arXiv:2303.17496v1 [physics.ao-ph] 24 Mar 2023

Data-driven multiscale modeling of subgrid
parameterizations in climate models

Karl Otness, Laure Zanna & Joan Bruna
Courant Institute of Mathematical Sciences
New York University
karl.otness@nyu.edu

Abstract

Subgrid parameterizations, which represent physical processes occurring below the resolu-
tion of current climate models, are an important component in producing accurate, long-term
predictions for the climate. A variety of approaches have been tested to design these com-
ponents, including deep learning methods. In this work, we evaluate a proof of concept
illustrating a multiscale approach to this prediction problem. We train neural networks to
predict subgrid forcing values on a testbed model and examine improvements in prediction
accuracy that can be obtained by using additional information in both fine-to-coarse and
coarse-to-fine directions.

1 Introduction

Climate models, which simulate the long-term evolution of the Earth’s atmosphere, oceans, and
terrestrial weather, are critical tools for projecting the impacts of climate change around the globe.
Due to limits on available computational resources, these models must be run at a coarsened
spatial resolution which cannot resolve all physical processes relevant to the climate system
[4]. To reflect the contribution of these subgrid-scale processes, closure models are added to
climate models to provide the needed subgrid-scale forcing. These parameterizations model
the contribution of these fine-scale dynamics and are critical to high quality and accurate long
term predictions [14}[5]. A variety of approaches to designing these parameterizations have been
tested, ranging from hand-designed formulations [16], to modern machine learning with genetic
algorithms [14], or neural networks trained on collected snapshots [17,(7,/12,/13], or in an online
fashion through the target simulation [6].

In this work we examine the impact of decomposing the problem of predicting subgrid forcings
into prediction problems across scales. The problem of learning subgrid forcing is inherently
multiscale; the subgrid dynamics which must be restored represent the impact of the subgrid and
resolved scales on each other. Closure models for climate are designed to be resolution-aware
[9], but even so existing deep learning subgrid models do not explicitly leverage the interactions
between scales, leaving it to the neural networks to implicitly learn these relationships. Explicitly
including this structure as part of a deep learning approach may help regularize the learned
closure models and support learning in regimes with limited training data or in the presence
of underlying uncertainty. We explore the impact of this decomposition, providing proof of
concept results illustrating the potential of imposing this prediction structure on a simple fully-
convolutional neural network closure model.

2 Approach

We consider the problem of learning subgrid forcings for an idealized fluid model. In particular
we study a two layer quasi-geostrophic model as implemented in PyQG [1] which we have ported
to IAXE| (3]. In this model the variable of interest is the potential vorticity g which evolves in
two layers each with two dimensions and periodic boundary conditions. The model can be
evaluated with a configurable grid resolution and states can be ported to lower resolutions by
coarse-graining and filtering. Further details of this model are included in Appendix|[Al

To generate ground truth data, we run the model at a very high (“true”) resolution. This produces
trajectories gyue () and time derivatives 0¢qe(£)/0t. Next we generate training data at a high
resolution by applying a coarsening and filtering operator C giving variables § = C(g). Given
nonlinearities in the model, this coarsening does not commute with the dynamics of the model.
To correct for this we must apply a subgrid forcing term S:

9q _0q
ot ot

Note that formally the forcing S is a function of the state gye. In a climate modeling application
we do not have access to this variable and so we train a model fy(g) = S which may be stochastic.

SE €Y)

We continue this process, introducing another downscalinf] operator D and upscaling D*. Taking
gnr 2 G as our high resolution samples, we produce low resolution samples g, = D(qy,) and
Sir £ D(S). For any of these quantities v we have a decomposition v = D Dv + details(v), where
details(v) are the details removed by D. Our experiments thus involve three resolutions, from fine
to coarse: a “true” resolution; a high resolution, hr; and a low resolution, Ir. The closures S try to

update hr to match the “true” resolution.

Just as predicting S from ¢y is fully deterministic, while predicting it from g, involves uncer-
tainty, we anticipate a similar trend to hold for D(S). In other words, predicting D(S) from gy,
should be easier than predicting D(S) directly from qj;. Then, using this coarse-grained prediction
D(S) as a foundation, we can learn to predict only the missing details and add them. This process
splits the problem of predicting S into two phases: (1) a “downscale” prediction to form D(S),
and (2) a “buildup” prediction combining g, and D(S) to predict S, adding the missing details.
This decomposition takes advantage of self-similarity in the closure problem to pass information
between the coarse and fine scales and improve predictions.

