

a function of wavenumber and frequency for eddy permitting models. The parametrization also appears 

to have a stabilizing effect on the model, especially the stochastic version. The parametrization possesses 

attractive features for implementation in global models: very little computational cost, it is flow aware 

and uses the properties of the underlying flow. The deterministic coefficient is scale-aware, while the 

stochastic parameter is scale- and flow-aware with dependence on resolution, stratification and wind 

forcing. 

© 2017 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

Ocean mesoscale eddies, with scales of 10–100 km, are turbu-

lent features in the ocean derived from barotropic and baroclinic

instabilities, and are strongly influenced by wind forcing and

stratification. Eddies play a key role in ocean circulation, including

tracer transport, mixing and stirring, and actively participate in

energy transfer between scales. The mesoscale eddy energy is

particularly enhanced in the vicinity of western boundary currents

and their extension (e.g. Gulf Stream and Kuroshio), and in the

Southern Ocean. Eddies are crucial in the feedback of energy to

the large-scale flow (e.g., Scott and Arbic, 2007 ) and in maintain-

ing the jet extension via upgradient momentum fluxes leading to

sharpening of gradients ( Greatbatch et al., 2010 ). 

Climate models from the Coupled Model Intercomparison

Project (CMIP) archive ( Taylor et al., 2012 ) used for the last In-

tergovernmental Panel on Climate Change ( IPCC, 2013 ) have too

coarse horizontal resolution to resolve these eddies. The effect of

eddies on the large scale is parametrized in such coarse resolution

models using the Gent-McWilliams parametrization ( Gent and
∗ Corresponding author. 
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cWilliams, 1990; Gent et al., 1995 ). The parametrization has

hown great success in reducing spurious convective instabilities

n coarse-resolution models. The parametrization mimics the ef-

ects of baroclinic instability, converting available potential energy

nto kinetic energy, and acts on buoyancy and passive tracers, but

eglects eddy Reynolds stresses and sub-grid scale fluctuations.

he horizontal resolution of the most recent generation of global

limate models has increased to a scale close to the Rossby radius

f deformation. These models, often called eddy-permitting, are

herefore starting to successfully capture some of the mesoscale

ddy behaviour, especially at low- and mid- latitudes. However,

ddy-permitting models remain unsuccessful at resolving the full

esoscale eddy field ( Gnanadesikan and Hallberg, 20 0 0; Hallberg,

013 ) and its interaction with the large scales, and might not be

ble to do so in the near feature ( Fox-Kemper et al., 2014 ). There-

ore parametrizing sub-grid eddies, especially in eddy-permitting

odels, remains an important topic of research, as the previous

eneration of parametrizations, derived for coarse-resolution mod-

ls, might not be able to successfully mimic the effects of the

nresolved scales on the large-scale flow. 

Sub-grid parametrization at eddy-permitting resolution is

ecessary not only to represent the unresolved scales but also

o maintain numerical stability. Numerical dissipation is often
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

http://dx.doi.org/10.1016/j.ocemod.2017.01.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ocemod
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ocemod.2017.01.004&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:laure.zanna@physics.ox.ac.uk
http://dx.doi.org/10.1016/j.ocemod.2017.01.004
http://creativecommons.org/licenses/by/4.0/


L. Zanna et al. / Ocean Modelling 111 (2017) 66–80 67 

a  

c  

1  

1  

e  

w  

h  

c  

s  

o  

n  

f  

F  

i  

p  

u  

s  

t

 

s  

e  

d

m  

t  

h  

(

s  

h  

o  

a  

o  

b  

D  

2  

c  

t  

m  

a  

s

 

a  

a  

N  

m  

f  

p  

o  

g  

m  

i  

f  

a  

F  

a  

e  

m  

a  

c  

f  

a  

a  

n  

r

 

p  

S  

o  

t  

fl  

t  

p  

p

2

 

f

v  

B  

i  

o  

t  

m  

g

 

w

q  

T  

i  

d  

t

 

δ  

t  

e  

t  

e  

v  

a  

u  

m  

s  

k  

t  

p

 

w

F  

w  

i  

m

 

a  

c

 

 

 

 

 

i  

 

 

or stochastic as defined in Section 3 . 
chieved using Laplacian viscosity (or diffusion) with too large

oefficients, or using hyperviscous parametrization ( Holloway,

992; Frisch et al., 2008 ) or biharmonic closure ( Smagorinsky,

963; Leith, 1990; Griffies and Hallberg, 20 0 0 ) which dissipates

nstrophy at the grid scale near the deformation radius and scales

ith model resolution. However, recent studies have shown that

yperviscosity, in addition to representing a direct enstrophy cas-

ade ( Bachman et al., 2017 ), spuriously dissipates energy at small

cales ( Arbic et al., 2007; Jansen and Held, 2014 ). Parametrization

f sub-grid scale eddies for eddy-permitting regimes are therefore

eeded to either correct the spurious loss of energy resulting

rom the use of hyperviscosity (including modified hyperviscosity;

ox-Kemper and Menemenlis, 2008 ), or to replace hyperviscos-

ty altogether. The aim of our paper is to introduce an eddy

arametrization, derived for eddy-permitting models, that makes

se of the resolved variability, mimics the behaviour of Reynolds

tresses such as sharpening ocean jets, scales with resolution and

he flow, and feeds back energy lost due to viscosity. 

Jansen and Held (2014) propose to re-inject the energy lost at

mall scales using a negative viscosity determined by an energy

quation following Eden (2010) . Filtering of the velocities, as

one for example in the Lagrangian-averaged Navier-Stokes- α
odel ( Holm and Wingate, 2005; Holm and Nadiga, 2003 ), or

he nonlinear gradient approximation ( Nadiga and Bouchet, 2011 )

ave shown promising results (see PMZ14 and Anstey and Zanna

2017) for comparisons between our proposed schemes and these 

tudies). However, recent studies ( Graham and Ringler, 2013 )

ighlighted that these parametrizations can lead to a build-up

f enstrophy at small scales and to numerical instability. Other

pproaches at eddy-permitting resolutions have argued for the use

f a stochastic term for upgradient momentum fluxes and energy

ackscatter in spectral models ( Kraichnan, 1976; Frederiksen and

avies, 1997; Duan and Nadiga, 20 07; Nadiga, 20 08; Kitsios et al.,

012; Grooms and Majda, 2013 ). The sub-grid forcing is generally

onstrained by an energy spectrum. In quasi-geostrophic models

he need for upgradient momentum closures based on a stochastic

odel was also pointed out ( Berloff, 2005b, 2015, 2016 ). However,

ll approaches require some a priori knowledge of sub-grid eddy

tatistics. 

Here we implement a parametrization proposed by Porta Mana

nd Zanna (2014 , referred to as PMZ14). In PMZ14 we diagnosed

 relationship between the missing eddy forcing and a non-

ewtonian stress divergence ( Ericksen, 1956; Rivlin, 1957 ). The

issing forcing is defined as the PV eddy flux divergence resulting

rom a high-resolution eddy resolving model compared to an eddy

ermitting model. The non-Newtonian stress divergence depends

n the Lagrangian rate of change of the potential vorticity (PV)

radient and its local deformation. The relationship between the

issing eddy forcing and a non-Newtonian stress divergence was

nspired by general principles of potential vorticity conservation,

rame-invariance, differential memory ( Truesdell and Noll, 2004 )

nd symmetry properties of the stress tensor ( Bachman and

ox-Kemper, 2013 ). The relationship, more intuitively, is based on

n argument that in eddy-permitting models the rate of strain,

ddy shape and orientation, and the PV gradient can be used to

imic the evolution of the eddy PV forcing ( Nadiga, 2008; Anstey

nd Zanna, 2017 ). The work argued that the parametrization

ould be efficient in a deterministic mode, with a coefficient

or the parametrization that scales with model resolution. In

ddition, a stochastic parametrization was also presented, with

 stochastic forcing term whose probability is conditional on the

on-Newtonian forcing, wind forcing, stratification, and model

esolution. 

