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ABSTRACT

Atlantic multidecadal variability (AMV) of sea surface temperature exhibits an important influence on the

climate of surrounding continents. It remains unclear, however, the extent to which AMV is due to internal

climate variability (e.g., ocean circulation variability) or changes in external forcing (e.g., volcanic/anthro-

pogenic aerosols or greenhouse gases). Here, the sources of AMV are examined over a 340-yr period using

proxy indices, instrumental data, and output from the Last Millennium Ensemble (LME) simulation. The

proxy AMV closely follows the accumulated atmospheric forcing from the instrumental North Atlantic

Oscillation (NAO) reconstruction (r 5 0.65)—an ‘‘internal’’ source of AMV. This result provides strong

observational evidence that much of the AMV is generated through the oceanic response to atmospheric

circulation forcing, as previously demonstrated in targetedmodeling studies. In the LME there is a substantial

externally forced AMV component, which exhibits a modest but significant correlation with the proxy AMV

(i.e., r5 0.37), implying that at least 13% of the AMV is externally forced. In the LME simulations, however,

the AMV response to accumulated NAO forcing is weaker than in the proxy/observational datasets. This

weak response is possibly related to the decadal NAO variability, which is substantially weaker in the LME

than in observations. The externally forced component in the proxy AMV is also related to the accumulated

NAO forcing, unlike in the LME. This indicates that the external forcing is likely influencing the AMV

through different mechanistic pathways: via changes in radiative forcing in the LME and via changes in

atmospheric circulation in the observational/proxy record.

1. Introduction

In situ observations of North Atlantic sea surface

temperatures (SSTs) have been made from the mid-

nineteenth century to the present day. In this ;150-yr

observational period, North Atlantic SSTs exhibit sig-

nificant variability on time scales of decades and longer;

this is often referred to as the Atlantic multidecadal

variability (AMV) or Atlantic multidecadal oscillation

(e.g., Kushnir 1994; Enfield et al. 2001; Deser et al.

2010). The AMV has been shown to influence decadal

climate in the surrounding continental regions, in-

cluding North America (McCabe et al. 2004; Sutton and

Hodson 2005; Knight et al. 2006; Ting et al. 2009; Hu and

Feng 2012; Ruprich-Robert et al. 2018), Europe (Sutton

and Hodson 2005; Knight et al. 2006; Sutton and Dong

2012; O’Reilly et al. 2017; Ruprich-Robert et al. 2017;

Qasmi et al. 2017; Ghosh et al. 2017;Årthun et al. 2018),

and the Sahel (Palmer 1986; Folland et al. 1986; Zhang

and Delworth 2006; Martin et al. 2014; Martin and

Thorncroft 2014). The AMV has also been linked to

decadal variability in hurricane frequency (e.g., Zhang

and Delworth 2006; Yan et al. 2017) and Arctic sea ice

(e.g., Zhang 2015). The influence the AMV exhibits on

the surrounding climate means it is an important source

of potential climate predictability and future decadal

variability.
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The AMV has been linked to variability in ocean

circulation and variability in external forcing, as well as

other generationmechanisms. Many studies have shown

that theAMV in general circulationmodels is associated

with changes in ocean circulation—and more specifi-

cally, changes in ocean heat flux convergence (e.g.,

Delworth and Mann 2000; Knight et al. 2005). This has

been associated with changes in the Atlantic meridional

overturning circulation (AMOC; e.g., Danabasoglu

2008; Zhang and Wang 2013; Wills et al. 2019), but the

AMV has also been attributed to changes in horizontal

gyre circulations, particularly in the extratropical part of

the AMV (Williams et al. 2014, 2015; Piecuch et al.

2017). The study by Clement et al. (2015) showed that

similar North Atlantic SST variability is exhibited in

climate models with a slab ocean model that does not

feature ocean circulation variability. However, other

studies have shown that ocean circulation is an impor-

tant factor in reproducing the observed characteristics

in the extratropics; the decadal SSTs in the extratropical

North Atlantic are correlated with upward turbulent

heat fluxes in observations and fully coupled models

but not in slab ocean models (Gulev et al. 2013; O’Reilly

et al. 2016; Zhang et al. 2016; Drews and Greatbatch

2016). Moreover, the observed influence of the AMV

on surrounding continental regions, and particularly

over Europe, is not reproduced in models without

ocean circulation variability (O’Reilly et al. 2016; Sun

et al. 2019).

Contrary to studies citing the importance of ocean

circulation variability, several studies have demon-

strated that changes in external forcing could be re-

sponsible for the observed AMV. Booth et al. (2012)

demonstrated that, in a particular climate model, the

indirect radiative effect of anthropogenic aerosols and

their effect on downward shortwave radiation was re-

sponsible for much of the AMV over the twentieth

century. However, Zhang et al. (2013) demonstrated

that this particular simulation failed to capture some key

features associated with the observed AMV, such as the

upper-ocean heat content anomalies and the covariation

of surface salinity anomalies (also see Zhang 2017).

Nonetheless, models in phase 5 of the Coupled Model

Intercomparison Project (CMIP5) historical ensem-

ble, the same model generation as the single model

study of Booth et al., do have a substantial externally

forced component of the AMV (Murphy et al. 2017). In

the CESM ‘‘Last Millennium Ensemble’’ simulations,

Bellomo et al. (2018) showed thatmuch of the externally

forced AMV over the CMIP5 historical period is from

anthropogenic aerosols, but with substantial contribu-

tions from decadal variations in greenhouse gas con-

centrations and volcanic aerosol emissions. However,

the influence of external forcing does not necessarily

eliminate the role of ocean circulation in the AMV and

indeed signatures of both external forcing and AMOC

variability were found in the study of Tandon and

Kushner (2015).