3 Experiments

To test this approach to predicting subgrid forcings we compare the “downscale” and “buildup”
processes discussed above against baselines without the additional information. In our experi-
ments on the quasi-geostrophic model, data is generated at a “true” resolution of 256 x 256, and
high and low resolutions are selected from 128 x 128, 96 x 96, and 64 x 64. When describing the
neural network tasks below, subscripts hr and Ir stand in for one of these three resolutions. These
scales were chosen so that the system requires closure (there are sufficient dynamics below the
grid-scale cutoff), but does not diverge [14]. In the experiments that follow we test all combi-
nations of distinct high and low resolutions. See Appendix[A|for model parameters and further
details on the quasi-geostrophic data generation.

I The ported QG model is available athttps : //github.com/karlotness/pyqg- jax/
2We use “downscale” and “downscaling” to refer to coarsening a target variable, removing finer scales.

https://github.com/karlotness/pyqg-jax/

vay d 1 50
th 3 ’ 5 f@ ownscale : 22 ,‘, feaCl‘OSS
>~ |p D*| |p
effective “~._ = effecti
] 1= S]r qir zL €l 7@(7:71}@7)_ 2 =1 S]r
(a) Downscale prediction (b) Across prediction

Figure 1: Downscale vs. across prediction tasks. The networks referenced in Equationare combinations
of an inner network f with the fixed rescaling operators D, D*. The overall prediction is indicated with a
dashed line.

Our experiments are divided into two categories: a first set of separated experiments, where the
predictions are in one direction across scales (either down or up scale alone), the neural networks
are trained and evaluated separately, and all required inputs are provided by an oracle backed
by a ground truth data set; and a second set of combined experiments where these networks are
composed, eliminating the need for the data set oracle.

For all experiments we train a feedforward convolutional neural network to perform the prediction
task, three copies of each network. These neural networks have one of two architectures, a “small”
architecture used in related research [7] and a “large” architecture with larger convolution kernels.
Details of these experiments are provided below, results are included in Section[4} and information
on the network architectures and the training procedure are included in Appendix|[B]

3.1 Separated Experiments

In these experiments, we train neural networks separately to predict quantities between differ-
ent scales. In particular we train “downscale” networks which predict only the low-resolution
components of the target forcing quantity while observing a high resolution state, and “buildup”
networks which work in the opposite direction, predicting higher-resolution forcing details with
access to the low-resolution forcing.

Downscale Prediction

We compare the task of predicting Sj; £ D(Sy,) with access to high resolution information g, or
restricted to low resolution g,. This provides an estimate of the advantage gained by predicting
the target forcing with access to details at a scale finer than that of the network’s output. We train
two networks fp with the same architecture to perform one of two prediction tasks:

Do fgdownscale(th) ~ Sy and D ofgacross o D*(qiy) = Sir. 2)

To ensure that the convolution kernels process information at the same spatial size, and differ
only in the spectral scales included, we first upsample all inputs to the same fixed size using a
spectral upscaling operator D* described in Appendix The full prediction process including the
re-sampling operators is illustrated in Figure[I]and experimental results are included in Table[]]
discussed below.

Buildup Prediction

We also test a prediction problem in the opposite direction, predicting finer-scale details with
access to lower-resolution predictions, similar to a learned super-resolution process used in

Ghr K : ,‘f
27 pbuildup
fo
; direct
5, 7LD T S e BB S [T S
(a) Buildup prediction (b) Direct prediction

Figure 2: Buildup vs. direct prediction. The networks in Equation are combinations of the networks fy
with the indicated fixed operations. In Figure[2a] fp predicts the details which are combined with Sj; from
an oracle.

recent generative modeling works [15,8]. We train neural networks:

£ P (G, DY (S1)) = She =D (1) and [(g,) = Spy, 3)

where Sy, — D" (Sy;) are the details of Sy, which are not reflected in Sj;. The additional input Sy, is
given by an oracle using ground truth data in the training and evaluation sets.

This experiment estimates the value in having a high-quality, higher-confidence prediction Sy,
in addition to gy;, when predicting the details of Sy,. That is, the experiment estimates the
value in starting the prediction of Sy, by first locking in a coarse-grained version of the target,
and separately enhancing it with finer-scale features. The two prediction tasks are illustrated in
Figure[2)and results are included in Table[2] discussed below.