This paper is structured as follows. In Section 2 we briefly

resent the quasi-geostrophic model used in the current study. In

ection 3 we discuss two implementations of the parametrization,
ne deterministic and one stochastic. In Section 4 we present

he results of the two different implementations for the mean

ow and variability. Section 5 is a discussion of the impact of

he parametrized forcing on the momentum, energy and enstro-

hy budgets and presents ways forward for implementation in

rimitive-equations models. We briefly conclude in Section 6 . 

. Model setup 

The model used in the present study, PEQUOD, solves the

orced dissipative baroclinic quasi-geostrophic (QG) potential 

orticity (PV) equation on a beta plane in a square basin (e.g.,

erloff, 20 05a, 20 05b ). The main setup is similar to the one used

n Porta Mana and Zanna (2014 , PMZ14). The model is composed

f three isopycnal layers with thicknesses H m 

(with m = 1 , 2 , 3 for

he upper, middle and bottom layer, respectively). For each layer

 , the prognostic equation solved for the potential vorticity q is

iven by 

D q m 

D t 
= 

∂q m 

∂t 
+ u m 

· ∇q m 

= D m 

+ F wind 
m 

+ F eddy 
m 

, (1)

ith 

 m 

= ∇ 

2 ψ m 

+ βy + 

∂ 

∂z 

(
f 2 0 

N 

2 

∂ψ m 

∂z 

)
. (2)

he planetary vorticity is f = f 0 + βy , ∇ = ( ∂ 
∂x 

, ∂ 
∂y 

) is the hor-

zontal gradient, N is the Brunt–Väisälä frequency of the mean

ensity stratification and ψ is the streamfunction derived from

he non-divergent velocity such that u m 

= (− ∂ψ m 

∂y 
, 

∂ψ m 

∂x 
) . 

The dissipation term is D m 

= −r∇ 

2 ψδm, 3 − ν∇ 

6 ψ m 

, where

m, i is the Kronecker delta function. The first term parametrizes

he presence of a bottom Ekman layer with a bottom drag co-

fficient r . The second term is a horizontal biharmonic viscosity

erm, with viscosity coefficient ν , which scale-selectively dissipates

nstrophy near the grid-scale. Note that PMZ14 used a Laplacian

iscosity term rather than a biharmonic term for high-resolution

nd eddy-permitting runs (but not for coarse resolution runs). The

se of hyperviscosity in the present study is to allow a setup that

imics current eddy-permitting ocean model setups, and ensures

mall-scale dissipation and numerical stability (we struggled to

eep the model stable when using the deterministic parametriza-

ion; see Section 3 ). The hyperviscous term was calculated at the

revious timestep for practical reasons (see Section 3 b). 

The forcing F m 

, applied to the upper layer, is the curl of the

ind stress τ : 

 

wind 
m 

(x, y ) = 

( ∇ × τ ) z 
ρ0 H 1 

δm, 1 , (3)

here ρ0 is the reference density. The wind stress curl profile is

dentical to PMZ14 and spins up two gyres separated by a strong

eandering jet emanating from the western boundary. 

The term F 
eddy 

m 

is the eddy parametrization, which can take

 deterministic or a stochastic form. We use different model

onfigurations defined as follows: 

i. The “truth”: a high-resolution run with 7.5 km horizontal

resolution. The eddy forcing term F 
eddy 

m 

, in Eq. (1) , is set to 0. 

ii. Low-resolution unparametrized runs: runs at eddy-permitting

resolution with horizontal grid-spacing of 30 km and 60 km;

and a coarse-resolution run at resolution of 120 km. No

parametrization of eddy forcing is included, i.e. F 
eddy 

m 

is again

set to 0. 

ii. Low-resolution parametrized runs: Same as in (2), except

for F 
eddy 

m 

being non-zero. The term F 
eddy 

m 

has a spatial and

temporal dependence on the flow, which can be deterministic
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Table 1 

Common model parameters. 

Parameter Value 

L Basin width 3840 km 

L Ro 
a Rossby Radii of Deformation (40, 23) km 

H 1 , H 2 , H 3 Layer thicknesses (250 m, 750 m, 30 0 0 m) 

f 0 Planetary vorticity at mid- y 10 −4 s −1 

β d f /d y 2 × 10 −11 m 

−1 s −1 

g gravity 9 . 8 ms −2 

g ′ Reduced gravity (0 . 034 , 0 . 018) ms −2 

r Bottom Drag 4 × 10 −8 s −1 

τ 0 Wind stress 0 .8 N/m 

2 

ρ0 Reference Density 10 3 kg/m 

3 

N Brunt–Väisälä frequency at interfaces ( 6 . 82 × 10 −3 s −1 , 2 . 56 × 10 −3 s −1 ) 

a 1 /L 2 Ro = λ where λ are eigenvalues of the equation ∂ z 
( f 2 0 

N 2 
∂ z ψ 

)
= λψ . 

Table 2 

Differing model parameters. 

Resolution Timestep Viscosity] 

�x [km] �t [s] ν [ m 

4 s −1 ] 

7 .5 600 1 .2 × 10 9 

30 600 5 .4 × 10 10 

60 1400 2 .0 × 10 11 

�x [km] �t [s] ν [ m 

2 s −1 ] 

120 20 0 0 200 
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1 Similar relationship are found if the truth is run at resolution of 2.5 km rather 

than at 7.5 km. 
2 A more thorough investigation of κ as a tensor rather than a scalar, taking into 

account the anisotropy of the stress is left for a follow-up study. 
The length of the integrations from rest to statistically steady

state is 410 years. All simulations presented are numerically

converged and are solved using centred-leapfrog with RAW fil-

ter ( Williams, 2009 ) and a modified Arakawa advective scheme

( Arakawa, 1966 ). Additional experiments using different numer-

ical schemes led to similar results to the ones presented in the

following sections. We output the data daily (as snapshots), with

all steady states and variance calculations done using the last 200

years of model integration. The common model parameters for all

runs are defined in Table 1 while the differing model parameters

for various resolutions are listed in Table 2 . 

Fig. 1 shows the statistically steady streamfunction ψ for the

high resolution truth (panel a) and the 30 km-resolution un-

parametrized model (panel b). A few differences between the runs

include the absence of a strong and narrow eastward jet at low

resolution compared to the truth; and a too far south separation

point at the western boundary. The eddy-permitting simulations

at 30 km and 60 km (the latter not shown) generate some eddies

via barotropic and baroclinic instabilities but with fewer filaments

and weaker turbulence compared to the eddy resolving run (cf

Fig. 2 a and b). The potential vorticity snapshot at low resolution

also hints at some numerical instability near the jet, due to the

appearance of sharp features of alternating sign with spatial scale

of the model gridscale (30 km). The differences in the simulations

arise as a result of the small Reynolds number at low resolution,

due to the increased horizontal grid box size and viscosity. 

3. Parametrization of sub-grid mesoscale eddies 

In this section we introduce the parametrization proposed by

PMZ14 and discuss the deterministic and stochastic implementa-

tions in the baroclinic QG model of Section 2 . In the remainder of

the paper we omit the layer subscript m for conciseness. 