In contrast to studies demonstrating that external

forcing has driven the observed AMV, there is sub-

stantial evidence that the AMV is an ‘‘internal’’ mode of

the climate system. For example, in studies by Li et al.

(2013) and McCarthy et al. (2015) it has been demon-

strated that the observed AMV over the twentieth

century closely follows the accumulated signal of the

North Atlantic Oscillation (NAO). The ocean circula-

tion changes as a result of the NAO forcing on decadal

time scales, influencing heat content anomalies in the

North Atlantic. In a recent modeling study, Delworth

et al. (2017) showed that prescribing extratropical tur-

bulent heat flux anomalies associatedwith decadal NAO

variability was sufficient to generate the recent observed

AMV changes, through changes in the overturning cir-

culation. Kim et al. (2018b) also show evidence that

ocean dynamics have played a key role in recent AMV

behavior. Similarly, Robson et al. (2012) found that

surface turbulent heat fluxes were responsible for the

recent period of rapid North Atlantic warming in the

mid-1990s. In a preindustrial control simulation, Sun

et al. (2015) showed that the accumulated NAO leads

the AMV and then there is a subsequent feedback that

acts to generate substantial multidecadal variability.

The NAO forcing of the AMV is present in most cou-

pled models in the CMIP5 ensemble, in both historical

and longer preindustrial control simulations, though the

relationship is generally weaker than that seen in ob-

servations (O’Reilly and Zanna 2018; Peings et al. 2016).

Since this mechanism is seen in preindustrial simulations

(with constant external radiative forcing) the AMV

driven by atmospheric forcing can be considered in-

ternal to the climate system. It is likely that intrinsic

oceanic variability, which is not driven by accumulated

NAO forcing, makes a substantial contribution to the

oceanic circulation and thereby the AMV; however, it

seems that this is lower in the extratropical North At-

lantic where the atmospheric-forced variability domi-

nates (Leroux et al. 2018). We refer to the AMV forced

by anomalous atmospheric circulation as the ‘‘internal’’

AMV throughout this study.

A separation of the external forced AMV from the

internal AMV is difficult to calculate using observations,

primarily due to the relatively short observational pe-

riod. To better understand the AMV and its behavior in

the past, several studies have examined the presence of

AMV using proxies. Gray et al. (2004) used a sparse

tree-ring dataset to produce an AMV index from the
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late 1500s to the present that exhibited distinct multi-

decadal variability in the reconstructed period. More

recently, Wang et al. (2017a) produced an annually re-

solved AMV proxy, which revealed that some of the

multidecadal variability in the North Atlantic can be

attributed to the response to volcanic eruptions, similar

to the results of the modeling study of Otterå et al.

(2010). However, a large amount of the AMV in the

Wang et al. reconstruction cannot be attributed to ex-

ternal forcing.

In this study, we use proxy data to investigate the in-

ternally generated AMV and the externally forced AMV

components. To do so, we analyze several proxy AMV

reconstructions in combination with a reconstruction of

sea level pressure (SLP) over the past ;350 years. The

sea level pressure reconstruction is produced using early

instrumental observations over Europe (Luterbacher

et al. 2001). We use the proxy AMV datasets and re-

constructed SLP to examine the internalAMVgenerated

by anomalous atmospheric forcing. In addition, we

analyze a long ensemble simulation over the same period

to estimate the external forcing of the AMV in the proxy

datasets. The datasets and methods are described in

section 2. In section 3 we demonstrate that there is a large

fraction of the proxy AMV that appears to be internally

driven by atmospheric circulation anomalies; we also find

evidence of an externally forced fraction of the proxy

AMV. Conclusions follow in section 4.

2. Datasets and methods

a. Proxy AMV indices

To analyze the AMV over an extended period we

utilize three available proxy-based indices. The AMV in

all these indices is defined as the SST averaged over the

entire North Atlantic Ocean (08–708N). The first, by

Wang et al. (2017a), was produced using 46 annual-

resolution terrestrial proxies including tree rings and ice

cores that exhibit positive correlations with local tem-

peratures and/or hydroclimate, from the Past Global

Changes 2000 yr (PAGES 2k) Consortium database

(Ahmed et al. 2013). Wang et al. used these proxy

records to reconstruct the (nondetrended) AMV for

the extended boreal summer season [May–September

(MJJAS)], as many proxies are particularly sensitive to

summer variability and the AMV exhibits a particularly

large signal in summer temperatures (e.g., O’Reilly et al.

2017), though this is very similar to the annual AMVover

the observational period. The AMV was reconstructed

using a nested principal component regression method

and was demonstrated to be well validated using a sliding

window approach. It was also shown to be insensitive to

the various changes to the proxy composition and nesting

method. The proxy reconstruction method was also val-

idated using pseudoproxy climate experiments, where

artificial proxies in a climate model are produced at the

locations of the real proxies and are used to reconstruct

the model AMV (e.g., Smerdon 2012). The Wang et al.

proxy AMV index will be referred to as AMV-Wang

herein.

The second proxy AMV index we analyze is from the

study of Mann et al. (2009). In their study, Mann et al.

used climate field reconstruction to produce a dataset of

annual mean gridded temperatures. This temperature

reconstruction is actually only resolved on decadal time

scales, from which areal averages are taken to produce

an AMV index. This dataset was produced using a set of

proxies with global coverage, some of which were also

used to produce AMV-Wang. However, the decadal

resolution of this dataset reduces the degrees of freedom

available over the instrumental period, which therefore

reduces the confidence levels of the calibration and

verification. In spite of these possible limitations, we will

analyze theMann et al. AMV index (AMV-Mann) since

it provides an additional estimate over the proxy period.