3.2 Combined Experiments

In these experiments, we combine the networks trained in the “downscale” and “buildup” experi-
ments, passing the downscale prediction as an input to the buildup network. This removes the
oracle providing lower resolution predictions used to train the separate networks. In each test,
we choose at least two scale levels and first predict a coarsened version of the subgrid forcing at
the lowest resolution, then gradually enhance it with missing scales using the buildup process
discussed above. We test all valid subsets of our three scale levels. Results for these experiments
are included in Table[3|

For these experiments we retrain new neural networks building out the training pipeline se-
quentially. That is, we first train the first downscale network, and then use that trained network
to provide needed inputs for the subsequent buildup network. In this way, later networks see
realistic inputs during training rather than unrealistically clean data from a training set oracle.
The training process is otherwise unmodified; each network is trained separately following the
same training procedure as in the separated experiments. The only change is that some of the
training inputs are provided by fixed neural networks earlier in the full pipeline.

For a combined prediction across two scales Ir and hr, we predict Sy, from only gy, following the
procedure below:

Slr —Do fedownscale(th)

Shr = f;unduP(Clhr, D™ (Si)) + D" ().

4

The quantities S are approximate neural network outputs used in intermediate predictions. We
can extend this to perform a prediction using all three of our scale levels. For concreteness we

discuss this using the relevant dimension numbers, but these could of course be generalized for
other settings. The three level cascaded procedure predicts S;2g from only g2 by first performing
a downscale prediction to a resolution of 64 x 64 followed by two buildup steps:

& 2 downscal
Sea =D g4 0 f "M (g128)

Sa6 = £ " “P 1 (D_.06(q128), D .05(S64)) + D.g5(Se4) 5)
build = &
8128 = fg . upz(qIZB» Dilgg(S%)) +D:128(896)'

In the above, the different scaling operators D, D* are distinguished by subscripts with arrows
toward the scale of the result. Downscaling across two levels is denoted D?. Equation [4|and
Equation[5|compose the prediction tasks described in Equation[2Jand Equation[3]

4 Results

For each of the prediction tasks described in Section 8} we train three neural networks. Once
trained, we evaluate their performance on a held-out evaluation set measuring performance with
three metrics: a mean squared error (MSE), a relative ¢, loss, and a relative ¢, of the spectra of the
predictions.

The MSE is a standard mean squared error evaluated over each sample and averaged. The other
two metrics are derived from previous work evaluating neural network parameterizations [13]
(where they were called Lse and Ls). These were originally designed to measure performance
for stochastic subgrid forcings. Here we use the two metrics from that work which do not collapse
to trivial results for deterministic models. These are defined as:

S-S S)—sp(S
Rel €2 2 u and Rel Spec [2 2 w (6)
ISl Isp(S)l2
where S is the true target forcing, S is a neural network prediction being evaluated, and sp is the
isotropic power spectrum. See calc_ispec in PyQG for calculation details [1]. Each of these three
metrics is averaged across the same batch of 1024 samples selected at random from the set of held

out trajectories in the evaluation set.

Table[I|shows the results for the downscale experiments, comparing against “across” prediction
which accesses only coarse-scale information. In these results we observe an advantage to
performing the predictions with access to higher-resolution data (the “downscale” columns),
suggesting potential advantages and a decrease in uncertainty in such predictions.

Results for experiments examining prediction in the opposite direction—predicting a high-
resolution forcing with access to a low-resolution copy of the target from an oracle—are included
in Table[2] We also observe an advantage in this task from having access to the additional infor-
mation. The low resolution input in the buildup experiments yields lower errors on average at
evaluation. This advantage is greater when the additional input is closer in scale to the target
output. The predictions building up from 96 x 96 to 128 x 128 have lower errors than those which
access an additional 64 x 64 input. This is not unexpected given that the input with nearer reso-
lution resolves more of the target value, leaving fewer details which need to be predicted by the
network. The results for both separated experiments (those reported in Table[I|and Table[2) for
the MSE metric are illustrated in Figure[3]

Results for the combined experiments, reported in Table[3} illustrate the early potential of this
approach. In general, splitting the subgrid forcing prediction across scales slightly improved