3.1. PMZ14 parametrization 

In PMZ14 we postulate that the divergence of the sub-grid

eddy PV stress in QG ( S ∗) reflecting the missing forcing due to

truncated nonlinear advection and increased dissipation between
he truth and a low-resolution run can be well approximated by 

 

eddy = κ∇ · ∇ 

D q 

D t 
, (4)

here κ is a scalar, independent of space or time. The value of κ
s estimated by coarse-graining high-resolution simulations onto

 coarse resolution grid. Unlike common closures, the parameter

is not a diffusivity or viscosity coefficient, as it has units of

ength squared. As discussed in PMZ14, the proposed closure, ob-

ained by imposing several mathematical and physical constraints

uch as frame-invariance and memory, can be expressed as a

on-Newtonian second order Rivlin–Ericksen-like stress ( Ericksen,

956; Rivlin, 1957 ) using 

D 

D t 
∇q + ∇u 

T · ∇q = ∇ 

D q 

D t 
. (5)

here ∇u is a rank-2 tensor (i.e., a matrix) given by 

u 

T = 

⎡ 

⎣ 

∂u 

∂x 

∂v 
∂x 

∂u 

∂y 

∂v 
∂x 

⎤ 

⎦ . (6)

ualitatively, the parametrization can amplify or weaken existing

radients of PV. The parametrization is mainly applicable at eddy-

ermitting resolution in which instabilities can create meanders

nd deformations of the flow field ( Fig. 2 b) which are required for

he parametrization to perform most effectively. 

The robustness of the relationship between the diagnosed eddy

orcing ( S ∗) and the proposed parametrization is thoroughly quan-

ified in PMZ14 by constructing probability distribution functions

PDFs) and conditional probability distribution functions (cPDFs) 1 .

he diagnosed eddy forcing PDFs conditional on the expression

4) are used to assess the degree to which the “true” eddy forcing

orrelates with ∇ 

2 D q 
D t for each layer. PMZ14 find, using the condi-

ional PDFs P (S ∗| ∇ 

2 D q 
D t ) , a very strong linear correlation between

he two quantities, such that the mean of the PDFs of the eddy

orcing term conditional on ∇ 

2 D q 
D t can be used as a deterministic

arametrization using a constant coefficient κ , where κ is negative

ith no spatio-temporal dependence. 2 

The correlation can exhibit large deviations from its mean for

arge values of eddy PV forcing (i.e., the PDFs are not delta func-

ions). Excursions in the eddy forcing can reach more than 40%

f its mean value. A single constant coefficient, or a single value

f the parametrized eddy forcing, therefore cannot adequately

epresent the behaviour of highly turbulent eddying regions.

arge values of eddy forcing parametrization, ∇ 

2 D q , describe
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Fig. 1. Statistically steady state streamfunction ψ in the upper layer for the model runs at horizontal resolutions of (a) 7.5 km (eddy resolving model), (b) 30 km (eddy 

permitting model) with F eddy 
m = 0 ; (c) 30 km (eddy permitting model) with the deterministic parametrization, F eddy 

m � = 0 ; (d) 30 km (eddy permitting model) with the 

stochastic parametrization, F eddy 
m � = 0 . 
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arge growth rate of nonlinear instabilities developing in the flow.

uch nonlinear processes can exhibit large fluctuations which

re reflected in skewed PDFs, as found in PMZ14. Therefore a

tatistical (stochastic) parametrization of ocean eddies might be

ore appropriate when attempting to capture the effect of eddies

n highly turbulent jet regions. In the following two sections we

escribe the implementation of a deterministic and stochastic

ersion of the eddy parametrization in the QG model. 

.2. Deterministic parametrization 

Assuming that a constant (and negative) value for κ can be

sed in (4) , the QG model equation with the deterministic eddy

arametrization is given by 

D q 

D t 
≡ ∂q 

∂t 
+ ∇ · (u q ) = κ∇ 

2 D q 

D t 
− ν∇ 

6 ψ + F wind . (7)

he parametrized equation can be rewritten as 

1 − κ∇ 

2 
)D q 

D t 
= −ν∇ 

6 ψ + F wind , (8)

r 

D q 

D t 
= 

(
1 − κ∇ 

2 
)−1 (−ν∇ 

6 ψ + F wind 
)
. (9) 

sing coarse-grained high-resolution experiments, PMZ14 observe

hat the value of κ , which was found to be negative, only scales

ith the grid size of the coarse-resolution model. The operator
cting on the PV tendency and advective terms, 
(
1 − κ∇ 

2 
)
, be-

aves as a roughener of total forcing in the PV equation. This

perator could be viewed as a filter acting to replace the scales of

otion that are truncated by the coarse grid scale of the model,

ith the strength of the filter being determined by the value of κ . 

Due to the singularity present at wavenumbers K 

2 = −1 /κ, in-

erting the operator 
(
1 − κ∇ 

2 
)

t o solv e Eq. (9) is not feasible. In-

tead, we numerically solve Eq. (7) by evaluating κ∇ 

2 D q 
D t at the

revious timestep, so that the parametrization is implemented as 

∂q 

∂t 
+ u · ∇q = κ∇ 

2 D q 

D t 
(t − �t) − ν∇ 

6 ψ + F wind , (10)

here �t is the model timestep increment (the hyperviscous

erm is also commonly calculated at the previous time step for

umerical stability) and other terms are calculated at time t .

he implementation of the deterministic parametrization comes

ith the same computational cost as biharmonic viscosity. The

mplementation only requires saving the Lagrangian (material)

erivative of potential vorticity at the previous timestep and

alculating its Laplacian. 

Using a large range of numerical simulations under different

orcing and dissipation and different geometric configurations,

MZ14 estimate the mean κ value as −( α�x ) 2 , where α ≈ 0.45.

o avoid the singularity present at wavenumbers K 

2 ≈ −1 / ( α�x ) 2 ,

e adjust the value of κ such that | κ| = ( 0 . 31�x ) 2 in order to

nsure numerical stability (see Section 5.1 for further discussion). 
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Fig. 2. Snapshots of potential vorticity, q , in the upper layer for the model runs at horizontal resolutions of (a) 7.5 km (eddy resolving model), (b) 30 km (eddy permit- 

ting model) with F eddy 
m = 0 ; (c) 30 km (eddy permitting model) with the deterministic parametrization, F eddy 

m � = 0 ; (d) 30 km (eddy permitting model) with the stochastic 

parametrization, F eddy 
m � = 0 . 
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3.3. Stochastic parametrization 

Even if the deterministic parametrization shows a useful rela-

tionship between the eddy properties and the large scale flow, it

remains difficult to predict the behaviour of turbulent flow with

a single deterministic relationship based on the resolved scales.

The turbulent nature of the flow field suggests the use of a non-

deterministic closure to describe the eddy-mean flow interaction.

PMZ14 showed that probability distribution functions of the eddy

forcing conditional on the large scale flow, ∇ 

2 D q 
D t , can be recon-

structed given solely information from the coarse-resolution QG

model. One main characteristic is that the standard deviation and

the higher-order moments of the PDF increase with the Reynolds

number and decrease with the coarse-graining grid box size. 

In the eddy-permitting range considered here, the standard

deviation can be expressed to a very good approximation as

σ = γ τ0 
�xHρ0 

, with γ = 7 . 9 × 10 −4 (a non-dimensional parameter).

The standard deviation scales linearly with the wind stress and

exhibits an inverse dependence on the resolution. The standard

deviation also scales linearly with the PV variance, such that

σ = γq 
σ 2 

q H 

�x 
with γq = 1 . 7 (also non-dimensional) and is valid

whether we consider wind or buoyancy forcing (see PMZ14 for

sensitivity to forcing, resolution and model configuration). Note

that using coarse-graining diagnostics, we find that the maximum
 �  
alue of σ is always proportional to the mean value of the eddy

orcing, with a scale-independent proportionality constant, such

hat σ∝ �x 2 (not shown). Therefore, as �x goes to zero, the mean

nd standard deviations also tend to zero. The standardized skew-

ess and kurtosis (i.e., skewness and kurtosis scaled by the stan-

ard deviation) were shown to be roughly independent of model

arameters and found to be O (1), with values μ3 ≈ 0.61 and μ4 ≈
.4, respectively. The resolved quantities therefore fully determine

he standard deviation, skewness, and kurtosis of the PDFs. 