The final proxyAMV indexwewill analyze is from the

study of Gray et al. (2004). This index was produced

using a sparse dataset of only 12 tree rings, with annual

resolution, which are completely independent of the

proxy datasets used to produce AMV-Wang and AMV-

Mann. Gray et al. used a principal component re-

construction method to produce their AMV index,

targeting detrended annual mean temperatures over

the North Atlantic. However, the proxies were selected

from a large tree-ring database based on the magnitude

of their correlation (i.e., jrj . 0.25) with the observed

AMV index over the instrumental period, rather than

local temperatures as in the AMV-Wang and AMV-

Mann reconstructions. Selecting the tree-ring proxies to

include in the principle component reconstruction based

on the observed AMV in this way leads to a selection

bias that is likely to substantially overestimate the ac-

curacy of the reconstruction (Miller 1984). For example,

in the Gray et al. reconstruction, tree rings that are un-

correlated with local temperatures or precipitation but

by chance have a reasonable correlation with the AMV

would be included in the reconstruction. Despite the

flaws in the proxy selection criteria, we nonetheless in-

clude the Gray et al. AMV index in our analysis (AMV-

Gray). AMV-Gray is provided in terms of standard

deviation, so is scaled by the instrumental AMV stan-

dard deviation (s 5 0.19K) to be comparable with the

other AMV indices.

We analyze the AMV-Wang and AMV-Mann indices

over the period 1659–1999, the common period with the
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NAO index (described in the following subsection), and

the AMV-Gray index over the period 1659–1990 since

AMV-Gray is not available after 1990. We will present

analysis for all three indices but have the most confi-

dence in AMV-Wang, for the reasons outlined above. In

addition, we analyze the AMV index from observations,

which is the nondetrended North Atlantic SST (08–
708N) from the Kaplan SST dataset (downloaded from

https://www.esrl.noaa.gov/psd/data/timeseries/AMO/), this

is used over the period 1856–1999.

The three proxy AMV reconstructions disagree sub-

stantially in some parts or the analysis period. While

effort is made as to the accuracy of the reconstructions in

the source literature (Gray et al. 2004; Mann et al. 2009;

Wang et al. 2017a), it is not clear that these uncertainties

will be constant going back in time. The AMV re-

constructions are considered to be more uncertain than

the NAO index calculated from a sea level pressure

reconstruction (see next section), since this is produced

using instrumental data from barometers among other

measurements.

b. NAO index from early instrumental data

To investigate the internally generated AMV in the

proxy datasets we analyze the NAO, which is the dom-

inant mode of large-scale atmospheric variability in

the North Atlantic sector. To calculate the NAO in-

dex, we use the mean SLP reconstruction produced by

Luterbacher et al. (2002). This dataset is amonthly 58 3 58
gridded SLP dataset over Europe and the eastern

North Atlantic (308W–408E; 308–708N) and is available

from 1659 onward. The SLP reconstruction was pro-

duced primarily using early instrumental station time

series of pressure, temperature, and precipitation. The

station pressure time series are the most important

input data for the SLP reconstructions owing to the

large spatial scale of monthly SLP anomalies. The

number of predictors in the reconstruction increases

substantially from 1755 onward, such that the quality of

the reconstruction is not constant throughout the

dataset. Numerous other proxy NAO reconstructions

are available that extend the NAO back for up to 1000

years, though there is a large uncertainty and spread

across these proxy indices (Pinto and Raible 2012), so

for this reason we only analyze the NAO derived from

the instrumental-based SLP reconstruction.

The NAO time series is calculated as the SLP differ-

ence between two boxes, one over Iceland and one over

the Azores (shown in Figs. 2a,b), with each box con-

sisting of four grid points, following Luterbacher et al.

(2001). We calculate the NAO index for all months,

normalizing over the entire monthly time series, such

that there is more NAO variability in the winter months

than in the summer months. This means that the winter

months contribute more to the annual mean indices but

the contribution from summer months is not neglected.

The annual mean NAO index is computed from the

monthly NAO index.

The NAO was calculated using this traditional grid-

point method rather than an empirical orthogonal

function (EOF) method because the reconstructed SLP

dataset is only provided over a limited spatial domain

(308W–408E; 308–708N). We tested computing the NAO

using the EOF method over this limited domain and

compared this with the (EOF based) NAO index from

Hurrell et al. (2003) from 1899 to 1999.1 The gridpoint

NAO exhibited a substantially higher correlation with

the Hurrell NAO index than the NAO calculated from

the EOF method (r 5 0.88 and r 5 0.77, respectively);

therefore, the gridpoint-based NAO seems to give a

better representation of the observed large-scale NAO.

c. LME simulations

To complement the proxy and instrumental data we

also analyze data from the CESM Last Millennium

Ensemble (LME; Otto-Bliesner et al. 2016). The LME

was produced using the CESM climate model, running

with 13 ensemble members from 850 to 2005. Each en-

semble member is forced with the same transient evo-

lution of solar intensity, volcanic emissions, greenhouse

gases (GHG), ozone/aerosols, land-use conditions, and

orbital parameters in an attempt to simulate the evolu-

tion of the climate system over the last millennium. The

LME was run with a resolution of about 28 3 28 reso-
lution in the atmosphere and about 18 3 18 resolution in

the ocean. The 13-member ensemble means that the

ensemble mean evolution of variables in the LME is

expected to provide a good estimate of the externally

forced mode response. In addition to the 13-member

ensemble performed with all of the forcings, smaller

ensembles (from 3 to 5 members) were performed with

individual forcing components separately. Here we will

analyze simulations with solar variability, volcanic emis-

sions, GHGs, and ozone/aerosol forcings in addition to

the full ensemble.

