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ABSTRACT

Storm surge and coastal flooding caused by tropical cyclones (hurricanes) and extratropical cyclones

(nor’easters) pose a threat to communities along the Atlantic coast of the United States. Climate change and

sea level rise are altering the statistics of these extreme events in a rather complex fashion. Here we use a fully

coupled global weather/climate modeling system (GFDL CM4) to study characteristics of extreme daily sea

level (ESL) along the U.S. Atlantic coast and their response to global warming. We find that under natural

weather processes, the Gulf of Mexico coast is most vulnerable to storm surge and related ESL. NewOrleans

is a striking hotspot with the highest surge efficiency in response to storm winds. Under a 1% per year

atmospheric CO2 increase on centennial time scales, the anthropogenic signal in ESL is robust along the U.S.

East Coast. It can emerge from the background variability as soon as in 20 years, or even before global sea

level rise is taken into account. The regional dynamic sea level rise induced by the weakening of the Atlantic

meridional overturning circulation facilitates this early emergence, especially during wintertime coastal

flooding associated with nor’easters. Along the Gulf Coast, ESL is sensitive to the modification of hurricane

characteristics under the CO2 forcing.

1. Introduction

TheU.S. Atlantic coast (including both the East Coast

and the Gulf of Mexico coast) is an active region for

tropical and extratropical storms. Geographically, this

densely populated coastal region is surrounded by a

broad (100–300km) and shallow (,100m) continental

shelf (Fig. 1a), making it particularly vulnerable to severe

storm surge and associated socioeconomic damages and

life loss. Notable examples include Hurricane Katrina in

2005 (Fritz et al. 2007) and Superstorm Sandy in 2012

(Sobel 2014), as well as more recent wintertime coastal

flooding caused by ‘‘bombogenesis’’ (Buell 2018).

The twenty-first-century outlook of storm surge often

invokes the ‘‘noise 1 trend’’ model, namely, global sea

level rise (SLR) will lead to elevated storm surge

(USGCRP 2017). However, the real world situation is

more complex. Storm surge critically depends on such

storm characteristics as intensity, frequency, size, path,

translational speed, and landfall angle (Simpson 1974;

Weisberg and Zheng 2006; Irish et al. 2008; Rego and Li

2009;Hall andSobel 2013). In addition to chaotic/stochastic

‘‘noise’’ processes, the generation, development, and
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propagation of tropical cyclones (TCs) and extratropical

cyclones (ECs) over theNorthAtlantic andNorthAmerica

are influenced by El Niño–Southern Oscillation (ENSO)

(Hirsch et al. 2001; Donnelly and Woodruff 2007), the

North Atlantic Oscillation (Elsner et al. 2000; Ezer and

Atkinson 2014), the Atlantic multidecadal variability

(Zhang and Delworth 2006), anthropogenic greenhouse

gas and aerosol forcing (Mann andEmanuel 2006; Lin et al.

2012; Little et al. 2015; Garner et al. 2017; Rahmstorf 2017;

Marsooli et al. 2019), and other factors. These factors

mutually interact and modify sea surface temperature

(SST), ocean heat distribution, vertical wind shear, merid-

ional temperature gradient, large-scale oceanic and atmo-

spheric circulation, and regional and global sea level.Given

their distinct spatiotemporal scales and possible opposing

effects on storms and storm surge, it remains scientifically

challenging to study sea level extremes and their impact

along the U.S. Atlantic coast in the face of natural and

anthropogenic climate variability and change.

Here we address this challenge using a fully coupled

global climate model (CM4) recently developed at the

Geophysical Fluid Dynamics Laboratory (GFDL) of

NOAA. Under the protocol of phase 6 of the Coupled

Model Intercomparison Project (CMIP6) (Eyring et al.

2016), a series of climate change experiments have been

performed with CM4. With these simulations, we focus

on weather–climate interactions and their combined

effect on storm-related extreme daily sea level (ESL)

along the U.S. Atlantic coast. The paper is organized as

follows. Section 2 describes themodel and daily sea level

analysis methods. Section 3 evaluates the model per-

formance in sea level simulations. Section 4 presents

characteristics and statistics of ESL under natural weather

processes. Their response to CO2 forcing is described in

section 5, followed by the conclusions and discussion of

model limitations toward the end.

2. Model, data, and methods

a. The GFDL CM4 climate model

CM4 is the latest generation of the climate models

developed and used at GFDL (Held et al. 2019). The at-

mospheric model (AM4.0) (Zhao et al. 2018a,b) adopts

finite-volume cubed-sphere dynamical core with 96 (;1.08
grid spacing) or 192 (;0.58 grid spacing) grid boxes per cube
face. It has 33 vertical levels and the model top is located at

1hPa. The model incorporates updated physics such as a

double-plume scheme for shallow and deep convection and

single-moment cloud microphysics. Due to improvements

inmodel resolution, physics, and dynamics, CM4 can better

simulate strong TCs and ECs over the North Atlantic and

North America with hurricane-force winds, reasonable

storm tracks, seasonal cycle, and interannual variability

(Zhao et al. 2018a), although the strongest (e.g., category 4

and 5) hurricanes are not simulated (Fig. 2).

We use a Lagrangian approach and the 6-h data

for detecting and tracking TCs and ECs in the CM4

FIG. 1. Geometry and bathymetry along the U.S. Atlantic coast. (a) The U.S. Atlantic coastline in nature is

highlighted by the red color. Large coastal cities are marked from north to south and west: Halifax, Boston, New

York, Baltimore, Charleston, Miami, Tampa, NewOrleans, and Houston/Galveston. (b) Representation of coastal

geometry and bathymetry (km) in CM4. Coastal ocean grid boxes in red, green, and purple indicate the NE (north

of Cape Hatteras), SE (Cape Hatteras to the south tip of Florida), and GOM regions. The color scale uses 100-m

intervals for 0–500-m depth and 500-m intervals below 500m.
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simulations (Fig. 2) (Zhao et al. 2009). Among multiple

criteria, TCs should have a maximum surface wind

speed of at least 14m s21 and their trajectories must last

at least 3 days. In addition, TCs should have a warm core

of at least 18C above the surrounding temperatures be-

tween 300 and 500hPa, thus allowing TCs to be distin-

guished from ECs and other storms. The relative

vorticity at 850 hPa in TCs should be greater than 1.6 3
1024 s21. We use the sea level pressure field to identify

ECs that should have amaximumwind speed of 25ms21

and last for at least 3 days. Detailed algorithms and

codes for detecting and tracking storms can be found at

https://www.gfdl.noaa.gov/tstorms/.

The oceanic model of CM4 is based on the Modular

Ocean Model version 6 (MOM6). It uses the arbitrary

Lagrangian–Eulerian algorithm in the vertical to allow

for the combination of different vertical coordinates

including geopotential, isopycnal, and terrain following.

The model adopts the C-grid stencil in the horizontal

and is configured on a tripolar grid. It has a 0.258 eddy-
permitting horizontal grid spacing (;20km at midlati-

tudes) and 75 hybrid vertical layers down to the 6500-m

maximum bottom depth. On the shelf, the vertical grid

spacing can be as fine as 2m. The ocean model config-

uration used here as part of CM4 is documented by

Adcroft et al. (2019).