For each run, we use the relationships found in PMZ14 and

escribed above to reconstruct the PDFs, based on a maximum

ntropy procedure ( Mead and Papanicolaou, 1984 ), and use them

s the basis for a stochastic parametrization. The implementation

f the stochastic parametrization can thus be written as 

∂q 

∂t 
+ u · ∇q = F 

[ 
∇ 

2 D q 

D t 
(t − �t) , �x, H, τ0 

] 
− ν∇ 

6 ψ + F wind , (11)

here the stochastic term F is sampled according to the recon-

tructed conditional PDFs, with spatial and temporal scales, �x stoc 

nd �t stoc , respectively. The scales determine intervals at which

he stochastic term F is selected before being recalculated. In all

he runs presented here, we diagnose the value of ∇ 

2 D q 
D t 

(t − �t)

t every grid box ( �x stoc = �x ), then sample F from the corre-

ponding conditional PDFs P (S ∗| ∇ 

2 D q 
D t 

) ; the value of F is kept for

t stoc = 1 day. The timescale is chosen by using the coarse-grained
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nformation which showed a decorrelation time-scale of about

 day for the eddy forcing term. The results deteriorate if the

imescale is too short (on the order of a few timesteps), which

urns the parametrization into a simple AR1 process and is not an

ccurate representation of the eddy forcing (see Berloff, 2005b ).

t is important to reiterate that the stochastic parametrization

s not equivalent to simply adding random fluctuations: the

tochastic term is sampled from a PDFs given a value of the local

 

2 D q 
D t 

(t − �t) ; it is therefore strongly dependent on the resolved

ow field. For this implementation there is no rescaling of the

ean or any other moments of the PDFs. All results presented in

he paper are using the above implementation. The computational

ost associated with this stochastic parametrization is about 10%

ore compared to the deterministic parametrization. The cost can

e reduced by changing the spatial and temporal decorrelation of

he stochastic term ( �x stoc and �t stoc , respectively) or by slightly

hanging the implementation. 

A slightly faster implementation can be introduced. The follow-

ng implementation, similarly to the deterministic runs, requires

uning of the mean of the PDFs to ensure numerical stability by

voiding the singularity discussed in Section 3.2 . This additional

mplementation is briefly outlined below, however readers can

kip directly to Section 4 for the results of the simulations de-

cribed above. We can decompose the eddy parametrization into a

eterministic and stochastic term such that 

 

eddy = κ∇ 

2 D q 

D t 
(t − �t) + s ∗ × σ

[ 
∇ 

2 D q 

D t 
(t − �t) 

] 
. 

he deterministic part, κ∇ 

2 D q 
D t (t − �t) , is calculated as described

n Section 3.2 using | κ| = ( 0 . 31�x ) 2 . The stochastic term is de-

ermined as follows. The standard deviation σ of the cPDFs scales

ith ∇ 

2 D q 
D t (t − �t) , and skewness and kurtosis of the cPDFs are

tandardized moments such that the shape of the cPDFs is self-

imilar. We can therefore select a value s ∗ from a single rescaled

onditional PDF with zero mean, standard deviation of one, and

onstant moments μ3 , μ4 such that P (s ∗| μ = 0 , σ = 1 , | μ3 | , μ4 ) .

he rescaled cPDF is independent of ∇ 

2 D q 
D t . We can then rescale

 

∗ by the standard deviation of ∇ 

2 D q 
D t (t − �t) , σ

[ 
∇ 

2 D q 
D t (t − �t) 

] 
.

ith this implementation, there is no need to first check the

alue of ∇ 

2 D q 
D t (t − �t) and then choose from a specific conditional

DF. The results of this stochastic implementation are slightly

loser to the deterministic simulations than to the stochastic

imulations described using Eq. (11) , possibly due to the reduction

n κ necessary for numerical stability. 

. Results 

In this section, we analyse and compare the results of deter-

inistic and stochastic implementations at different horizontal

esolutions, with a focus on runs performed at 30 km resolution. 

Fig. 1 shows the statistically steady streamfunction ψ for the

igh resolution truth (7.5 km horizontal resolution) and for the

nparametrized and parametrized eddy permitting runs at 30 km

orizontal resolution. The parametrized runs show clear improve-

ent in the steady state streamfunction for the deterministic

 Fig. 1 c) and stochastic ( Fig. 1 d) implementations, compared to

he unparametrized run at the same resolution ( Fig. 1 b). The

teady state streamfunction for the parametrized simulations are

loser to the truth ( Fig. 1 a) than the unparametrized run. The

trength of the subtropical gyre is marginally increased in the

arametrized runs to 14.71 Sv and 15.22 Sv, compared to 14.48 Sv

n the unparametrized run and 15.54 Sv in the high resolution run.

he strength of the subpolar gyre is significantly improved from

17.40 Sv in the unparametrized run, to −18.92 Sv and -21.6 Sv

n deterministic and stochastic runs, compared to −24.75 Sv in
he high resolution run. Another feature is the improvement of

he separation point of the jet in the parametrized runs. In the

nparametrized run, the jet separates from the western boundary

00 km further south than in the high resolution. In the deter-

inistic and the stochastic runs, the separation point is located

nly 210 km and 60 km south of the separation point in the high

esolution run, respectively. 

Snapshots of potential vorticity for the different model runs,

aken after 250 years of model run, are shown in Fig. 2 , only for

llustrative purposes. The unparametrized run shows the presence

f weak turbulence and also some grid scale numerical noise

panel b). However the high resolution (panel a) and parametrized

uns (panels c and d) exhibit a lot more turbulence and fila-

entation. The introduction of the parametrization results in the

nhancement of gradient of potential vorticity but also attenuates

he numerical noise present in the unparametrized simulation (see

ection 5 for discussion). 

Fig. 3 shows the steady state kinetic energy as a function of

atitude at x = 120km and x = 300km , further highlighting the

resence of a strong jet detaching from the western boundary in

he high-resolution simulation (black). The zonal eddy momentum

tress divergence, ∇ · u ′ u 

′ , is shown in panels (c) and (d) for the

ame longitudes as panels (a) and (b), where primes are anomalies

rom the time mean denoted by an overline ( Waterman and

ayne, 2012 ). In the unparametrized simulation (blue), the jet is

eaker and broader than in the high resolution simulation. The

eterministic (red) and stochastic (grey) parametrizations lead to a

harpening of the jet and an increase in the zonal velocity (hence

n the kinetic energy) in the core of the jet. The jet sharpening is

 direct consequence of the parametrization, which enhances the

ddy momentum stress divergence. Another notable impact of the

arametrization is to inject energy back into the large-scale flow,

s shown in Fig. 4 . The introduction of the eddy closure vastly

mproves the spectrum of kinetic energy over all wavenumbers

y reducing the amount of energy dissipated at small scales and

llowing energy spuriously lost to be backscattered. 

This can further be explored by considering the turbulent en-

rgy budget ( Arbic et al., 2007; Larichev and Held, 1995; Scott

nd Arbic, 2007; Straub and Nadiga, 2014 ). As shown previously by

hese authors, the spectral budget for total energy in the QG model

an be expressed as the sum of the contribution in Fourier space

rom forcing, bottom friction, hyperviscosity and from the redistri-

ution of energy across scales from the spectral transfer of kinetic

nd available potential energy (APE). Fig. 5 shows the statistically

teady state budget of the different model simulations. For the

igh-resolution run at a resolution of 7.5 km (panel a), the spec-

ral characteristics are reminiscent of other QG and primitiveequa-

ion models, and of baroclinic turbulence ( Charney, 1971; Rhines,

977; Salmon, 1978 ). Forcing and dissipation mostly balance each

ther, and the spectral transfer of kinetic and APE summing up to

ero for all wavenumbers. The transfer of kinetic energy has a large

egative lobe (sink of kinetic energy) at higher wavenumbers, and

 large positive lobe (source of KE) at smaller wavenumbers. Inte-

rating this transfer (starting from large wavenumbers) would pro-

uce a single, large negative lobe representing a net inverse trans-

er of energy to larger scales. APE is extracted at large scales and

ransferred down-scale toward the deformation scale. At the defor-

ation scale, energy is converted to kinetic energy and this kinetic

nergy is transferred to large scales. Our parametrization is at-

empting to reproduce this energetic behaviour. There is no trans-

er of kinetic energy toward small scale, therefore as expected the

erm due to hyperviscosity is very small at a resolution of 7.5 km. 