The AMV indices from the LME (AMV-LME) were

calculated as the areal average of the annual mean SST

anomalies over the North Atlantic (i.e., 08–708N), as for

the observed indices. The NAO indices from the LME

are calculated using the SLP difference over the same

boxes as those used for the NAO index from the early

1 The Hurrell principal component (PC)-based NAO index was

downloaded from https://climatedataguide.ucar.edu/climate-data/

hurrell-north-Atlantic-oscillation-NAO-index-pc-based.
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instrumental data. The NAO indices are calculated for

each ensemble member separately. The NAO calcu-

lated from the LME has the typical NAO pattern of

anomalies with low pressure anomalies in the northern

part of the North Atlantic basin and high pressure

anomalies to the south, which is similar to that seen in

the early instrumental NAO index (shown in Fig. S1 in

the online supplemental material). The LME data is

analyzed over 1659–1999 to compare with the proxy AMV

indices and the instrumental NAO reconstruction.

d. CMIP5 historical simulations

In addition to the LME, we also analyze data from the

historical simulations in the CMIP5 archive (Taylor

et al. 2012). The CMIP5 historical ensemble is useful for

putting the results from the LME into the context of

other climate models. The first ensemble member for

the 43 different models in which the historical simula-

tions cover the period 1860–1999 is used. Similar to the

LME, the CMIP5 historical simulations include the

transient evolution of external forcing factors including

solar intensity, volcanic emissions, GHGs, and ozone/

aerosols. AMV indices and NAO indices were calcu-

lated in the same way as for the LME.

e. Significance tests

To test the significance of the correlation values we

used a Monte Carlo phase randomization technique—

following, for example, Ebisuzaki (1997). In this tech-

nique, 10 000 dummy time series are produced from one

of the input time series that have the same spectral

properties but are uncorrelated. These dummy time

series are produced by taking the Fourier transform,

then randomizing the phase of each component but re-

taining the amplitude—the inverse Fourier transform is

then taken to give the dummy time series. These 10 000

dummy time series have a zero-mean correlation with

the target time series. The significance is calculated as

the percentage of the dummy time series that have a

correlation with a lower amplitude than the original

correlation between the input time series.

3. Internal AMV in proxy and early instrumental
data

We begin our analysis by examining the presence of

internal AMV (i.e., NAO-driven AMV) in the proxy

indices through comparison with the evolution of the

NAO. The annual mean NAO index, calculated from

the instrumental data, is shown in Fig. 1a. The NAO

reconstruction clearly has more interannual variance

after about 1855—the period when a much larger

number of station indices are included. However, the

NAO index exhibits substantial variability on longer

time scales throughout the reconstruction (i.e., thick

black line, Fig. 1a). Li et al. (2013) showed that over the

observational period, low-frequency AMV changes are

proportional to the low-pass-filtered NAO (i.e., NAO):

d

dt
AMV(t)}NAO(t) . (1)

This can equivalently be written in the integral form and

several studies have shown that the AMV is propor-

tional to the accumulated NAO (e.g., McCarthy et al.

2015; Delworth et al. 2017; Sun et al. 2019):

AMV(t)}NAO
int
(t)5

ðt
t0

NAO(t0) dt0 , (2)

where NAOint is the accumulated NAO forcing and t0 is

the time at the start of the NAO record (i.e., 1659). Here

we investigate the presence of internally generated AMV

going further back in time using the proxy datasets.

The integratedNAO index (NAOint) and the low-pass

proxy AMV indices (calculated using a 7-yr moving

average) are shown in Fig. 1b. From visual inspection it

is clear that the AMV indices generally follow the in-

tegrated NAO, and this is particularly clear for the

AMV-Wang index. It should be noted that the NAO

accumulation precedes the AMV in this analysis, so

covariability between the integrated NAO and the

AMV does not occur due to the coincident influence of

the NAO on North Atlantic temperatures and the as-

sociated proxies. The correlation between the integrated

NAO and theAMV indices is shown explicitly in Fig. 1c,

over 100-yr moving windows as well as for the full period

(1659–1999), early period (1659–1855), and late period

(1856–1999). This late period represents the instru-

mental period over which the proxy indices were cali-

brated. Over the full period, the integrated NAO is most

highly correlated with AMV-Wang (r 5 0.65) but also

exhibits significantly positive correlations with AMV-

Mann and AMV-Gray (both r 5 0.51). Much of this pos-

itive correlation is from the late period, during which there

is a significantly positive relationship between the ob-

served AMV index and the integrated NAO (r 5 0.67),

which is spanned by the three AMV indices. However,

there is also a clear relation between the integrated NAO

and AMV-Wang in the early period (r 5 0.56), which is

entirely based on the proxy data. The other two proxy

AMV indices have nonsignificant but positive correlations

with the integrated NAO forcing.

The AMV-Wang index shows a particularly clear re-

lationship with the integratedNAO forcing from around

1750 or so to the start of the instrumental period in 1856.
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During this period the AMV-Wang index is entirely

outside the instrumental calibration period and is only

determined by the proxy data; remarkably, the re-

lationship with the integrated NAO is even stronger

than during the instrumental period (Fig. 1c). From 1755

onward, the significantly more predictors go into the

instrumental SLP reconstruction Luterbacher et al.