NN Size Metric 128 — 96 128 — 64 96 — 64
Downscale Across Downscale Across Downscale Across
MSE 0.054 0.072 0.002 0.006 0.032 0.058
Small Rel ¢, 0.317 0.364 0.394 0.629 0.348 0.469
Rel Spec ¢, 0.133 0.145 0.154 0.471 0.154 0.254
MSE 0.038 0.057 0.002 0.006 0.024 0.052
Large Rel ¢, 0.259 0.316 0.335 0.595 0.297 0.436
Rel Spec ¢, 0.092 0.129 0.125 0.443 0.103 0.212

Table 1: Evaluation results for downscale vs. across generation. In all metrics, lower is better. The numbers
in the first row of the table heading show the different scales involved in both prediction tasks. The results

contributing to the MSE averages in this table are illustrated in Figure

. . Buildup Buildup Direct Buildup Direct

NN Size Metric 64—128 96—128 128 64— 96 96
MSE 0.094 0.033 0.097 0.060 0.108

Small Rel/» 0.314 0.187 0319 0251 0.333
Rel Spec £ 0.138 0.054 0.139 0.095 0.162

MSE 0.057 0019 0062 0037 0.071

Large Rel 0.242 0.141 0251 0195 0.268
Rel Spec £ 0.074 0.029 0084 0041 0.091

Table 2: Evaluation results from buildup vs. direct experiments. In all metrics, lower is better. The numbers
in the second row of the table heading show the different scales involved in both prediction tasks. The

results contributing to the MSE averages in this table are illustrated in Figure

i B3
>3<x H X
0.06] 0.10 X xxx X
. : XX XX
: X
< ; 0.08
W : w 3
@ 0.04] 0 0.06 XX
i 0.04
0.02 ' X X Small
' X Small 0.02 na
: XX Large 3 Large
0.00 XXX : 0.00 ° - -
""" Downscale Across Downscale Across Downscale Across Buildup 64-128 Direct 128 Direct 96
128-96 128-64 9664 Buildup 96-128 Buildup 64-96

(a) Downscale vs. across MSE (b) Buildup vs. direct MSE

Figure 3: Evaluation results from both of the separated experiments for the MSE metric. These are the same
numbers which are reported as averages in Table[l]and Table[2} The plot here shows the three samples—one
from each trained network—used to compute the means.

NNSize Metric Combined Combined Combined Direct Combined Direct

64, 128 96,128 64, 96, 128 128 64, 96 96

MSE 0.098 0.078 0.085 0.097 0.100 0.108

Small Rel ¢, 0.320 0.284 0.297 0.319 0.320 0.333
Rel Spec 4, 0.139 0.091 0.104 0.139 0.139 0.162

MSE 0.061 0.053 0.058 0.062 0.065 0.071

Large Rel ¢5 0.249 0.232 0.243 0.251 0.256 0.268
Rel Spec ¢, 0.082 0.061 0.063 0.084 0.081 0.091

Table 3: Evaluation results for the combined experiments, composing “downscale” and “buildup” networks,
eliminating the input forcing oracle. Bolded values show where the combined network outperformed the
associated baseline (repeated from Table[2). The results contributing to the MSE averages in this table are
illustrated in Figure

0.11
X LT X X

0.10 [x|X X XX
., 0.09 %

X Small

wn
= 0.08 XX Large
0.07

0.06

0.05

Combined Combined Combined Direct Combined Direct
64,128 96,128 64,96,128 128 64, 96 96

Figure 4: Evaluation results from the combined experiments for the MSE metric. These are the same values
reported as averages in Table[8] The bars behind each cluster of points show the mean (horizontal bar in
the center) along with a 20 range on either side, computed from the empirical standard deviations.

performance, particularly in cases with a smaller scale step down. The improvement is partic-
ularly pronounced for the small size networks, suggesting there may be potential to improve
architectural efficiency using a multiscale prediction process.

We find that adding additional buildup steps slightly hurt performance relative to a single lower
scale level. We expect this may be due to accumulated errors propagated between the networks.
Adding a small amount of noise during the sequential training process may help improve robust-
ness. The points contributing to the MSE averages in Table[3|are illustrated in Figure[4]

5 Conclusion

Our proof of concept experiments in this work illustrate the potential advantages from decompos-
ing the subgrid forcing problem into one across scales. We see this as an approach which may have
regularization advantages, explicitly representing multiscale aspects of this prediction problem,
and supporting learning in scarce data regimes and better handling underlying uncertainty in
this task.