MOM6 roughly resolves important bays and estuaries

embedded along the U.S. Atlantic coastline and their

connections to the open ocean, such as Massachusetts

Bay, Long Island Sound, Delaware Bay, and Chesapeake

Bay (Fig. 1b). However, the model resolution is not fine

enough to resolve smaller bays and harbors such as

Tampa Bay, Galveston Bay, and New York Harbor, as

well as the chains of barrier islands east of North Carolina

and south of Florida to Texas. MOM6 realistically rep-

resents the broad and gently sloping continental shelf and

the sharp ocean deepening across the shelf break.

Previous research showed that accurate representation of

coastal geometry and bathymetry is important in cap-

turing the fine structures of storm surge (Resio and

Westerink 2008; Rego and Li 2010; Mori et al. 2014).

In terms of SLR and storm surge, CM4 simulates

ocean steric and dynamic effects. Like many other

CMIP6 models, CM4 does not incorporate an ice sheet

component, and therefore cannot simulate land ice

melt and its increasing contribution to global SLR in a

FIG. 2. Simulations of TC and EC in the long-term piControl of CM4. (a) Global map of TC tracks. (b) TCs over

the North Atlantic. Black contours (hPa) indicate the mean subtropical high during June–October. (c) Global map

of EC tracks. (d) ECs over the North Atlantic and North America. Black contours (8C) indicate the near-surface

temperature and its gradient during December–February. The color scale denotes daily winds (m s21) associated

with storms.
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warming climate (Chen et al. 2017). In addition, CM4

does not simulate tides which can interact with storm

surge constructively and nonlinearly and lead to the so-

called tide surge (Rego and Li 2010; Muis et al. 2019).

Incorporating these processes would further heighten

ESL during severe storms. Other model limitations will

be discussed in the discussion and conclusions section

(section 6).

b. CMIP6 experiments with CM4 and CM4HR

As summarized in Table 1, the standard version of

CM4 (1.08 atmosphere and 0.258 ocean) has been used

to carry out the CMIP6 experiments including the

Diagnostic, Evaluation and Characterization of Klima

(DECK) and the Scenario Model Intercomparison

Project (ScenarioMIP) (Eyring et al. 2016; O’Neill et al.

2016). A 250-yr model spinup was carried out prior to

the DECK runs. Meanwhile, a higher-resolution version

of CM4 (CM4HR) has also been configured (0.58 at-

mosphere and 0.258 ocean). CM4HR has been used for

the High Resolution Model Intercomparison Project

(HighResMIP) of CMIP6 (Haarsma et al. 2016). Daily

and even hourly data critical for conducting storm and

storm surge analysis have been saved. In this study, we

focus on the simulations with the standard CM4 and

present available results from CM4HR, thus showing

the impact of atmospheric model resolution.

c. Daily sea level analysis

In the preindustrial control simulation (piControl) of

CM4, we calculate dailymean sea level anomalies (SLA;

Dhc) for a particular day and location according to

Dh
c
5Dh

c
1Db

c
, (1)

where

Db
c
52

Dp
c

r
0
g
, (2)

Dh
c
(x, y, t)5h
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(x, y, t)2 ~h

c
(x, y, t

1
), and (3)

Dp
c
(x, y, t)5 p

c
(x, y, t)2 ~p

c
(x, y, t

1
), t

1
5 1, 2, . . . , 365.

(4)

The subscript c denotes piControl. The terms hc, ~hc, and

Dhc are daily dynamic sea level (relative to a time in-

variant geoid), its climatology and anomaly, respec-

tively. By definition, all of these terms have a zero global

mean. Along the coast, daily fluctuations of hc mainly

reflect ocean rise and fall associated with transient weather

processes and corresponding coastal waves. On interannual

and longer time scales, hc is also influenced by large-scale

ocean circulation, climate modes, and external forcing.

CM4 incorporates the effects on hc of ocean tempera-

ture, salinity, and mass redistribution, as well as rainfall,

evaporation, and river runoff (Griffies et al. 2014).

Because CM4 does not explicitly simulate the inverse

barometer effect on sea level, we diagnose its contri-

bution (Dbc) using sea level pressure anomalies and an

equilibrium relationship [Eqs. (2) and (4)] (Ponte 2006).

The terms pc, ~pc, andDpc are daily sea level pressure and
its climatology and anomaly, respectively. In this study,

~hc and ~bc are removed when calculating SLA values

[Eqs. (1), (3), and (4)]. But it should be noted that the

absolute surge is generally higher during warm seasons

than cold seasons due to the seasonal cycles (see below).

Under anthropogenic CO2 forcing, the ocean absorbs

most of the excess heat due to radiative imbalance at the

top of the atmosphere, and thus causing global mean

TABLE 1. CMIP6 Experiments with GFDL CM4 and CM4HR used in this study.

Model Run Forcing Duration (years)

CM4 piControl 1850 radiative forcing 150

Historical (3 members) Observed greenhouse gas, aerosol, land

use, and solar forcing

165 (1850–2014)

No aerosol Historical run without anthropogenic

aerosol and land use forcing

165 (1850–2014)

SSP2–4.5 projection Twenty-first-century projection under the

low–medium greenhouse-gas emission

scenario

85 (2015–99)

SSP5–8.5 projection Twenty-first century projection under the

high greenhouse-gas emission scenario

85 (2015–99)

1pctCO2 1%yr21 increase of atmospheric CO2

concentration branched from piControl

150

Abrupt4xCO2 Instantaneous CO2 quadrupling branched

from piControl

150

CM4HR Control 1950 radiative forcing 150

Abrupt4xCO2 Instantaneous CO2 quadrupling branched

from the control run

150
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thermosteric SLR (DGe). The term DGe in CM4 can be

diagnosed as

DG
e
(t)52

1

A

ð
A

ðhe

2H

1

r
0

Dr dz dA , (5)

whereDr is the anomaly of in situ density of seawater, r0
is the reference seawater density, A is the global ocean

surface area,H is the ocean depth, and he is the dynamic

sea level in the CO2 experiments. The subscript e de-

notes CO2 experiments. In these experiments, SLA

(Dhe) without global thermosteric SLR is calculated as

Dh
e
5Dh

e
1Db

e
, (6)

where Dhe and Dbe are computed relative to ~hc and
~bc in

piControl:

Dh
e
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e
(x, y, t)2 ~h

c
(x, y, t

1
), (7)
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e
(x, y, t)5 p

e
(x, y, t)2 ~p

c
(x, y, t

1
)1 �, t

1
5 1, 2, . . . , 365:

(8)

In addition to daily weather processes, regional trends of

he and pe and the change of their seasonal cycles under

the CO2 forcing also contribute to Dhe and Dbe. Note

that « is a small correction term due to the redistribution

of air mass loading between the land and ocean in the

CO2 experiments. SLA with global thermosteric SLR is

calculated as Dhe(x, y, t) 1 DGe(t).