(2002) and this extended period (i.e., 1755–1999) ex-

hibits the stronger correlation between the integrated

NAO and the AMV that in the late period.

FIG. 1. (a) Annual reconstructed instrumental NAO index from Luterbacher et al. (2002) is

shown in gray; the thick black line shows the 7-yr running mean NAO index. (b) Integrated

NAO index (gray) along with the three proxy AMV indices fromWang et al. (red), Mann et al.

(orange), and Gray et al. (green); the indices have been normalized after taking a 7-yr running

mean. (c) Correlation between the integrated NAO and each proxy AMV index over running

100-yr windows (plotted at the center of the 100-yr window), where the filled circles denote

correlation values that are significant at the 90% level. Also shown in (c) are the correlation

values between the integrated NAO and the proxy AMV indices during the full period (1659–

1999), the early period (1659–1855), the late period (1856–1999), and also the period 1755–

1999. Correlation values in bold font are significant at the 90% level, and correlation values

with an asterisk are significant at the 95% level. The significance values were calculated from a

Monte Carlo phase randomization technique (see methods).
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By comparing the integrated NAO with the AMV, we

are implicitly testing the forcing of the AMV by the large-

scale atmospheric circulation changes. To test this more

simply we can compare the AMV with the preceding

NAO anomaly over a given period—this is shown for

varying periods in Fig. 2a. The preceding NAO anomaly is

positively correlated with the AMV in all the proxy data-

sets, peaking at around 30–35 years, and is largest inAMV-

Wang. Correlation of the AMV with the gridpoint SLP

anomaly over the preceding 30 years is shown in Fig. 2b.

The SLP pattern clearly corresponds to the positive phase

of the NAO, with a particularly strong dependence on the

strength of the Icelandic low, similar to that seen over

the modern instrumental period and in CMIP5 models

(O’Reilly and Zanna 2018; Peings et al. 2016).

The relationship between the early instrumental

NAO index and the proxy AMV is consistent with there

being a substantial component of the AMV that reflects

the response of the North Atlantic to large-scale atmo-

spheric forcing. This is particularly the case in AMV-

Wang, the most modern and well verified of the proxy

AMV indices, for which the accumulated NAO forcing

can explain over 40%of the variance (i.e., r25 0.42).We

now turn our attention to the externally forced AMV

component of the proxy AMV.

4. Externally forced AMV in the Last Millennium
Ensemble and proxy indices

To assess the externally forced component of the

AMV, we analyze the AMV from the LME simulations.

The AMV indices from each member of the LME, as

well as the ensemble mean, are shown in Fig. 3a. The

ensemble mean AMV can be interpreted as the exter-

nally forced component of the AMV in the LME. We

compare the externally forced AMV in the LME with

the proxyAMV indices to estimate the externally forced

component. This estimate of the externally forced

component in the proxy AMV indices can perhaps be

considered a lower bound on the externally forcedAMV

due to uncertainties associated with the prescribed ex-

ternal forcings and errors in the model response to the

external forcing. However, the component of the proxy

AMV indices that covaries with the LME can be in-

terpreted as an externally forced component of the

proxy AMV with a reasonable degree of confidence.

The proxy AMV indices are shown alongside the

AMV-LME indices in Fig. 3a, all plotted using a 7-yr

moving average filter. While there is relatively little

similarity between the proxy AMV indices and AMV-

LME over the whole period, there are certain periods

during which there is clear covariability, such as the

early 1800s and periods of the twentieth century. The

correlation between the AMV-LME ensemble mean

and the proxy AMV indices are shown in Fig. 3b for all

filter lengths from 1 to 20 years. The correlation is sig-

nificant at the 10% level for all proxy AMV indices and

is largest for filter lengths of around 7 years, peaking at

r5 0.37 for AMV-Wang. This suggests that a significant

portion of the AMV proxies, over 10% of the explained

variance (i.e., r2 5 0.13), is externally forced. Correla-

tions between the AMV-LME and the proxy AMV

FIG. 2. (a) Correlation between precedingNAOanomaly (i.e., averaged from t2N to t2 1 years) and the following 7-yr AMVanomaly

(i.e., averaged from t to t 1 6 years). The red, orange, and green lines in (a) show the correlation for the proxy AMV indices and the

instrumental NAO index; the solid blue line shows the correlation averaged over all 13 ensemble members of the LME and the shading

shows the interquartile range of the ensemble member correlations; the dotted blue line shows the correlation calculated from 1155 years

of a single control simulation of LME model without external forcing. The filled circles indicate where the proxy AMV and instrumental

NAOcorrelation is larger than at least 12 of the 13 LMEensemblemembers. (b)Map of the correlation ofAMV-Wangwith the preceding

30-yr SLP anomaly (from the Luterbacher et al. SLP reconstruction). (c)Map of the correlation between theAMV index in the LMEwith

the preceding 30-yr SLP anomaly. The black boxes in (b) and (c) indicate the region used to calculate the NAO indices.
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indices in the early period (i.e., outside of the in-

strumental calibration period) are shown in Fig. 3c.

Similar and significant correlation values are seen in this

early period, peaking at r 5 0.38 with a 7-yr moving

average filter for AMV-Wang. This confirms that the

externally forced component in the proxy AMV occurs

in the preindustrial period and corroborates the similar

conclusions in Wang et al. (2017a), which were made

using a simple statistical model of the externally forced

AMV component.