At a resolution of 30 km ( Fig. 5 b), without an eddy parametriza-

ion, our results are similar to Scott and Arbic (2007) ; Hallberg

2013) ; Jansen and Held (2014) with energy being lost near the

rid scale (roughly the deformation scale) due to hyperviscosity,
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Fig. 3. Kinetic energy as a function of latitude at longitudes (a) x = 120 km and (b) x = 300 km for the following runs with horizontal resolution: 7.5 km (black), 30 km 

unparametrized (blue), 30 km with deterministic parametrization (red), 30 km with stochastic parametrization (grey). Eddy momentum stress divergence as a function of 

latitude at (c) x = 120km and (d) x = 300km , same legend as for (a) and (b). (For interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 
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and therefore only part of the energy being fluxed towards small

scale as APE is then fluxed upscale as kinetic energy. Both the

sink of kinetic energy at higher wavenumbers and the source at

lower wavenumbers are significantly smaller compared to the

high-resolution case, thus leading to a reduced inverse transfer

of kinetic energy to larger scales. As a consequence, there is less

kinetic energy at large scales and a reduction of the APE being

extracted. When the deterministic parametrization is introduced
 Fig. 5 c), energy is returned mostly at scales only somewhat larger

han the deformation wavenumber as seeing by the increase in the

ize of both the positive and negative lobes in spectral transfer. The

ost dramatic improvements are when the stochastic parametriza-

ion is introduced ( Fig. 5 d), a larger portion of kinetic energy is

eing fluxed back up to the larger scales and more closely matches

he kinetic energy transfer of the high-resolution simulation. These

esults are is in agreement with our other diagnostics. 
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Fig. 4. Kinetic energy as a function of wavenumbers for the following runs with 

horizontal resolution: 7.5 km (black), 30 km unparametrized (blue), 30 km with 

deterministic parametrization (red), 30 km with stochastic parametrization (grey). 

(For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 
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Fig. 6 summarizes the impact of the deterministic and stochas-

ic parametrizations at different resolutions. The mean-flow error

s vastly reduced in the vicinity of the western boundary current

nd its extension (cf. panels c and d with b). The deterministic

arametrization leads to the creation of a jet extension, thereby
ig. 5. Spectral budget of total energy as a function of horizontal wavenumbers K for the 

0 km with deterministic parametrization, (d) 30 km with stochastic parametrization. The

y bottom friction (red), hyperviscosity (green), and spectral transfer of kinetic (violet) an

nd by dK / K . The black vertical lines denote the deformation scale. (For interpretation o

ersion of this article.) 
educing the error in the streamfunction away from the recircu-

ation region. However, the introduction of the stochasticity vastly

mproves the recirculation gyres and leads to an error of less than

 Sv at any location in the basin. At eddy permitting resolutions

30 and 60 km), the deterministic version of the parametrization

eads to about 50% error reduction, and the stochastic component

o a further 20 to 40%. At coarser resolution (120 km), there is

 very small improvement in the mean flow when the deter-

inistic parametrization is implemented, and there is no added

alue to the implementation of stochastic parametrization when

onsidering the mean flow error. 

Despite the limited number of tests at different resolutions,

t appears that there is a cut-off at which stochasticity impacts

pon the mean flow compared to the deterministic parametriza-

ion, which is roughly equal to the Rossby radius of deformation.

urther tests will be required to validate the critical or cut-off

esolution. Additionally, the reduction in mean flow error at

oarse resolution (120 km) is rather small which is in agreement

ith our initial assumption that the parametrization will be suc-

essful at eddy-permitting resolution by reinforcing the existing

radients. 

Figs. 7 and 8 show that not only the mean flow is improved

ut also its spatial and temporal variability. The absence of a me-

ndering jet in the low resolution run without any eddy closure

s reflected by the loss of variance in the centre of the domain

 Fig. 7 ). The deterministic parametrization is shown to improve

he variance significantly, especially at low frequency ( Fig. 8 ). The

tochastic parametrization has a positive impact at high-frequency,

s expected by the introduction of random fluctuations, but also

t low frequency. Therefore the high-frequency variability of

esoscale eddies can have a significant impact on modulating low

requency variability ( Berloff et al., 2007 ). 
following runs with horizontal resolution: (a) 7.5 km, (b) 30 km unparametrized, (c) 

 different terms in the spectral energy budget are due to forcing (blue), dissipation 

d available potential energy (yellow). All terms are normalised by the total energy 

f the references to colour in this figure legend, the reader is referred to the web 
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Fig. 6. Mean Error relative to the high resolution truth: (a) Root-mean-square error, defined as the L2 norm of the low resolution runs with respect to the high resolution 

truth, as a function of resolution; Difference between the time-mean streamfunction of the high-resolution simulation and the 30km low-resolution (b) unparametrized, (c) 

with deterministic parametrization, (d) with stochastic parametrization. 
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Fig. 9 shows the error in variance for the different runs: deter-

ministic, and stochastic with different moments for the reconstruc-

tion of the cPDFs. The ability of the stochastic parametrization to

reinforce or introduce variance is clear at all resolutions, even at

very coarse resolution. There is some benefit to include non-zero

skewness and kurtosis of the cPDFs. For the run at 120 km hori-

zontal resolution, the injection of non-Gaussian stochastic forcing

leads to a non-zero contribution to the variance. The deterministic

parametrization, on the other hand, increases the variance of the

eddy permitting runs only, with no visible impact for the coarse

resolution run. 

5. Discussion 

In the previous section, we showed that the parametrization

improves the energy spectrum as a function of frequency and

wavenumber, and the jet strength and its separation point, while

keeping the model numerically stable. We now discuss several

aspects of vorticity, energy and enstrophy budget to provide some

insights concerning the results described above. We also propose

an implementation for a primitive equation model based on our
esults. Most aspects are discussed in the context of the deter-

inistic parametrization but the stochasticity is discussed as well

ince its inclusion is beneficial to the representation of the mean

nd variance. 

.1. Vorticity forcing and stability criteria 

Consider the parametrized potential vorticity equation in spec-

ral space by taking the Fourier Transform of ( Eq. (7) ), we obtain

similarly to Eq. (12) in PMZ14) 

̂ D q 

D t 
= | κ| K 

2 ̂
 D q 

D t 
+ K 

6 ν ̂ ψ + ̂

 F wind , 

= 

1 

1 − | κ| K 

2 

(
K 

6 ν ̂ ψ + ̂

 F wind 
)
, (12)

here κ < 0, i.e. κ = −| κ| ; ̂ f (K , t) is the spatial Fourier trans-

orm of f ( x , t ), x is the position vector, K = (k, l) is the total 2D

avenumber with modulus K = | K | = 

√ 

k 2 + l 2 , and 

̂ ∇ f = i K ̂

 f . The

rgument ( K , t ) is omitted for convenience. As the total wavenum-

er K increases (i.e., the wavelength decreases), the amplitude of
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Fig. 7. Standard Deviation of the Eddy Kinetic Energy for the following runs with horizontal resolution: (a) 7.5 km, (b) 30 km unparametrized, (c) 30 km with deterministic 

parametrization, (d) 30 km with stochastic parametrization. 
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o  
he Fourier transform of PV forcing increases (see Eq. (12) and Fig.

 of PMZ14). 