The results reported here represent an initial step in an ongoing project. In our continuing work
we will further investigate combining these prediction tasks to increase robustness to errors
in intermediate predictions. We anticipate that adding noise and other perturbations during

training may improve the performance of the combined experiments. We will further work to
quantify the regularization benefits of this approach in limited-data regimes, and investigate
other ways to structure the multiscale prediction task, in particular tailoring the neural network
architecture to minimize computational cost and taking advantage of the multiscale prediction
process to maintain prediction quality. We also plan to expand evaluation to include online tests,
using the learned parameterizations across simulation time steps, and test generalization to other
quasi-geostrophic simulation parameter settings, and on other climate-modeling tasks.

References

Ryan Abernathey et al. pygg: v0.7.2. Version v0.7.2. May 2022. DOI: 10 . 5281 / zenodo |
6563667. URL: https://doi.org/10.5281/zenodo.6563667.

Igor Babuschkin et al. The DeepMind JAX Ecosystem. 2020. URL: http://github. com/

deepmind.

James Bradbury et al. JAX: composable transformations of Python+NumPy programs. Ver-
sion 0.3.13. 2018. URL: https://github.com/google/jax.

Baylor Fox-Kemper et al. “Principles and advances in subgrid modelling for eddy-rich simu-
lations”. In: CLIVAR Exchanges (WGOMD Workshop on High Resolution Climage Modeling).
Vol. 19. 2014, pp. 42-46.

Baylor Fox-Kemper et al. “Challenges and Prospects in Ocean Circulation Models”. In:

Frontiers in Marine Science 6 (2019). ISSN: 2296-7745. DOI:/10.3389/fmars .2019.00065.
URL:https://www.frontiersin.org/articles/10.3389/fmars.2019.00065.

Hugo Frezat et al. “A Posteriori Learning for Quasi-Geostrophic Turbulence Parametriza-
tion”. In: Journal of Advances in Modeling Earth Systems 14.11 (2022). e2022MS003124

2022MS003124, e2022MS003124. DOI:{10. 1029/2022MS003124, eprint: https://agupubs,
onlinelibrary.wiley.com/doi/pdf/10.1029/2022MS003124. URL:https://agupubs|.
onlinelibrary.wiley.com/doi/abs/10.1029/2022MS003124.

Arthur P. Guillaumin and Laure Zanna. “Stochastic-Deep Learning Parameterization of

Ocean Momentum Forcing”. In: Journal of Advances in Modeling Earth Systems 13.9 (2021).
€2021MS002534 2021MS002534, e2021MS002534. DOI:|10.1029/2021MS002534. eprint:

https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2021MS002534.
URL:https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021MS002534.
Jonathan Ho et al. “Imagen Video: High Definition Video Generation with Diffusion Models”.
In: arXiv Preprint (2022). URL: https://arxiv.org/abs/2210.02303.

Malte E Jansen et al. “Toward an Energetically Consistent, Resolution Aware Parameter-
ization of Ocean Mesoscale Eddies”. In: Journal of Advances in Modeling Earth Systems

11.8 (2019), pp. 2844-2860. DOI: https://doi.org/10.1029/2019MS001750. URL: https:

//agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019MS001750.

Patrick Kidger and Cristian Garcia. “Equinox: neural networks in JAX via callable PyTrees

and filtered transformations”. In: Differentiable Programming workshop at Neural Informa-
tion Processing Systems 2021 (2021).

Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In: arXiv

Preprint (2014). URL: https://arxiv.org/abs/1412.6980.

R. Maulik et al. “Subgrid modelling for two-dimensional turbulence using neural networks”.
In: Journal of Fluid Mechanics 858 (2019), 122-144. D0O1:/10.1017/3jfm.2018.770.