In the late period, during which instrumental data are

available, the correlation between AMV-LME and the

observed AMV is slightly higher but is not significant at

the 10% level and the proxy AMV indices exhibit sim-

ilar behavior (Fig. 3d). As the length of the low-pass

filter increases, the correlation between the observed

AMV andAMV-LME increases, with r. 0.5 for a 20-yr

moving average, although it is not significant at the 10%

level. At first glance, the low level of significance of the

late period may seem odd but this period is shorter and

exhibits fewer degrees of freedom than in the early pe-

riod, which is reflected in the low level of significance.

Also shown in Fig. 3c is the correlation between the

observed AMV and the ensemble mean AMV from

the CMIP5 historical simulations (pink line in Fig. 3a).

The correlation between the CMIP5 historical AMV

and the observed AMV over the late period is very

similar to the AMV-LME and increases with filter

length. These correlation values are slightly lower values

than those reported in the recent studies by Bellomo

et al. (2018) for the LME and Murphy et al. (2017),

which reported correlation values of around r ’ 0.7 for

the corresponding ensemblemeans. This could be due to

the slightly different periods used in the analysis, the

different filtering methods used or the linear detrending

that is performed in both of these previous studies,

FIG. 3. (a) Proxy AMV indices and the AMV indices from the LME ensemble members (interquartile range

shaded in blue) and ensemble mean (thick blue line); these indices have been filtered using a 7-yr moving average.

Also shown in (a) are the observational AMV index (from 1856 to 1999) and the ensemble mean AMV index from

the CMIP5 historical simulations (from 1860 to 1999). The correlations between the ensemble mean LME AMV

index and the proxy AMV indices are shown for various low-pass filter lengths for the full analysis period, 1659–

1999 in (a) and also for (b) the early period, 1669–1855, and (c) the late period, 1856–1999. The filled circles in

(a)–(c) indicate where the correlation is significant at the 10% level according to a Monte Carlo significance test

(see methods, section 2e).
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which we do not apply to any of the indices in our

analysis. It therefore seems likely that some fraction of

the observed AMV over the later period is externally

forced, but the exact amount is very uncertain. More-

over, as the correlation increases with the filter length, it

could be that there is some aliasing between external

forced temperature signals in themodel and internalAMV

variability in the observations over the late period.

5. Internal AMV in the LME

We now examine the internal AMV present in the

LME to compare with the external component. Figure 4

shows the integrated NAO in the LME and the AMV-

LME, analogous to the proxy AMV analysis in Fig. 1.

The correlation between the integrated NAO and the

AMV-LME is shown for each ensemble member over

100-yr windows in Fig. 4c, along with the mean corre-

lation over all 13 ensemble members. It is immediately

obvious that there is considerable spread across the

ensemble members, though the LME typically demon-

strates a small positive correlation throughout the

analysis period. The light blue dots on the right-hand

side of Fig. 4c show the correlation between the in-

tegrated NAO and AMV-LME, which is positive for all

ensemble members with an ensemble mean of r 5 0.21,

substantially less than that found for the proxy AMV

indices (shown as colored crosses in Fig. 4c). Over the

late period, there is a marginally stronger relationship

between the integrated NAO and the AMV-LME (i.e.,

brown dots in Fig. 4c), though in all ensemble members

the relationship is weaker than seen in observations (i.e.,

black cross in Fig. 4c). Across the CMIP5 ensemble

there is clearly a much larger spread in the relationship

between the integrated NAO and AMV, shown by the

pink dots in Fig. 4c; while the CMIP5 ensemble mean is

positive it is very small, and many models even exhibit a

negative correlation. Only 2 of the 38 models in the

CMIP5 ensemble exhibit a correlation between the in-

tegrated NAO and AMV as strong as that seen in ob-

servations. The relationships between the integrated

NAO and AMV in the LME ensemble members over

the late period are mostly within the upper half of the

CMIP5 ensemble, so is certainly comparable with most

of the CMIP5 models.

To further investigate how the AMV is forced by the

NAO in the LME we now compare the AMV with the

preceding NAO anomaly over a given period, which is

shown in Fig. 2a. At lead times of between 10 and 50

years the correlation between the preceding NAO

anomaly and the AMV averaged over the 13 ensemble

members is small but positive; however, there is sub-

stantial spread across the 13 ensemble members. At lead

times of 25 years and longer, the positive correlation

between the early instrumental NAO anomaly and

AMV-Wang becomes substantially larger than in the

LME. This indicates that at these long lead times, the

LME struggles to capture the stronger relationship be-

tween the NAO and AMV, which is also clear in the

gridpoint correlation map in Fig. 2c. The difference in

the fraction of NAO-forced variability in the model and

proxy data may be due to the difference in the magni-

tude of the NAO variability on decadal time scales. The

standard deviation of the decadal early instrumental

NAO reconstruction is s 5 0.36 (using a 10-yr moving

average), whereas the standard deviation of the decadal

NAO in the 13 members of the LME are all in the range

sLME 5 0.13–0.20. Therefore, the lack of NAO-driven

AMV in the LMEmay be due to a lack of decadal NAO

variability. Across the 13 ensemble members, those that

have the highest decadal NAO variability tend to be

those that have a stronger relationship between the

NAO and AMV (Fig. S2), though the correlation is not

clearly significant. The lack of decadal NAO variability

in the LME is a typical feature of the current generation

of coupled climate models, as demonstrated in the re-

cent study of Bracegirdle et al. (2018).

To examine whether or not the presence of the ex-

ternal forcing influencing the link between theNAOand

the AMV in the model, we performed the same analysis

in the single-member 1155-yr LME control simulation,

which has no external forcing (dashed line in Fig. 4a).