The value of κ in the simulations required some tuning to

eep the model numerically stable and this is in part a direct

onsequence of Eq. (12) . The amplitude of the Fourier Transform

f PV forcing has a singularity at K 

2 = 

1 
| κ| , for a length scale of

 | κ| . However, the maximum wavenumber the model can resolve

s equal to K max = 2 π/ 2�x = π/ �x . Therefore avoiding the sin-

ularity requires that 1 − | κ| K 

2 
max > 0 , which using | κ| = (α�x ) 2 

eads to the condition (α�x ) 2 < K 

2 
max = �x 2 /π2 . The stability con-

ition is thus α < 1 /π = 0 . 318 , justifying the choice of α = 0 . 31

or numerical stability (rather than the diagnosed value of roughly

.45 from PMZ14). 

The tuning of κ is also sensitive to the sub-grid viscous dis-

ipation, and the likely build-up of small scale enstrophy (see

elow). For a Laplacian viscous term (as used in PMZ14), the

aximum possible values of κ for the deterministic and stochas-

ic implementations are κ = −(0 . 27�x ) 2 and κ = −(0 . 29�x ) 2 ,

espectively. One can increase κ if the viscosity coefficient is

lso increased, but the influence of the parametrization is then

amped by the dissipation, making it therefore inefficient to

epresent up-gradient momentum fluxes. Numerical stability is

mproved by raising the power of the Laplacian operator, which

ncreases the scale-selective behaviour of the dissipative term,

llowing for a stronger forcing with larger values of | κ |. For the
tochastic implementations, the effective value of parametrization

henceforth of | κ |) is always larger than that of the deterministic

ase. This reflects the fact that stochastic fluctuations can have a

tabilizing effect on the model solution. As pointed out in Palmer

2012) , the tuning of a stochastic parametrization should not be

one starting from the deterministic version. 

.2. Relationship of PMZ14 to hyperviscosity 

We can approximate the effective viscosity term, i.e. the com-

ination of the biharmonic viscosity and the RE parametrization

n Eq. (12) as 

 

 ν,subgrid = 

1 

1 − K 

2 | κ| 
(
K 

6 ν ̂ ψ 

)
= 

(
1 + | κ| K 

2 + 

(| κ| K 

2 
)2 + 

(| κ| K 

2 
)3 + . . . 

)(
K 

6 ν ̂ ψ 

)
= K 

6 ν ̂ ψ 

∞ ∑ 

n =0 

(| κ| K 

2 ) 
n 

(13) 

sing a Taylor expansion 1 / (1 − x ) = 1 + x + x 2 + x 3 + · · · , valid for

 x | < 1. The subgrid effective dissipation differs in its dependence

n K from that in the unparametrized equation. The infinite series

or the effective viscosity corresponds to a dissipative behaviour

n the Fourier amplitude of D q /D t , reminiscent of hyperdiffusive
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Fig. 8. Kinetic energy as a function of frequency for the following runs with hori- 

zontal resolution: 7.5 km (black), 30 km unparametrized (blue), 30 km with deter- 

ministic parametrization (red), 30 km with stochastic parametrization (grey). (For 

interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 

Fig. 9. Error in variance as a function of resolution for the different low- 

resolution runs: unparametrized (blue), deterministic parametrization (red), 

stochastic parametrization (grey), Gaussian stochastic parametrization (black, as- 

suming skewness and kurtosis are negligible). (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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closures (e.g. ν∇ 

6 ψ , ν∇ 

8 ψ ...), hence removing energy and en-

strophy at small scales. Recall from Eq. (12) that avoiding the

singularity requires the value of κ to be chosen so that | κ | K 

2 <

1 for any wavenumber K resolved by the model. We therefore

have (| κ | K 

2 ) n < 1 for n ≥ 0, and hence the magnitude of the

terms in the series of Eq. (13) decreases with increasing n . The

effective viscosity in spectral space thus corresponds to a series

of hyperviscous terms of increasing order, where the first and

largest term is the explicitly specified hyperviscosity (as defined

in Section 2 ) and the subsequent terms could be characterized as

higher-order hyperviscous corrections. 
Hyperviscous closures are motivated by the desire to enhance

issipation at very small scales while retaining as much resolved

urbulence as possible in the slightly larger scales, i.e. to create

 sharper transition between regions of spectral space in which

dvective and dissipative behaviour dominates ( Holloway, 1992 ).

he addition of higher-order hyperviscous corrections (in spectral

pace) should further enhance the dissipation at the smallest re-

olved scales, with increasingly larger effect as the scale decreases.

he effect of the parametrization can be interpreted as modifying

he scale-selectivity of the dissipative term. Unlike hyperviscosity,

he parametrization ( Eq. (5) ) involves nonlinear terms and a tem-

oral derivative. Another interpretation, given in PMZ14 consider-

ng the terms in Eq. (5) , is to view the parametrization as acting

o enhance or weakens flow parcels depending on their “history”. 

As discussed in Section 3 , a practical workaround to implement

he parametrization is to use D q 
D t at the previous timestep, so that

he timestepping can remain explicit. The parametrized model

quation (1) , can be written as 

D q 

D t 
(t) = D(t) + F wind (t) + F eddy (t − �t) , 

= D(t) + F wind (t) + κ∇ 

2 D q 

D t 
(t − �t) . (14)

pplying (14) recursively we obtain 

D q 

D t 
(t) = D(t) + F wind (t) + κ∇ 

2 

×
[ 
D(t − �t) + F wind (t − �t) + κ∇ 

2 D q 

D t 
(t − 2�t) 

] 
= D(t) + F wind (t) + κ∇ 

2 
[
D(t − �t) + F wind (t − �t) 

]
+ κ2 ∇ 

4 
[ 
D(t − 2�t) + F wind (t − 2�t) + κ∇ 

2 D q 

D t 
(t − 3�t) 

] 
= · · ·

eading to 

D q 

D t 
(t) = 

m ∑ 

n =0 

(κ∇ 

2 ) n 
[
D(t − n �t) + F wind (t − n �t) 

]
, (15)

here for n = 0 we set ( κ∇ 

2 ) 0 ≡ 1. The total forcing of potential

orticity at time t involves successive applications of the operator

∇ 

2 to the wind forcing F wind and dissipation D (as defined in

ection 2 ) at previous times. 

We can neglect terms involving ∇ 

2 n F wind , for n ≥ 1, assuming

hat the wind forcing is large-scale and constant in time, so that

uch higher order Laplacians are increasingly small. The evolution

q. (15) can then be written as 

D q 

D t 
(t) = F wind (t) −

m ∑ 

n =0 

(κ∇ 

2 ) n ν∇ 

6 ψ(t − n �t) 

= F wind (t) − ν∇ 

6 [ ψ(t) + κ∇ 

2 ψ(t − �t) 

+ κ2 ∇ 

4 ψ(t − 2�t) + · · · ] 

= F wind (t) − ν∇ 

6 [ ψ(t) − | κ|∇ 

2 ψ(t − �t) 

+ | κ| 2 ∇ 

4 ψ(t − 2�t) + · · · ] , (16)

here the bottom drag contribution to D has been ignored, and

he last line uses the fact that κ < 0. In spectral space we then

ave ̂ D q 

D t 
= 

̂ F wind + νK 

6 [ ̂  ψ (t) + | κ| K 

2 ̂ ψ (t − �t) 

+ | κ| 2 K 

4 ̂ ψ (t − 2�t) + · · · ] (17)

ince �t � = 0, the relative signs of ̂ ψ (t) , ̂ ψ (t − �t) , ̂ ψ (t − 2�t) ...

an differ, and the term need not be strictly dissipative. This

ontrasts with the behaviour expected when D q /D t is evaluated

t the present timestep ( �t = 0 ), as the different terms would
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ct as hyperviscosity (see Eq. (13) ). However, ̂ ψ (t) in most cases

ould have the same sign as ̂ ψ (t − �t) , assuming an AR1 process

ith memory of order the eddy timescale, such that Eq. (17) does

ehave as a dissipative term. 