Pavel Perezhogin, Laure Zanna, and Carlos Fernandez-Granda. “Generative data-driven

approaches for stochastic subgrid parameterizations in an idealized ocean model”. In:

arXiv Preprint (2023). URL: https://arxiv.org/abs/2302.07984.

https://doi.org/10.5281/zenodo.6563667
https://doi.org/10.5281/zenodo.6563667
https://doi.org/10.5281/zenodo.6563667
http://github.com/deepmind
http://github.com/deepmind
https://github.com/google/jax
https://doi.org/10.3389/fmars.2019.00065
https://www.frontiersin.org/articles/10.3389/fmars.2019.00065
https://doi.org/10.1029/2022MS003124
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2022MS003124
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2022MS003124
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2022MS003124
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2022MS003124
https://doi.org/10.1029/2021MS002534
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2021MS002534
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021MS002534
https://arxiv.org/abs/2210.02303
https://doi.org/https://doi.org/10.1029/2019MS001750
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019MS001750
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019MS001750
https://arxiv.org/abs/1412.6980
https://doi.org/10.1017/jfm.2018.770
https://arxiv.org/abs/2302.07984

[14] Andrew Ross et al. “Benchmarking of Machine Learning Ocean Subgrid Parameterizations
in an Idealized Model”. In: Journal of Advances in Modeling Earth Systems 15.1 (2023).
€2022MS003258 2022MS003258, e2022MS003258. DOI: |10 . 1029/2022MS003258. eprint:
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2022MS003258.
URL:https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2022MS003258.

[15] Uriel Singer et al. “Make-A-Video: Text-to-Video Generation without Text-Video Data”. In:
arXiv Preprint (2022). URL: https://arxiv.org/abs/2209.14792.

[16] J.Smagorinsky. “General Circulation Experiments with the Primitive Equations: I. The Basic
Experiment”. In: Monthly Weather Review 91.3 (1963), pp. 99 -164. DOI1:/10.1175/1520~
0493(1963)091<0099:GCEWTP>2.3.C0; 2.

[17] Laure Zanna and Thomas Bolton. “Data-Driven Equation Discovery of Ocean Mesoscale Clo-
sures”. In: Geophysical Research Letters47.17 (2020). e2020GL088376 10.1029/2020GL088376,
€2020GL088376. DO1:/10.1029/2020GL088376. eprint: https://agupubs.onlinelibrary.
wiley.com/doi/pdf/10.1029/2020GL088376. URL: https://agupubs.onlinelibrary.
wiley.com/doi/abs/10.1029/2020GL088376.

A Quasi-Geostrophic Model

For our experiments we target the two-layer quasi-geostrophic model implemented in PyQG
which is a simplified approximation of fluid dynamics [1]. This model follows the evolution of
a potential vorticity g, divided into two layers g = [q1, g2]. This system is pseudo-spectral and
has periodic boundaries along the edges of each layer. The evolution of the quantities in Fourier
space (indicated by a hat) is:

od - L

% = —JW, q1) — ikBit +ssd 7
Y o A .

% =—J(W2,q2) — ikBa2 + reszlllg +ssd 8)

where J(A,B) £ AyxBy — Ay By, “ssd” is a small scale dissipation, and the quantity v is related to g
by:
—(K?*+ Fy)

F 1] _[q
B —(K2+Fz)] 17/2]_[‘ ®)

G2

The values « are the radial wavenumbers Vv k2 + [2 while k and ! are wavenumbers in the zonal
and meridional directions (the axis-aligned directions in our grid), respectively [14].

We use the “eddy” configuration from [14] which sets the following values for model constants:

1

Fek =5.787x1077 F = W
52?;:0'25 F,=6F,
p=15x10"" W =10°
rq = 15000 L=10°

where Hj, H, are the heights of each of the two layers of g and r,; is a deformation radius. For
more information on the model configuration, consult [14] and the documentation for the PyQG
package.

https://doi.org/10.1029/2022MS003258
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2022MS003258
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2022MS003258
https://arxiv.org/abs/2209.14792
https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
https://doi.org/10.1029/2020GL088376
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2020GL088376
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2020GL088376
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020GL088376
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020GL088376

We generate our data at a “true” resolution on a grid of dimension 256 x 256 using the PyQG
default third order Adams-Bashforth method for time stepping. We use a time step of At = 3600
generating 86400 steps from which we keep every eighth leaving 10800 per trajectory. Our training
set consists of 100 such trajectories, and our evaluation set contains 10.

Each step produces a ground truth potential vorticity gye along with a spectral time derivative
0Girue/0t. From these we apply our family of coarsening operators C (described in Appendix|C)
to produce filtered and coarsened values g, £ Ci:(Girue) at resolutions of 128 x 128, 96 x 96, and
64 x 64.

For each of these, we recompute spectral time derivatives in a coarsened PyQG model 64,/0t,
and we pass each time derivative to spatial variables and compute the target forcing for this scale:

aqtrue) _ %

Slr:Clr(ot ot

These forcings—at each of the three scales—along with the high resolution variables are stored in
the training and evaluation sets for each step.