In summary of the analysis methods, we distinguish

SLA in piControl (Dhc) and CO2 experiments (Dhe 1
DGe) to emphasize that the latter also includes global

thermosteric SLR and regional dynamic SLR in addition

to storm surge and other factors. Storm surge refers to

the change in sea surface height relative to the predicted

tide during a storm (Gregory et al. 2019). Strictly, it

should not include any factors that would affect sea level

in the absence of a storm. Thus, we choose to use the

term ‘‘ESL’’ in the following to discuss high-end (ex-

treme) daily sea levels, which incorporate all the above

effects represented in CM4.

d. Observational and reanalysis data

In terms of data–model comparison for evaluation

purposes, we use the daily tide gauge data provided by

the University of Hawaii Sea Level Center (Caldwell

et al. 2015) (https://uhslc.soest.hawaii.edu/). We choose

long-term high-quality stations mostly along the U.S.

Atlantic coast (Table 2). The data are detrended and

deseasonalized. It should be noted that this comparison

is not ideal since tide gauges, often located inside bays or

harbors, are point measurements, while the model re-

sults represent averaged values over the coastal ocean

grid cells. For the altimetry data of dynamic sea level,

we use the multisatellite merged gridded dataset from

the Copernicus Marine Environment Service (http://

marine.copernicus.eu/). The daily anomaly data with a

0.258 spatial resolution span 1993–2017 (Pujol et al.

2016). The long-termmean dynamic sea level is based on

the period of 1993–2012. For sea level pressure, we use

the NCEP/NCAR reanalysis for the 1948–2018 period

(Kalnay et al. 1996). The daily data have a 2.58 spatial
resolution (https://www.esrl.noaa.gov).

3. Evaluating sea level simulations in piControl
of CM4

CM4 captures the pronounced features of the long-

term mean dynamic sea level observed by satellites

(Figs. 3a,b). These features include the peak-to-peak

range, the asymmetry associated with the gyre circulation,

the sharp gradients across the Gulf Stream, Kuroshio, and

TABLE 2. Daily tide gauge data used in the present study. (Note that the linear trends are not directly comparable due to different

data length at different stations.)

Station Longitude Latitude Data span Linear trend (mmyr21)

Halifax, NS (Canada) 63.588W 44.678N 1936–2016 3.3

Eastport, ME 66.988W 44.908N 1930–2016 2.1

Boston, MA 71.058W 42.368N 1922–2016 2.8

New York, NY 74.018W 40.708N 1928–2016 3.2

Duck Pier, NC 75.748W 36.188N 1979–2016 4.7

Wilmington, NC 77.958W 34.238N 1936–2016 2.2

Charleston, SC 79.938W 32.788N 1922–2016 3.3

Fort Pulaski, GA 80.908W 32.038N 1936–2016 3.2

Virginia Key, FL 80.168W 25.738N 1995–2016 5.5

St. Petersburg, FL 82.638W 27.768N 1947–2016 2.8

Pensacola, FL 87.218W 30.408N 1924–2016 2.3

Galveston, TX 94.798W 29.318N 1904–2016 6.4

Rockport, TX 97.058W 28.028N 1964–2016 6.6
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the Antarctic Circumpolar Current, and the contrast be-

tween subpolar and subtropical regions and between the

Pacific and Atlantic basins.

CM4 simulates a seasonal cycle of the dynamic sea

level ~hc similar to the observations (Figs. 3c,d). In the

Northern Hemisphere, the dynamic sea level is higher

by up to 0.2m during early autumn than during early

spring, especially along the Gulf Stream and Kuroshio

and nearby regions. This is mainly due to seasonal

heating and cooling of the ocean, as well as seasonal

changes of prevailing winds and ocean circulation. In

CM4, ~hc along the U.S. Atlantic coast resembles that in

the ocean interior, and shows increasing amplitudes

from the north toward the south (Fig. 4a). In nature,

annual and semiannual long tides also contribute to

higher coastal sea levels during late summer and early

autumn (Sweet et al. 2018). In the tropical Pacific, the

belt-like feature reflects the north–south shift of the

ITCZ and associated trade winds. Compared with ocean

interior, ~hc reduces in some shelf regions such as in the

Okhotsk Sea, South of Alaska, along the west coast, and

on the northeast shelf of North America. The shallow

ocean column on shelf limits the magnitude of seasonal

thermal expansion and contraction.

The jet-like Gulf Stream and deep western boundary

current are better simulated in CM4 compared with

previous model generations (Adcroft et al. 2019; Held

et al. 2019). CM4 somewhat underestimates mesoscale

FIG. 3. Dynamic sea level h in the altimetry data and piControl simulations of CM4. (a),(b) Long-termmean (m).

(c),(d) Seasonal cycle as quantified by the difference between September andMarch (m). (e),(f) Daily variability as

quantified by the standard deviation of the detrended and deseasonalized daily dynamic sea level (m). (left)

Altimetry data and (right) CM4 simulations.
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eddy activities along the Gulf Stream, Loop Current,

and Kuroshio, as well as the associated daily variability

of dynamic sea level (Figs. 3e,f). This is partly due to the

eddy-permitting (rather than eddy ‘‘resolving’’) resolu-

tion of the ocean model. While most of the mesoscale

eddies do not directly impact coastal sea levels, the

warm-core rings could cause sudden TC intensification

due to their anomalously high heat content (Goni et al.

2009). A notable example is Hurricane Katrina, which

rapidly intensified to a category 5 hurricane after passing

over a warm-core ring prior to its landfall near New

Orleans (Jaimes and Shay 2009). Recent studies also

suggest that in addition to direct impacts through winds

and pressure, coastal storms could disrupt theGulf Stream

flow, thereby indirectly influencing sea level along the

U.S. East Coast (Ezer et al. 2017; Ezer 2018, 2019).

As for surface meteorological factors, CM4 repro-

duces the deepening of the Icelandic low during winter

and the enhanced variability of sea level pressure and

surface winds along the U.S. East Coast (Figs. 5a,b).

During summer, the strength and position of the North

Atlantic subtropical high are realistic in the CM4 simu-

lations (Figs. 5c,d). At higher latitudes, the summertime

weather variability reduces compared with wintertime.

The seasonal cycle of the inverse barometer effect (i.e.,

the amplitude of ~bc) is less than 0.1m along the U.S.

Atlantic coast and its seasonal variation differs at differ-

ent locations (Fig. 4b).

4. Characterizing storm-related ESL in piControl

a. Statistics of SLA along the U.S. Atlantic coast

According to the correlation of SLA Dhc, we divide

the U.S. Atlantic coast into three regions: northeast

(NE), southeast (SE), and the Gulf of Mexico (GOM)

(Fig. 1b). In piControl of CM4, the standard deviation

s of SLA shows a clear separation of coastal and interior

ocean dynamics, roughly along the 100-m isobaths with

lower s values (Fig. 6a). Vigorous mesoscale eddies

dominate in ocean interior, while wind surge and coastal

waves dominate variability near the coast (Hughes et al.

2019). The bowl-shaped coastline can enhance coastal

SLA variability, such as fromCape Cod to CapeHatteras,

east of Georgia, along the Florida Panhandle, and south

of Louisiana and Texas. The coastal SLA variability in

CM4 is consistent with the estimate from the tide gauge

data, with slightly underestimated magnitudes at some

sites (Fig. 6a).