The LME control simulation exhibits a very similar re-

lationship between the NAO and the AMV as in the full

LME, demonstrating that in the model this relationship

is too weak on long time scales, even in the absence of

external forcing. A similarly weak relationship is also

found in the CMIP5 historical simulations over the re-

cent observational period, as demonstrated in O’Reilly

and Zanna (2018), so the LME is not unusual in this

regard (see also Peings et al. 2016).

6. Assessing sources of externally forced AMV

Having established that there is a clear externally

forcedAMV component in the LME, which is to a lesser

degree apparent in the proxy AMV indices, we now

investigate the source of the externally forced AMV. To

do so, wemake use of the individual forcing experiments

that were performed alongside the full LME: volcanic

forcing (5 members), solar forcing (4 members), GHG

forcing (3 members), and aerosol and ozone forcing

(3 members). These experiments were all performed

over the full analysis period except the aerosol and ozone

forcing experiment, which was only run for the industrial

period, from 1850 onward. Early and late periods are
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defined, as in the earlier analysis, as 1669–1855 and 1856–

1999, respectively.

The ensemble meanAMV from each of the individual

forcing experiments is shown in Fig. 5a, along with the

ensemble mean AMV-LME (i.e., the full forcing ex-

periment). Much of the variability in the AMV-LME is

captured by the volcanic forcing experiment, par-

ticularly in the early part of the analysis period, yet

FIG. 4. (a) Annual NAO indices from the 13 LME members in gray; the ensemble mean is

shown in the bold black line. (b) IntegratedNAO indices from each LMEmember (gray) along

with the AMV indices from each LME member (blue)—the interquartile range of the indi-

vidual ensemble members is shaded and the mean shown by the line. (c) Correlation between

the integrated NAO and AMV index for each LME member over running 100-yr windows

(plotted at the center of the 100-yr window) with the ensemble mean shown in dark blue. Also

shown in (c) are the correlation between the integrated NAO and AMV from the LME over

the whole period (light blue dots; ensemble mean in dark blue), over the late period (light

brown dots; ensemble mean in dark brown), and the correlation between the integrated NAO

and AMV in each CMIP5 historical simulation (light pink dots; ensemble mean in dark pink).

The crosses in (c) show the correlation of the integrated instrumental NAO (i.e., Fig. 1) with the

AMV indices over the full period of observations (black), Wang et al. proxy (red), Mann et al.

proxy (yellow), and Gray et al. proxy (green).
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FIG. 5. (a) Ensemble mean AMV in the full forcing (i.e., AMV-LME, 13 members), volcanic

forcing (5 members), solar forcing (4 members), GHG forcing (3 members), and aerosol and

ozone forcing (3 members) experiments. The shading around each line in (a) indicates 61

standard deviation of the ensemble. (b) Correlation of the ensemble mean AMV index from

the full forcing experiment with the AMV indices from the other experiments, over moving

100-yr windows. (c) Correlation of the proxy AMV index from Wang et al. with the AMV

indices from the different experiments, over moving 100-yr windows. Coefficients from the

multiple linear regression fit of the different forcing experiments to the full forcing experiment

(in different colors) and to the proxy AMV index (red). The bars in (d) and (e) show the 90%

confidence interval of the regression coefficients calculated using a block bootstrap resampling

(e.g., Wilks 1997), using blocks of 20 years.
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similarity with the other forcing experiments is less

clear. To quantify the similarity between the individual

forcing experiments and the AMV-LME, we calculated

the correlations between them over 100-yr moving

windows, which are shown in Fig. 5b. Over the early

period, the volcanic forcing AMV is highly correlated

with the AMV-LME, whereas the GHG forcing AMV

and the solar forcing AMV exhibit approximately no

correlation and negative correlation, respectively. In the

late period, when all four individual forcing experiments

are available, there are positive correlations between all

the experiments and the AMV-LME, indicating that

all four of these forcing factors could be influencing

the external AMV over the late period. The volcanic

and solar forcing experiments exhibit the strongest

correlations, the aerosol forcing also exhibits signifi-

cantly positive correlation with the AMV-LMV but the

correlation with the GHG forcing experiment is not

significant.

Similarly, we can compare the AMV from the indi-

vidual forcing experiments with the proxy AMV indices

and correlations over moving 100-yr windows with

AMV-Wang are shown in Fig. 5c. The volcanic forcing

AMV exhibits the largest correlation with AMV-Wang

in the early period and exhibits similar correlations with

AMV-Wang as the AMV-LME (shown in blue). The

GHG forcing AMV is uncorrelated with AMV-Wang in

the early period and the solar forcing AMV is signifi-

cantly negatively correlated with AMV-Wang. This

suggests that either the solar variability was not impor-

tant for past changes in the AMV or the model is in-

correctly capturing these mechanisms through which

solar variability influences the AMV, though it could be

that the solar forcing acts to dampen the influence of the

volcanic forcing on the AMV.Over the late period there

are positive correlations with AMV-Wang in all of the

individual forcing experiments; however, there are only

significant correlations with the volcanic, solar, and

aerosol forcing experiments. Moreover, it is noticeable

that none of the individual forcing AMVs are as closely

correlated with AMV-Wang as the ensemble mean

AMV-LME, which suggests that several of the different

forcings may be contributing to the externally forced

component of the observed AMV.

To estimate the relative importance of each of the

external forcing components, we performed a multiple

linear regression (MLR) analysis by fitting the individ-

ual forcing experiment AMV indices to the AMV-LME

and AMV-Wang. All ensemble mean indices were

normalized prior to the analysis and the normalized

regression coefficients are plotted for the early and late

periods in Figs. 5d and 5e, respectively. Uncertainty

estimates for the regression coefficients were calculated

using block bootstrapping, using a block length of 20

years (e.g., Wilks 1997). The predictors are mostly un-

correlated except for the GHG and aerosol forcing

AMV indices in the late period (r520.66), where both

exhibit substantial trends, so this may be expected to

increase the uncertainty in the regression coefficients.