B Network Architecture and Training

We use the feedforward CNN architecture from [7] without batch norm as our standard “small”
architecture. The “large” size roughly doubles the size of each convolution kernel. This produces
the architectures listed in Table 4l We use ReLU activations between each convolution. Each
convolution is performed with periodic padding, matching the boundary conditions of the system.
All convolutions are with bias. The input and output channel counts are determined by the inputs
of the network. Each input and output quantity has two layers, each of which is handled as a
separate channel. These parameters are adjusted for each task to accommodate the inputs and
make the required predictions. We implement our networks with Equinox [10].

Conv. Layer Chans. Out Small Kernel Size Large Kernel Size

1 128 (5,5) 9,9
2 64 (5,5) 9,9)
3 32 3,3) (5,5)
4 32 3,3) (5,5)
5 32 3,3) (5,5)
6 32 (3,3) (5,5)
7 32 3,3) 5,5)
8 out layers (3,3) (5,5)

Table 4: Architecture specifications for each neural network. Convolution kernel sizes vary between the
architecture sizes. The channel counts are adjusted to accommodate the inputs and outputs of each task.

We train each network with the Adam optimizer [11] as implemented in Optax [2]. The learning
rate is set to a constant depending on architecture size: the small networks use 5 x 10~4, while
the large networks use 2 x 1074, The networks are trained to minimize MSE loss. Large chunks of
10 850 steps are sampled with replacement from the dataset which is pre-shuffled uniformly. Then
each of these chunks is shuffled again and divided into batches of size 256 without replacement.
One epoch consists of 333 such batches. We train the small networks for 132 epochs, and the large

10

networks for 96 epochs. We store the network weights which produced the lowest training set loss
and use these for evaluation.

For all input and target data, we compute empirical means and standard deviations and standard-
ize the overall distributions by these values before passing them to the network. The means and
standard deviations from the training set are used in evaluation as well.

C Coarsening Operators

In this work we make use of two families of coarsening operators to transform system states across
scales. The first, denoted C, is used when generating our data. This operator is applied to the “true”
resolution system outputs Giyue and 0guye /0t to produce training and evaluation set samples as
well as target forcings S. The second operator D (with associated upscaling D) is applied as a
part of each prediction task to adjust scales around the neural networks as needed. These are the
operators referenced in Figure[l|and Figure

Each of these operators is built around a core spectral truncation operation, D. For an input
resolution hr and an output resolution Ir, this operator truncates the 2D-Fourier spectrum to the
wavenumbers which are resolved at the output resolution, then spatially resamples the resulting
signal for the target size Ir. These operators also apply a scalar multiplication to adjust the range
of the coarsened values. We define a ratio p = hr/Ir.

C.1 DataFiltering

The data filtering operator C is “Operator 1” as described in [14]. It is a combination of the
truncation operator D with a spectral filter F

C£p 2 FoD

where the filter F acts on the 2D-Fourier spectrum of the truncated value. F is defined in terms
of the radial wavenumber x = V k? + [> where k and [are the wavenumbers in each of the two
dimensions of the input. For an input 9 at radial wavenumber x we define:

A

D if x =«x¢

-F(ﬁx) = CyAA 44
Dy - e—23.6(1<—1<) Ax, ifx > k€

where Ax;; £ L/Ir (L is a system parameter; see Appendix@ for details), and k¢ = (0.657)/Axy, is a
cutoff wavenumber where decay begins.

C.2 Rescaling Operator

For scale manipulations as part of our learned model we make use of a scaled spectral truncation
operator. We define a downscaling operator D as well as an upscaling operator D*:

D2p™2D and D'£p’*DT. (10)

Note that D* is a right side inverse DD = I, and that D" is the pseudoinverse D™ = D(DDT)~!
because DDT = I. This operator omits the filtering F performed as part of coarsening operator C
to avoid numerical issues when inverting the additional spectral filtering.

11

	1 Introduction
	2 Approach
	3 Experiments
	3.1 Separated Experiments
	3.2 Combined Experiments

	4 Results
	5 Conclusion
	A Quasi-Geostrophic Model
	B Network Architecture and Training
	C Coarsening Operators
	C.1 Data Filtering
	C.2 Rescaling Operator