Skewness and kurtosis describe the shape of the

probability distribution of SLA at different locations

(see appendix A). Figure 6b shows a positive skewness

of SLA along the U.S. Atlantic coast. A positive skew-

ness indicates a longer tail at the positive end than the

negative end, which occurs when ocean surge dominates

in magnitude over ocean fall due to the passing of

storms. TCs and ECs tend to propagate northeastward

just offshore of the NE and SE coast (Fig. 2). This pre-

ferred storm track is related to the dynamics of the

subtropical (Bermuda–Azores) high during summer

(Elsner et al. 2000) and the midlatitude baroclinicity

during winter (Lunkeit et al. 1998; Brayshaw et al. 2011).

The northeasterly wind on the west and northwest side

of these cyclones can cause large positive SLA values

through shoreward Ekman transport. For the GOM,

the northward movement (i.e., translational speed) of

landfalling TCs perpendicular to the coastline causes

stronger landward winds and ocean surge on the east side

than the seaward winds and ocean fall on the west side.

FIG. 4. Daily climatology and seasonal cycle of dynamic sea level

~h and the inverse barometer effect ~b at large coastal cities in the

150-yr piControl of CM4. (a) Dynamic sea level climatology.

(b) Inverse barometer effect climatology. The long-term mean at

each city is removed for better comparison. Notice the different y-

axis scales in (a) and (b).
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Land friction also slows down seaward winds and there-

fore reduces the magnitude of negative storm surge.

Kurtosis measures the ‘‘tailedness’’ of the SLA dis-

tribution and is a useful indicator of large storm surge

and coastal vulnerability to ESL. Its value is sensitive to

rare and extreme events that can lead to catastrophe. In

piControl of CM4, the geographical map of kurtosis

shows a striking hotspot around New Orleans with

values greater than 10 (Fig. 6c). Enhanced values are

also found along the west coast of Florida and the south

coast of Texas. The kurtosis pattern along the coast is

consistent with extreme surge height.

FIG. 5. Sea level pressure (hPa) and its variability in the NCEP–NCAR reanalysis and piControl simulations of

CM4. (a),(b) Mean sea level pressure (contours) and its daily variability (shading) as quantified by the standard

deviation duringwinter (November–March). (c),(d)Mean sea level pressure and its daily variability during summer

(June–October). (left) NCEP–NCAR reanalysis and (right) CM4 simulations.

FIG. 6. Characteristics and statistics of SLA (Dhc) variability along the U.S. Atlantic coast in the 150-yr piControl of CM4. (a) The

standard deviation (m), (b) skewness, and (c) kurtosis. Colored circles indicate the tide gauge observations (Table 2). The black line shows

the 100-m isobath.
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In addition to the moments of SLA, we also evaluate

return levels of ESL by fitting the generalized Pareto

distribution to the ESL values with the peak-over-

threshold method (Coles et al. 2001; Arns et al. 2013)

(see appendix B for details). Along the NE coast, the 1-,

10- and 100-yr return levels are generally underestimated

inCM4 comparedwith the tide gauge data, particularly at

NewYork (Fig. 7). The tide gauge at the Battery is inside

of New York Harbor. Local large storm surge at lower

Manhattan is influenced and amplified by the dynamics of

the harbor and Hudson River, which are not resolved in

CM4 (Blumberg et al. 2015). The ESL return levels along

the SE and GOM coast are better simulated in CM4,

despite the lack of the most catastrophic event like

the.2-m daily surge at Galveston induced by Hurricane

Carla in September 1961 (Fig. 7).

Along the GOM coast, large spikes in the simulated

SLA time series are caused by landfalling TCs/hurricanes

during summer and early autumnwithAugust as the peak

month (Fig. 8a), also evidenced by the long positive tail of

the SLA histogram. The GOM coast is relatively quiet

during winter and spring. On the NE coast, the SLA time

series show a periodic wave-packet-like pattern: its vari-

ability is largely suppressed in summer but amplified in

winter (Fig. 8c). Thus, most ESL events in this region

occur during cold seasons associated with ECs/nor’-

easters (Colle et al. 2010, 2015). Nonetheless, some of the

North Atlantic TCs/hurricanes can occasionally strike

this northerly region during late summer and early au-

tumn. In fact, the record high daily surge of 1.2m at New

York in the tide gauge data was induced by Sandy

in October 2012 (Fig. 7), which was a large tropical–

extratropical system at landfall with an unusual path

perpendicular to the New Jersey shoreline (Hall and

Sobel 2013). It exceeds the simulated extreme surge

height atNewYork byCM4 and contributes to the higher

100-yr return level of ESL in the tide gauge data (Fig. 7).

b. Wind–surge relationship

The piling up of seawater against the coast by winds is

the dominant factor in storm surge. Generally, the wind

effect accounts for roughly 80%–90% of the total surge

height (Figs. 8b,d and 9a,b). The remainder is mainly

due to the inverse barometer effect induced by the low

central pressure of storms. In the following discussion,

we focus on the wind surge part of the SLA.

Wind stress at the ocean surface can be calculated

basedon the following empirical bulk aerodynamic formula:

t5C
d
r
air
U

10
U

10
, (9)

where t is the wind stress vector, Cd a drag coefficient,

rair surface air density, and U10 and U10 the wind speed

and vector at 10m above the sea, respectively, computed

relative to the ocean surface currents. According to

Eq. (9), the wind stressmagnitude is a quadratic function

of 10-m wind speed. The value of Cd can increase with

the increase of wind speed (Large and Pond 1981;

Weisberg and Zheng 2008). At the high end of the wind

spectrum associated with hurricanes and strong ECs,

however, Cd reduces with the increase of wind speed

(Powell et al. 2003; Oey et al. 2007).

At the coast, storm surge creates a sea surface slope

and an adverse pressure gradient in the offshore (x) di-

rection. This pressure gradient tends to balance wind

stress at the ocean surface:

›h

›x
’

t

r
0
gH

. (10)

Here h is dynamic sea level, r0 the reference seawater

density, g the gravitational acceleration, and H the

ocean depth. At the coastal regions where H reduces,

the sea surface slope becomes steeper and storm surge

becomes higher (Pugh 1987).

The warm, semi-enclosed, and oval-shaped GOM

has a basin size, geometry, and bathymetry favorable for

wind setup from rotating synoptic systems (Fig. 1).

When a counterclockwise rotating hurricane enters the

gulf from the Caribbean Sea, water piles up at the coast

due to the longshore winds and resultant shoreward

Ekman transport (Hope et al. 2013). At landfall, the

strongest wind is typically at its eastern and northeastern

sector (Fig. 10a). So a storm track slightly west of New

Orleans could realize the worst-case scenario of storm

surge for the city. The intense southeasterly storm wind

blows almost perpendicular into the funneling land

geometry east of the Mississippi river delta, and is

therefore highly efficient at raising coastal water levels

(As-Salek 1998). In piControl of CM4, the wind surge

height at New Orleans scales up well (r5 0.75) with the

local/nearby wind speed following a quadratic relation-

ship (Figs. 10c,d). This wind–surge relationship, as

classified by the Saffir–Simpson scale (Simpson 1974;

Needham and Keim 2014), highlights the nonlinear in-

crease in coastal vulnerability as a storm intensifies.