An infinite series of terms is not warranted for implementation

n a numerical model nor might be valid for all scales relevant

ere (indeed, our attempts of using a selected number of terms

howed that the simulations did not converge). However, the

eries did provide some insights. We interpret the infinite series of

yperviscous terms as a change in the scale-selective dissipation

f the flow, modifying the overall dissipation and the interaction

etween scales. However, improvements in the simulation are not

olely due to changes in the overall dissipation, but also via an

pscale energy transfer. 

.3. Energy and enstrophy 

Since the energy is spuriously being dissipated at small-scales

n non-eddy resolving models, inhibiting energy backscatter from

mall to large scales ( Jansen and Held, 2014 ), this energy needs

o be reinjected on average by our parametrization. The energy

endency due to the parametrization is given by 

∂E 

∂t 
∝ −ψF eddy 

= ψ | κ|∇ 

2 D q 

D t 
, (18) 

here E is the sum of the kinetic energy, 1 
2 (∇ψ) 2 , and APE

f 2 

2 N 2 
(∂ z ψ) 2 for all three layers. The energy tendency due to the

arametrization is then the product of ψ and the potential vor-

icity eddy forcing, | κ|∇ 

2 D q 
D t . The nonlinear energy tendency term

ue to the parametrization can be further interpreted as follows. 

Suppose that q following a parcel is increasing, D q 
D t > 0 , and

hat ∇ 

2 D q 
D t < 0 . If this occurs on a cyclonic eddy, i.e. ψ < 0, then

∇ 

2 D q 
D t > 0 . The parametrized energy term | κ| ψ∇ 

2 D q 
D t is thus

ositive, yielding an energy source. Correspondingly, ∇ 

2 D q 
D t > 0

nd ψ > 0 yield an energy source for an anticyclonic eddy. This

uggests that the effect of the closure is to increase the kinetic

nergy of the flow when the potential vorticity tendency on a

arcel has the same sign as the relative vorticity of the parcel.

ssuming that the effect of the eddies is small compared to the

ind forcing and dissipation, leading to D q 
D t ≈ F wind + D, the effect

f the eddies will be to amplify the energy input of the net

orcing, i.e. the residual of the wind forcing plus the dissipation

with no effect if these are zero). Likewise, if ∇ 

2 D q 
D t has opposite

ign to the vorticity, there will be an energy sink, suggesting the

arameterisation should act to amplify the dissipation of energy.

ur parametrization therefore requires some input of energy from

he wind (or buoyancy) forcing, in addition to the presence of

mall scale deformation (as discussed earlier). The input of energy

ill then modify the velocity, and the nonlinear advective term,

eading to an indirect energy transfer between scales. We argued

bove that the effect of the closure on the dissipation resembles

he effects of a hyperdiffusion on q . This suggests that it is dissi-

ative for q under certain assumptions. The fact that it can behave

s an energy source, but also dissipate enstrophy, is the desired

ualitative behaviour for a parametrization of QG turbulence

 Charney, 1971 ). To further understand the contribution of the

arametrization to the enstrophy budget, consider the enstrophy

endency due to the parametrization: 

∂G 

∂t 
∝ qκ∇ 

2 D q 

D t 
, (19) 
here G = 

1 
2 q 

2 is the enstrophy. Using the identity 

∇ ·
(

q ∇ 

D q 

D t 

)
= ∇ 

D q 

D t 
· ∇q + q ∇ · ∇ 

D q 

D t 

= ∇ 

D q 

D t 
· ∇q + q ∇ 

2 D q 

D t 
, 

he enstrophy tendency (19) can be expressed as 

∂G 

∂t 
∝ κ∇ ·

(
q ∇ 

D q 

D t 

)
− κ∇ 

D q 

D t 
· ∇q. (20)

he first term on the right hand side of Eq. (19) does not con-

ribute to the global enstrophy budget. The second term can act as

 sink or source of enstrophy depending on the relative orientation

f ∇ 

D q 
D t with ∇q . In a location where D q 

D t is tending to amplify q

nomalies, ∇ 

D q 
D t will tend to point in a similar direction as ∇q

o that ∇ 

D q 
D t · ∇q > 0 , yielding an enstrophy source, and similarly

n enstrophy sink if the tendency is dissipative, meaning that D q 
D t 

s damping the q anomalies. Hence κ < 0 is required for self-

onsistency, and the parametrization can provide both a source

nd sink of enstrophy. This demonstrates that both locally and

lobally enstrophy can build up in the model, further affecting the

umerical stability of the model. We earlier highlighted that some

uning of κ was necessary to maintain numerical stability and that

he value obtained (and thereby our results) were sensitive to the

iscous term used ( ∇ 

4 ψ vs. ∇ 

6 ψ). 

The improvement seen in the numerical simulations presented

n this work are therefore due to a careful combination of the

ub-grid eddy dissipation (here ν∇ 

6 ψ) and the eddy parametriza-

ion ( κ∇ 

2 D q 
D t ). For the parametrization to be effective, we must

nsure that the build-up of enstrophy at the grid-scale does not

verwhelm the solution and that the nonlinear upscale energy

ransfer is not inhibited by the viscous terms. 

The stochastic backscatter is more effective than the deter-

inistic nonlinear backscatter. It is difficult to disentangle the

easons for the differences. However, we hypothesize that it is the

esult of a combination of several factors. As described previously,

he noise has a stabilizing impact on the model simulations.

he nonlinearity of the model equation might be pushing the

tochastic model into a new (and more stable) regime that the un-

arametrized or parametrized deterministic models cannot attain.

his can be a consequence of the sampling of the tails of the PDFs

f eddy forcing (with non-zero kurtosis), which the deterministic

arametrization cannot sample adequately. The infrequent but

xtreme values of eddy forcing can have a significant impact

n the scale interaction in turbulent flows, as illustrated here.

urthermore, the probabilistic forcing might avoid the frequent

orcing at the singularity, stabilizing the model. 

.4. Implementation into a primitive equation model 

The implementation of our parametrization is tied to a QG

otential vorticity equation. Current ocean climate models do

arry momentum, temperature and salinity as prognostic variables

ut not potential vorticity which is only diagnosed. We propose

wo possible ways forward to implement the parametrization into

 primitive equation model. The proposed implementations below

re defined by imposing a total QG potential vorticity forcing as

iven by Eq. (4) . Each implementation provides advantages but

lso caveats. 

Two-dimensional implementation: The parametrization can be 

mplemented into the momentum equations, without adding a

ontribution into the buoyancy equation, if we assume that the

ddy forcing is purely 2D. This does not mean that the buoyancy

orcing is neglected but rather that it projects directly on the

omentum. The u and v momentum tendencies due to the eddy
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parametrization can be expressed as follows 

D u 

D t 
= −κ

∂ 

∂y 

D q 

D t 
(21)

D v 
D t 

= κ
∂ 

∂x 

D q 

D t 
, 

where q is the QG potential vorticity as defined in Eq. (2) . 

The curl of the momentum tendency then leads to the follow-

ing vorticity forcing 

∂ 

∂x 

D v 
D t 

− ∂ 

∂y 

D u 

D t 
= κ

[
∂ 2 

∂x 2 
D q 

D t 
+ 

∂ 2 

∂y 2 
D q 

D t 

]
= κ∇ 

2 D q 

D t 
. (22)

The newly calculated velocity components from Eq. (21) are the

residual velocity components which include the resolved and

eddy-parametrized contribution. The residual velocity can then be

used to advect active and passive tracers in ocean climate models.

Online calculations of the potential vorticity and its Lagrangian

tendency are therefore necessary for the implementation in a

primitive equation model. The stochastic component can be used

as described before, however one might wish to diagnose the PDFs

of ∂ 
∂y 

D q 
D t and 

∂ 
∂x 

D q 
D t , rather than ∇ 

2 D q 
D t . Other possibilities includes

keeping only the relative vorticity in Eq. (21) (namely, −κ ∂ 
∂y 

D ζ
D t 

and κ ∂ 
∂x 

D ζ
D t ) for a slightly simpler deterministic implementation. 