During the landfall of a GOM hurricane, the maxi-

mum sustained wind, intense storm precipitation, and

coastal surge center almost coincide (Figs. 9a,c,d). The

downpour, while capable of causing inland flooding, can

further increase the coastal surge height by dumping a

large amount of water at the ocean surface in a short

time (Wong and Toumi 2016). Over the shallow conti-

nental shelf waters, it can take a few days for the water

bulge to spread and disperse through surface gravity and

coastal waves. This enhancement of surge height by
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FIG. 7. Comparison of SLA variability andESL events between (left) the tide gauge data and the control simulations of (middle) CM4 and

(right) CM4HR. The daily data have been detrended and deseasonalized. Six cities in the NE, SE, and GOM regions with high-quality tide

gauge data are chosen: Halifax, Boston, New York (at the Battery), Charleston, Miami (at Virginia Key), and Galveston. The gray dashed

lines upward show the 1-, 10- and 100-yr return levels, respectively. The shapek, scales, and location u parameters (with the standard error) of

the GPDfit are shown at the upper-right corner; see appendix B for details. The ESLs induced byHurricanes Sandy andCarla aremarked at

New York and Galveston, respectively. Notice that the tide gauge data are point measurements at coast, while the model data are the area

averaged values over the coastal ocean grid cells.
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heavy rainfall does not work as efficiently along the NE

and SE coast in part due to the narrower continental

shelf. CM4 simulates the TC intensification in the GOM

after passing over warm core rings north of the Loop

Current (Figs. 9c,e). Due to the storm-induced ocean

vertical mixing and divergent Ekman transport away

from the TC center, a cool wake is evident behind the

TC propagation in the CM4 simulations (Fig. 9f).

For New York, a large wind surge typically occurs

when the low pressure system is located to the south and

the alongshore winds induce shoreward Ekman trans-

port (Figs. 10b,c,d). The surge at Baltimore and Miami

shows weak or even no correlation with local/nearby

winds. Baltimore is located in the Chesapeake Bay,

where the surge is limited by the bay geometry. In na-

ture, large storm surges in the Chesapeake Bay do exist

provided that coastal storms push large amounts of

waters into the bay (Ezer 2018, 2019). The narrow pas-

sage connecting the bay and open ocean is represented

by one grid cell in CM4 (Fig. 1b), which may not be

sufficient for simulating large inflow events. Although

Miami is next to the open ocean and at the forefront of

hurricane paths, the continental shelf offshore is ex-

ceptionally narrow (Fig. 1). In addition, Miami is at the

southern tip of the Florida peninsula with a convex-

shaped coastline. These features make storm surge less

efficient at concentrating its energy. The observed tide

gauge data confirm that the daily surge around Miami

has not exceeded 0.4m since the 1990s (Fig. 7). Strong

winds, heavy rainfall, and big ocean waves during hur-

ricanes are of more serious concern at Miami.

5. Characterizing response of ESL to CO2 forcing

Our assessment above suggests that CM4 offers a

previously unavailable modeling framework to study

weather–climate interactions and their combined effect

on storm surge and related ESL. Next we consider a

series of climate change experiments with CM4 under

the CMIP6 protocol (Table 1) (Eyring et al. 2016).

Among these simulations, we focus on the 1% per

year increase in atmospheric CO2 concentration exper-

iment (1pctCO2), supplemented with the companion

experiments including the historical simulations, the

FIG. 8. Time series of SLA (Dhc) at New Orleans and New York in piControl of CM4. (a) SLA time series of a

representative 1-yr period at New Orleans. (b) Contributions of wind surge Dhc and pressure surge Dbc to large

positive surge events (Dhc . 0.2m) at New Orleans. (c),(d) As in (a) and (b), but for New York. Note that (b) and

(d) use the 150-yr piControl with seasonal cycles removed. Notice the different y-axis scales between different

panels.
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twenty-first-century projections under two Shared

Socioeconomic Pathways (SSP2–4.5 and SSP5–8.5) sce-

narios (O’Neill et al. 2016), and the idealized instantaneous

CO2 quadrupling (abrupt 4xCO2) run. The responses of

the weather–climate system and storm-related ESL are

qualitatively similar between these experiments and in-

crease in magnitude with the increase in external forcing.

The results from these different experiments allow us to

quantify the range of the ESL response.

a. Simulated changes in weather, climate, and sea
level in 1pctCO2

In 1pctCO2 of CM4, both global mean surface tem-

perature and global thermosteric SLR display upward

trends during the 150-yr model simulation (Fig. 11a).

Global thermosteric SLR (DGe) initially lags the surface

temperature response, due to the gradual downward

heat penetration and enormous thermal inertia of the

ocean, and shows a faster acceleration after year 50.

Note that DGe is 0.09m at year 70 (time of CO2 dou-

bling) and 0.34m at year 140 (time of CO2 quadrupling);

DGe in 1pctCO2 is corrected by removing a slow drift of

the deep ocean in piControl. As a consequence of excess

heat uptake mainly by the upper layers, the ocean be-

comes more stratified in 1pctCO2.

In the North Atlantic and along the U.S. East Coast,

ocean dynamics plays an important role in regionally

modifying SLR (Levermann et al. 2005; Yin et al. 2009;

Ezer 2015). In response to 1pctCO2, the Atlantic

meridional overturning circulation (AMOC) weakens,

FIG. 9. Large daily surge event induced by a strong and large TC in piControl of CM4. During this event, a surge

of up to 1.8m (Dhc) occurs along the GOM coast on 24 Aug, year 138. (a) Daily dynamic sea level anomalies Dhc

(m) associated with this event. (b) SLA due to the inverse barometer effect Dbc (m). (c) Daily surface wind vector

and speed (m s21). (d) Daily precipitation (cm day21). (e) Surface current vector and speed (m s21). (f) SST

anomalies (8C) associatedwith the cool wake. Contours in (a), (b), (d), and (f) are daily sea level pressure anomalies

(hPa) associated with the TC. The green line shows the storm track except in (c), where the line colors indicate the

storm maximum daily winds (m s21) during its propagation.
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which results in a 0.1-m dynamic SLR along NE at year

70 and 0.2-m dynamic SLR at year 140 in 1pctCO2

(Figs. 11b and 12a). CM4 simulates a vigorousAMOC in

piControl with interannual to multidecadal variability

(Figs. 13a,b). The regional enhancement of SLR along

NE (on the top of global mean SLR) due to AMOC

weakening is a robust feature in the previous CMIP3

(Yin et al. 2009) and CMIP5 (Yin 2012) simulations and

projections, although the exact magnitude can vary

across models. Compared with the previous results (Yin

et al. 2009; Yin 2012; Yin and Goddard 2013), the dy-

namic SLR signal in CM4 extends farther southward to

north of Miami (Fig. 12a). This extension may in part be

due to the refined oceanic model resolution and asso-

ciated representation of the continental shelf geometry

and western boundary current in CM4 compared with

previous model generations. Detailed mechanisms are

worthy of further investigation in the future. The re-

duced current shear, cross-current dynamic sea level

gradient, and baroclinicity tend to reduce the ocean

mesoscale eddy activities (Fig. 12b).

Given the importance of this dynamic SLR, it is of

interest to quantify its upper bound in the stronger

abrupt 4xCO2 experiment. In response to the instanta-

neous CO2 quadrupling, the AMOC quickly spins down

and the dynamic SLR equilibrates at about 0.40m along

NE after 80 years, 0.27m along SE, and 0.10m along

GOM (Figs. 13c,d). The e-folding time of the response is

27, 11, and 8 years, respectively. The longer response

time scale at NE is likely due to the slower baroclinic

processes in the higher latitudes associated with the

modification of ocean density properties under CO2

forcing.

As for weather processes in a warming climate, CM4

simulates an increase in the strength (i.e., based on the

maximum sustained wind and central pressure) of strong

TCs/hurricanes over the North Atlantic, and a decrease

in the annual count of all TCs after 100 years in 1pctCO2

(Figs. 14a,c) (Knutson et al. 2013, 2019). Despite warmer

SSTs in the TC main development region (108–258N,

808–208W) (Fig. 12c), a greater warming in the tropical

upper troposphere leads to a decrease in the lapse rate

FIG. 10. Simulated wind–surge relationship in piControl of CM4. (a) Typical wind pattern for large surges at New

Orleans. (b) Typical wind pattern for large surges atNewYork. Shading shows the correlation of large daily surge at

NewOrleans andNewYork with daily wind speed. Contours and vectors are linear regressions of sea level pressure

(hPam21) and uy winds (m s21 m21) on the large surge values. (c) Scatterplot of large daily wind surge at New

Orleans and New York as a function of local wind speed. The nonlinear fit is based on a quadratic wind–surge

relationship. (d) The quadratic wind–surge relationship at nine cities along the Atlantic coast. Values in the legend

indicate the fit correlation.
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and an increase in static stability, which tend to inhibit

atmospheric convection and TC formation in 1pctCO2

(Vecchi and Soden 2007; Knutson et al. 2008; Sobel et al.

2016). Previous studies show that the hurricane intensity

may have increased during the past decades (Emanuel

2005), with stronger intensity for longer period of time

(Ezer 2018). The track density map reveals that the re-

duction in TC frequency in CM4 mainly occurs east of

the Caribbean Sea so that the number of landfalling

TCs/hurricanes along the U.S. Atlantic coast remains al-

most unchanged (Fig. 14a). Meanwhile, extreme storm

precipitation increases along the U.S. Atlantic coast in the

CO2 experiments (Fig. 15), although the annual precipita-

tion does not.

The total number of ECs/nor’easters offshore of the

U.S. East Coast shows a more significant reduction after

100 years in 1pctCO2 of CM4 (Fig. 14b). On global

scales, polar amplification of global warming can lead

to a reduced meridional temperature gradient near the

surface at midlatitudes, especially during wintertime

(Holland and Bitz 2003; Colle et al. 2015; Shaw et al.

2016). Regionally, SST anomalies in 1pctCO2 show a

‘‘warm–cool–warm’’ tripolar pattern (relative to the

global mean) among the regions north of the Gulf

Stream, east of the subpolar gyre, and in the Nordic seas

(Fig. 12c) (Rahmstorf et al. 2015). In particular, the

larger ocean warming on the northeast U.S. continental

shelf extends from the surface to the bottom of the shelf

ocean, and is mainly caused by the weakening of the

AMOC (Saba et al. 2015; Caesar et al. 2018). Recently,

this region has been identified as one of the hotspots for

marine heat waves (Frölicher et al. 2018; IPCC 2019)

that could impact marine ecosystems (Pershing et al.

2015). This faster ocean warming, along with the faster

land surface warming, reduces the temperature contrast

across the Gulf Stream as well as across the land–sea

boundary, thereby weakening the near-surface bar-

oclinicity and storm track intensity of ECs/nor’easters

during winter.

Compared with the SST anomalies, the maximum

increase in heat content of the entire ocean column oc-

curs at the offshore side of the shelf break (Fig. 12d).

The dynamic SLR along theU.S. East Coast, the tripolar

SST anomaly pattern, and the faster ocean heat accu-

mulation along the shelf break are consistent manifes-

tations and consequences of theAMOCweakening inCM4.

b. Response of ESL to CO2 forcing

Figure 16 compares the SLA distribution in the his-

torical, SSP projection, 1pctCO2, and abrupt 4xCO2 runs

with (Dhe1DGe) and without (Dhe) global thermosteric

SLR. It is evident that the increase in CO2 forcing pro-

gressively shifts the probability density function (PDF)

curve to the right and toward higher values. In the

historical run, the shift is relatively small due to the

anthropogenic aerosol forcing largely counteracting

greenhouse gas forcing until about 1990, which leaves

insufficient time for sea level response (Held et al. 2019).

The shift is more significant in the historical run without

anthropogenic aerosol and land use forcing, in the SSP

projections, and in 1pctCO2, and is strongest in the

abrupt 4xCO2 run.

Without global thermosteric SLR, the nearly uniform

shift of the PDF curve in 1pctCO2 and the elevated daily

surge height along the NE and SE coast is mainly at-

tributable to theAMOC-induced dynamic SLR (Fig. 16a).

TheKolmogorov–Smirnov statistical test indicates that the

shift of the PDF curve is statistically significant. Along the

GOM coast, the overall shift of the PDF curve to the right

is relatively small, except having a disproportionately

longer tail (Fig. 16a). This heightening of ESL is consistent

with the increase in TC intensity under the CO2 forcing

FIG. 11. Simulated climate change and SLR in 1pctCO2 of CM4.

(a) Time series of global mean surface air temperature anomalies,

SST anomalies, and global thermosteric SLR. (b) Time series of

dynamic SLR at large cities along the East and Gulf Coast.
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(Fig. 15). Adding global thermosteric SLR substantially

widens the SLA distribution, and reduces its skewness and

kurtosis (Fig. 16b).

In piControl of CM4, the return levels for 1-, 10- and

100-yr ESL events differ dramatically among three

major coastal cities (Fig. 17) (see appendix B). The

tightly packed return levels atMiami are lowest, in sharp

contrast with the highest and widely separated return

levels at New Orleans, especially for the 1-in-100-year

events (0.26m at Miami vs 1.83m at New Orleans)

(Tebaldi et al. 2012). SLA at Miami shows small vari-

ability and a lack of tail at both ends of its histogram

(Fig. 17b). The opposite occurs at New Orleans with

large surge spikes and a long histogram tail (Fig. 17c),

while the surge at New York is in the middle (Fig. 17a).

In climate change studies, the time of emergence (TOE)

of the anthropogenic signal is an important quantity for de-

tection and attribution purposes (Diffenbaugh and Scherer

2011; Hawkins and Sutton 2012). Under CO2 forcing, the

anthropogenic signal can emerge in terms of ESL height or

frequency or both. With 1pctCO2 of CM4, we quantify and

compare TOE in terms of ESL height and frequency with

and without global thermosteric SLR (see appendix C for

the TOE calculation method). With global thermosteric

SLR (Dhe 1 DGe), TOE in ESL height of the 1-yr events

occurs at year 23, 22, and 70 forNewYork,Miami, andNew

Orleans, respectively (Fig. 17). It is longer and later for the

10-yr events, and occurs at year 69 and 50 for New York

and Miami, respectively. At New Orleans, the 10-yr signal

emerges in ESL frequency (at year 86) rather than in ESL

height. For the more extreme 100-yr event, TOE in ESL

frequency can be identified at year 64 and 55 for New York

and Miami, respectively. However, the 100-yr signal cannot

be detected at New Orleans. This is mainly due to the large

natural variability and a slower SLR at NewOrleans due to

ocean steric and dynamic effects in CM4.