Three-dimensional implementation: We define the quasi-

geostrophic potential vorticity q as 

q = q u + q b (23)

where q u is the relative and planetary vorticity and q b is the

stretching vorticity such that 

q u = ∇ 

2 ψ + βy (24)

q b = 

∂ 

∂z 

(
f 2 0 

N 

2 

∂ψ 

∂z 

)
. (25)

Let us define F, G and B as the forcing terms due to the

parametrization on the right hand side of the zonal momentum,

meridional momentum and buoyancy equations, respectively. The

QG PV tendency due to eddy parametrization via the forcing terms

F, G and B can be estimated by deriving an equation for QG PV

and is therefore 

D q 

D t 
= 

∂G 

∂x 
− ∂F 

∂y 
+ 

∂ 

∂z 

(
f 0 

N 

2 
B 

)
. (26)

Let 

F = −κ
∂ 

∂y 

D q u 

Dt 
− (κ − κb ) 

∂ 

∂y 

D q b 
Dt 

(27)

G = κ
∂ 

∂x 

D q u 

Dt 
+ (κ − κb ) 

∂ 

∂x 

D q b 
Dt 

(28)

B = κb ∇ 

2 D b 

D t 
(29)

where b = f 0 ψ z is the buoyancy which can be shown to yield the

following QG PV forcing 

D q 

D t 
= κ∇ 

2 D q 

D t 
, (30)

i.e. the PZM14 closure. The arbitrary parameter κb has been in-

troduced, which partitions the buoyancy component of the forcing

between the momentum and buoyancy equations. Choosing κb = 0

gives the closure suggested in Eq. (21) . Choosing κb = κ puts all

of the forcing associated with q b into B , i.e. into the buoyancy

equation. To avoid spurious diapycnal mixing, the implementation
hould be performed on isopycnal surfaces, which would also

rovide a close match to the QG PV implementation. 

The implementation of the PZM14 closure proposed in Eq.

27) is equivalent to the proposed implementation of Eden

2010) (note the parametrizations are not equivalent, only their

mplementations in primitive equation models). Eden (2010) pro-

oses PV diffusion closure as well as a buoyancy diffusion closure.

ombining both PV and buoyancy closures yields an expression

or the eddy momentum flux forcing term that appears in the

onal-momentum equation (in a zonal-mean channel model). Sim-

larly to our approach in Eqs. (21) and (27) , Eden (2010) assumes

 specific forcing form, showing that it gives the desired forcing

n the PV equation. Eden (2010) finds that an additional term, the

gauge term”, is required to satisfy the momentum constraint. For

he PMZ14 closure, the gauge term can be any contribution to F

nd G that vanishes when 

∂G 
∂x 

− ∂F 
∂y 

is computed. 

Our simulations do not have a direct buoyancy forcing, there-

ore it is difficult to argue which implementation would lead to

ore physically based results. Furthermore, it is difficult to decide

ow to choose κb sensibly. One could attempt to diagnose it

rom high-resolution simulation model, as in PMZ14. For example,

iagnostic results from the QG high-resolution model indicate that

omentum and buoyancy contributions to ∇ 

2 Dq / Dt are of similar

agnitude (not shown), suggesting that κb = κ would a physi-

ally reasonable choice. One could use high-resolution primitive

quation models to further diagnose the different contributions

f momentum and buoyancy forcing and validate the QG results,

owever this is beyond the scope of the present study. 

Both implementations in QG, deterministic and stochastic,

o show some sensitivity to the timestep being used, as any

umerical simulation would. Yet, the sensitivity to the timestep in

he current parametrization might be more pronounced since the

mplementation requires the knowledge of the time-tendency of

onlinear quantities. In the present work, we choose to keep the

imestep of the high resolution truth and the low-resolution 30 km

uns identical. This was done to isolate the role of timestepping in

he stability of the simulations. Runs with increased timesteps up

o 4 times the present values lead to results identical to the ones

resented here. As for the QG implementation, the Lagrangian

erivative of potential vorticity is required in primitive equation,

herefore there might be some sensitivity to the timestep chosen

o integrate the model which will need to be investigated. 

Another (related) approach for an implementation in primitive

quation is to use the different parts of the non-Newtonian Rivlin–

ricksen stress directly from the momentum equations, rather than

he analogy from PMZ14. Anstey and Zanna (2017) have shown

hat the deformation part of the Rivlin–Ericksen stress in the mo-

entum equation can dissipate enstrophy, conserve energy while

imicking very closely the effect of eddies onto the mean flow. 

. Summary 

We presented a new parametrization of eddy-mean flow inter-

ction for use in eddy permitting models. The closure, based on

 form resembling a Rivlin–Ericksen stress which includes a de-

ormation and a memory term of potential vorticity gradient, can

e implemented as a deterministic or stochastic parametrization.

hen either formulation of the parametrization are implemented,

e obtained a drastic improvement in the mean state and the

ariability of the low resolution models over all wavenumbers and

requencies. 

The parametrization requires only resolved variables from the

ow resolution model, namely the Laplacian of the Lagrangian

endency of potential vorticity, ∇ 

2 D q 
D t . For the deterministic

arametrization, the parameter (which has dimensions of length

quared) depends only the low resolution grid size. For the
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tochastic parametrization, in addition to the low resolution grid

ox size, the maximum strength of the wind stress (or the vari-

nce in PV under any forcing - mechanical or thermodynamical)

nd the local stratification are necessary input to estimate the

ontribution of the eddy forcing. The deterministic and stochastic

arametrizations are therefore scale-aware, and flow-aware due to

he necessary evaluation of the local ∇ 

2 D q 
D t . 

The present results indicate there is a cut-off resolution at

hich the deterministic parametrization and the stochasticity

o not impact the mean flow. The cut-off is around the Rossby

adius of deformation, but further tests are required to ascertain

his value. For horizontal resolutions smaller than the cut-off

alue, the model produces instabilities generating barotropic and

aroclinic eddies. The effects of these eddies can be enhanced by

he parametrization, affecting local and global momentum, energy

nd enstrophy budgets. The parametrization manages to overcome

issipation, especially in regions where the eddy forcing has a

trong impact on the larger scale flow. 

The parametrization captures some key ingredients of geotro-

phic turbulence such as jet sharpening and upgradient mo-

entum fluxes, energy backscatter and enstrophy dissipation. It

equires only spatial and temporal derivatives already computed

y the model. Some numerical stability criteria must be respected

nd would need to be tested in more complex models. However

n QG, the parametrization also appears to have a stabilizing effect

n the model. It might be necessary to revisit some of the initial

ssumption when considering primitive equations such as decom-

osing the forcing into momentum and buoyancy as described in

he discussion, or combine the parametrization with an energy or

n enstrophy equation ( Marshall and Adcroft, 2010; Marshall et al.,

012 ). 

The stochastic backscatter is shown to be a more efficient

nd a more stable eddy parametrization than its deterministic

ounterpart. Stochastic parametrizations for convection have been

airly routine in atmospheric models ( Raisanen et al., 2004; Plant

nd Craig, 2008 ), especially in the grey zone (analagous to the

orizontal resolution cut-off discussed above for eddy-mean in-

eraction). Stochastic parametrizations in primitive equation ocean

odels, mainly at coarse- non-eddying resolution, are slowly being

mplemented showing various degrees of success (e.g., Brankart,

013; Andrejczuk et al., 2016; Williams et al., 2016; Grooms, 2016;

uricke et al., 2017 ). The encouraging results presented here rein-

orces the need for developing and implementing scale- and flow-

ware stochastic ocean parametrization in ocean climate models. 
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