The early TOE in ESL at New York is facilitated

by the AMOC-induced dynamic SLR in this region

(Figs. 11b and 12a). The anthropogenic signal first shows

up in wintertime ESL events and coastal flooding asso-

ciated with nor’easters. The early TOE at Miami is

primarily due to the weak background SLA variability

especially the low surge height in piControl. More sig-

nificantly in 1pctCO2, the 1-, 10- and 100-yr return levels

FIG. 12. Simulated ocean changes during years 131–150 in 1pctCO2 of CM4 relative to piControl. (a)Dynamic sea

level anomalies (m) with a zero global mean. Contours are the long-termmean dynamic sea level (m) in piControl.

(b) Response of the ocean mesoscale eddies. Shading shows the anomalies of the standard deviation of daily

dynamic sea level (m). Contours are the standard deviation in piControl. To calculate the eddy-related changes in

dynamic sea level, the background and large-scale SLR in 1pctCO2 is removed. (c) Pattern of SST anomalies (8C)
with the global mean value removed. The green box indicates the main development region of TCs. (d) Pattern of

ocean heat content anomalies (109 Jm22) with the global mean value removed.
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of ESL are permanently exceeded atMiami by the rising

mean sea level at year 71, 92, and 102, respectively

(Fig. 17b). By contrast, New Orleans shows no permanent

exceedance. We find that along the U.S. East Coast, the

anthropogenic emergence occurs even before global ther-

mosteric SLR is taken into account.

c. Impact of the atmospheric model resolution

The refined atmospheric model resolution (0.58) in

CM4HR leads to more intense TCs/hurricanes with

stronger winds and smaller size in the control simulation

(Fig. 18). Thesemagnify SLA extremes at both ends, but

with a greater influence on the positive side along the SE

andGOM coast (Fig. 19). For example, the highest daily

surge at the GOM coast increases from 1.8m in CM4 to

2.3m in CM4HR. The simulations of ECs in CM4 and

CM4HR are similar due to their large size relative to

TCs. Compared with CM4, the return levels of the 1-,

10- and 100-yr ESL are higher in CM4HR, closer to

those for the tide gauge data (Fig. 7). We find that in

abrupt 4xCO2, the responses of storm-related ESL and

the impact factors are qualitatively similar between

CM4 and CM4HR, including storm characteristics,

surge statistics, and oceanic and atmospheric circula-

tion, as well as global and regional sea level (Fig. 19).

6. Conclusions and model limitations

In the present study, we use a seamless and self-

consistent global modeling framework (GFDL CM4) to

study weather–climate interactions and their combined

effect on extreme sea level along theU.S. Atlantic coast.

Thanks to recent progress in model development and

improvement, some outstanding questions of significant

societal concerns can be answered now for the first time.

We compare the characteristics of storm-related ESL

among the NE, SE, and GOM regions and their responses

to CO2 forcing. We find that under internal weather pro-

cesses, the low-lying Gulf Coast is most vulnerable to hur-

ricanes and related storm surge. New Orleans is a striking

hotspot with the highest surge efficiency in response to

stormwinds. In response to a 1%per year atmospheric CO2

FIG. 13. Upper bound of AMOC-induced dynamic SLR under CO2 forcing. (a) Atlantic meridional overturning streamfunction (Sv) as

a function of latitude and depth (m) in the long-term piControl. (b) Time series of the AMOC index defined as the maximum Atlantic

overturning streamfunction values north of 308N in piControl and the CO2 experiments. (c) Global map of dynamic sea level changes

(m) during years 131–150 of abrupt 4xCO2 relative to piControl. (d) Time series of dynamic SLR in abrupt 4xCO2 at large coastal cities.

The smooth curves are the exponential fit to the dynamic SLR at New York (NE), Charleston (SE), and New Orleans (GOM).
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increase, the elevated surgeheight along theU.S.EastCoast

is mainly caused by the background SLR, while that along

the Gulf Coast is sensitive to the modification of hurricane

characteristics by the external forcing.

Our results confirm previous findings (e.g., Yin et al.

2009) that among the densely populated coastal regions

worldwide, the U.S. East Coast is special and more vul-

nerable in terms of dynamic SLR (Fig. 13c). The AMOC-

induced regional SLR facilitates the early emergence of

the anthropogenic signal in daily surge, especially during

wintertime flooding associated with nor’easters. The

weakening of AMOC in the CO2 experiments is mainly

caused by thermohaline processes (Gregory et al. 2005;

Stouffer et al. 2006; Hu et al. 2009; IPCC 2019). On shorter

time scales, recent research showed that it is the atmo-

spheric wind and pressure that influenced annualmean sea

level along the U.S. northeast coast (Piecuch et al. 2019).

While different possible factors need to be explored, our

results here from the new CMIP6 simulations stress that

the active and important role of AMOC in weather, cli-

mate, regional dynamic SLR, and storm-related ESL

should not be underestimated, particularly for the twenty-

first century.

Nonetheless, given the complexity of SLR and

storm surge along the U.S. Atlantic coast, there are

important caveats about model limitations. In nature,

the highest water level typically occurs during tide

surge. In addition to tidal ranges, the surge–tide

nonlinear interactions depend on multiple factors

such as the timing of landfall, the distance to the

storm, and the slope of the continental shelf (Rego and

Li 2010). CM4 does not simulate tides as well as wave

setup or run-up, therefore underestimating the highest

water level during storm surge. CM4 does not

implement a wetting and drying scheme to represent

the intrusion of seawaters and coastal inundation

during storm surge (Hubbert and McInnes 1999). The

ESL analysis based on the daily mean data can un-

derestimate the peak hourly surge. Uncertainties also

come from the lack of the strongest (e.g., category 4

and 5) hurricanes in CM4 and CM4HR, as well as the

underestimated return levels of ESL (Fig. 7). An in-

crease in the return level in piControl could delay

TOE in 1pctCO2.

Without an ice sheet model, CM4 cannot simulate the

impacts of Greenland melt on sea level, AMOC and

FIG. 14. Response of TC and EC in 1pctCO2 of CM4. (a),(b) Changes in TC and EC track density (number per

decade) during the 150-yr simulations of 1pctCO2. Shading shows the anomalies and contours show the mean in

piControl. The track density is evaluated over 28 3 28 boxes. (c),(d) TC and EC count (number per year) over the

North Atlantic and North America as a function of time. Notice the different scales between (a) and (b), and

between (c) and (d).
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geoid changes along the U.S. East Coast (Kopp et al.

2010; Bakker et al. 2016). Finally, CM4 does not simu-

late climate-unrelated factors. Most of the U.S. Atlantic

coast is influenced by land subsidence, particularly at

New Orleans and along the Texas coast (Nienhuis et al.

2017), which can increase relative SLR and exacerbate

the impact of storm surge and coastal flooding (Table 2).

By contrast, land uplift in some of the New England

coastal regions can offset and mitigate the dynamic SLR

(Karegar et al. 2016).

Ideally, projections of SLR and storm-related ESL

along the U.S. Atlantic coast should take all these

factors into account. We trust that future model de-

velopment will continue to address these and other

limitations and further improve the model’s ability

and capacity, thereby providing more accurate infor-

mation for effective planning and preparedness along

the U.S. Atlantic coast.
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APPENDIX A

Calculation of Skewness and Kurtosis of SLA

Skewness and kurtosis describe the shape of the

probability distribution of SLA (Hughes et al. 2010). In

piControl, the skewness of SLA values is the third

standardized moment

skew5E
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with m and s being the long-term mean and standard

deviation of Dhc, and E the expectation operator. The

kurtosis is the fourth standardized moment and is com-

puted by

kurt5E

"�
Dh

c
2m

s

�4
#
. (A2)

FIG. 15. Responses of daily (left) winds, (center) precipitation, and (right) sea level pressure anomaly along the

(top) NE, (middle) SE, and (bottom)GOMcoast in 1pctCO2 of CM4. The histograms use 150-yr simulations. The y

axis indicates the total number of days summed over all coastal ocean grid points in the NE, SE, and GOM regions.

A logarithm scale is used to better show the tail.
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FIG. 16. Progressive responses of ESL to different strength of external forcing. The histograms indicate the

distributions of SLA values in piControl, 1pctCO2, abrupt 4xCO2, the historical runs (with and without an-

thropogenic aerosol and land use forcing), and SSP projection runs of CM4. (a) SLA in piControl (Dhc) and
climate change experiments without global thermosteric SLR (Dhe). (b) SLA with global thermosteric SLR

(Dhe 1 DGe). The y axis indicates the total number of surge days summed over all coastal ocean grid points in

the NE, SE, and GOM regions. All values have been normalized to a 150-yr period for comparison. (left) The

piControl with idealized 1pctCO2 and abrupt 4xCO2 simulations and (right) piControl with the historical and

SSP projection runs, for (top) NE, (middle) SE, and (bottom) GOM.
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FIG. 17. Timeof emergenceof the anthropogenic signal inESL in 1pctCO2ofCM4, for (a)NewYork, (b)Miami,

and (c) New Orleans. Blue and red colors denote SLA in piControl (Dhc) and 1pctCO2 (Dhe 1 DGe), respectively.

Horizontaldashed linesdenote the1-, 10-, and100-yr return levelsofdaily sea level in the150-yrpiControlbasedonthe

GPDmethod. Triangles and diamonds indicate TOE in ESL height and frequency, respectively. Rectangles

denote permanent exceedance by the rising mean sea level. Shown are the (left) time series and (right)

histogram of SLA.
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The kurtosis of a normal (Gaussian) distribution is 3.

Sometimes it is useful to compare the kurtosis of a dis-

tribution to this value (the so-called excess kurtosis). In

this study, we use the original calculation of kurtosis

based on Eq. (A2). Large kurtosis values indicate more

extreme outliners in the distribution.

APPENDIX B

Return Level and Period of ESL in piControl

We use the peak-over-threshold method (Coles et al.

2001; Arns et al. 2013) to calculate return levels of

storm-related ESL corresponding to particular return

periods in the 150-yr piControl.We set the 99th percentile

of SLA (Dhc) as the threshold to extract the subset of

extreme values. We fit the empirical distribution of the

subset with the generalized Pareto distribution (GPD).

y5 p(xjk,s, u)5

8>>>>>>><
>>>>>>>:

�
1

s

��
11 k

x2 u

s

�212
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k
, k 6¼ 0

�
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s

�
e
2
x2u

s , k5 0

,

(B1)

for x $ u when k . 0, and u # x # u 2 s/k when k , 0.

Here y is the PDF of GPD; k, s, and u are the shape,

FIG. 18. Large daily surge event induced by a strong TC in the control run of CM4HR. During this event, a

surge of up to 2.3 m (Dhc) occurs along theGOM coast on 1 Sep, year 80. (a) Daily dynamic sea level anomalies hc

(m) associated with this event. (b) SLA due to the inverse barometer effectDbc (m). (c) Daily surface wind vector

and speed (m s21). (d) Daily precipitation (cm day21). (e) Surface current vector and speed (m s21). (f) SST

anomalies (8C) associated with the cool wake. Contours in (a), (b), (d), and (f) are daily sea level pressure

anomalies (hPa) associated with the TC. The green line shows the storm track except in (c), where the line colors

indicate the storm maximum daily winds (m s21) during its propagation. Note that Fig. 9 shows similar plots but

for CM4.
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scale, and location parameters, respectively. For k 5 0,

GPD becomes the exponential distribution. Given a

particular return period T (1, 10, or 100 years) of ESL

events, the corresponding return level zT is

z
T
5

8>>><
>>>:

u1
s

k

��
12F(u)

p

�k
2 1

�
, k 6¼ 0

u1slog

�
12F(u)

p

�
, k5 0

(B2)

where p and F(u) are the probability of the event and

cumulative density function, respectively.

APPENDIX C

Time of Emergence of ESL in 1pctCO2

For the 1-in-1-year ESL events, we use a 20-yr moving

window and the 99.73 percentile of SLA (empirical 1-yr

event return level) as the threshold to extract the event

samples (Si, i 5 year 20, 21, . . . , 150). For example, S20

and S21 denote the subset exceeding the 99.73 percen-

tile of SLA during years 1–20 and 2–21, respectively.

We then identify the median value of Si in piControl

(mi
c) and 1pctCO2 (m

i
e). The subscripts c and e denote

piControl and CO2 experiments, respectively. Themean

Mc and standard deviation sc of m
i
c are

M
c
5

1

131
�
150

i520

mi
c ,

s
c
5

"
�
150

i520

(mi
c 2M

c
)
2

131

#1/2

:

(C1)

In 1pctCO2, TOE in ESL height of the 1-yr events is

defined as the year i beyond which mi
e permanently ex-

ceeds (Mc 1 2sc). If the anthropogenic signal emerges

within the first 20 years, TOE is marked as year 20. For

the 10-yr events, we follow the same detection proce-

dure except using a 50-yr moving window instead to

increase the sample size and the 99.97 percentile as the

threshold. We do not evaluate TOE in ESL height for

the 100-yr event due to its extreme rareness in the 150-yr

simulations of CM4.

FIG. 19. Histograms of SLA in the 150-yr control and abrupt 4xCO2 runs of CM4 and CM4HR. (left) SLA in the

control run (Dhc) and in the CO2 run without global thermosteric SLR (Dhe) and (right) SLA in the control run

(Dhc) and in the CO2 run with global thermosteric SLR (Dhe 1 DGe), for (top) NE, (middle) SE, and (bot-

tom) GOM.
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To quantify TOE in ESL frequency, we count the

occurrence time above the 1- and 10-yr return level in

piControl using a 20- and 50-yr moving window, re-

spectively. TOE in ESL frequency is defined as the year

beyond which the occurrence time in 1pctCO2 perma-

nently exceeds the mean plus two standard deviation of

the occurrence time in piControl (similar to the method

above for ESL height). For the 100-yr event, TOE is the

year beyondwhich its occurrence time in 1pctCO2within a

50-yr moving window permanently exceeds 1 (i.e., $2).
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