TheAMV-LMEduring the early period is dominated by

the volcanic forcing component, whereas the solar

forcing and GHG forcing make no significant contri-

bution. The volcanic forcing also dominates theMLR fit

to AMV-Wang, although the regression coefficient is

much smaller than in AMV-LME. In the late period, the

MLR suggests that all of the forcing components con-

tribute somewhat to the AMV-LME, though there is

large uncertainty in the relative contributions from each

forcing. The MLR fit to AMV-Wang in the late period

also has contributions from all the individual forcing

components, with the exception of the volcanic forcing,

which makes a very small contribution to the MLR fit.

7. Is the AMV-LME responding appropriately to
external forcing?

Our analysis to this point has shown that there is a

substantial externally forced AMV component in the

LME (i.e., Fig. 3, which can explain a significant but

modest fraction of the proxy AMV variance. Sub-

sequent analysis of the internal AMV, specifically that

driven by changes in the large-scale NAO forcing,

showed that the LME tends to underrepresent this

component of the AMV (i.e., Fig. 4). This suggests that

theAMV in the LMEmay be responding too strongly to

the external forcing. In this section we will attempt

to assess how appropriately the AMV-LME responds to

external forcing and use this analysis to interpret the

externally forced AMV in the proxy indices.

To investigate whether the externally forced AMV is

too strong in the LME, we assess the externally forced or

predictable signal in comparison to internal variability

in each ensemble member. To do this, we first calculate

the perfect model correlation of AMV-LME, which is

simply the correlation of each ensemble member of the

LME with the ensemble mean. The perfect model cor-

relation of the AMV-LME is shown for a varying

number of ensemble members during the full, early, and

late periods in Fig. 6 (solid blue lines). The perfect

model correlation can be compared with the actual

correlation between the AMV-LME with the proxy and

observedAMV indices, shown in Fig. 6 for AMV-Wang.

In the full, early, and late periods, the perfect model

correlation is almost 0.7 with all 13 ensemble members

and is significantly larger than the actual correlation

with AMV-Wang and the observed AMV (during the
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late period). This suggests that the externally forced

signal in the AMV-LME may be too large. This can be

quantified by calculating the ratio of predictable com-

ponents (RPC), which is the ratio of the predictable

component in the real world to the predictable compo-

nent (or signal to noise) in the model and has previously

been used in studies of seasonal/decadal predictability

(e.g., Eade et al. 2014; Scaife and Smith 2018; O’Reilly

et al. 2019). Over the whole period, the RPC is signifi-

cantly less than 1 (see Fig. 6), which indicates that the

predictable signal in the LME is larger than the signal

that is captured in the proxy/observed AMV.

If we were able to assume that the external forcings

prescribed in the LME were a perfect replica of the real

world forcing over the analysis period and that the proxy

AMV indices are trustworthy, then we would be able to

state with confidence that the AMV in the model is

responding too strongly to external forcing. Of course,

this assumption is not well justified, as many of the

prescribed external forcings are estimates that are very

uncertain. For example, while there is a general con-

sensus on timings of large volcanic eruptions over the

past 400 years, there is considerable uncertainty as to the

amount and type of volcanic aerosols emitted (e.g.,

Crosweller et al. 2012). Nonetheless, over the recent

analysis period—when the external forcing factors are

expected to best constrained and we can compare with

the observed AMV—the LME still appears to respond

too strongly to the external forcing. This is certainly

consistent with the AMV-LME not having a large

enough internal AMV component, that is, responding

too weakly to preceding NAO forcing (e.g., Figs. 2

and 4).

To this point, we have treated the externally forced

AMV as distinct from the internal AMV that is associ-

ated with preceding large-scale circulation anomalies.

However, previous studies have suggested that external

forcing, particularly from volcanic aerosol emissions,

can influence the phase of the NAO (e.g., Ortega et al.

2015). Therefore, it is possible that at least some of the

NAO signal that leads the AMV in the observations and

proxy records is externally forced. To examine this, we

compare the externally forced (ensemble mean) AMV-

LME with the integrated NAO from the early in-

strumental NAO index, which we previously found was

able to explain over 40% of the variance in the AMV-

Wang proxy index. These indices are plotted again in

Fig. 7a, along with the ensemble mean integrated NAO

index from the LME and the correlation coefficients

calculated between the integrated NAO indices and the

AMV-LME. As discussed above, the correlation be-

tween the integrated NAO in the LME and the AMV-

LME is positive but very low (r 5 0.18). However, the

FIG. 6. Correlation of the ensemble mean AMV with the proxy

AMV (fromWang et al.) depending on number of ensemblemembers

is shown in dotted lines for (a) the full period, 1659–1999; (b) the early

period, 1659–1855; and (c) the late period, 1856–1999. The solid lines

show the average correlation of the ensemble mean AMV with indi-

vidual ensemblemembers, the shading shows the 5%–95%confidence

interval calculated using a random subsampling of the ensemble

members. The filled circles show where the correlation of the en-

semble mean with individual ensemble members is significantly dif-

ferent from the correlation with AMV-Wang (and observedAMV) at

the 90% level, based on random subsampling of ensemble members.
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AMV-LME is much more closely related to the in-

tegrated NAO from the instrumental SLP reconstruc-

tion, with a correlation of r5 0.47 and a 90% confidence

interval of r 5 0.34–0.56 (calculated by randomly sam-

pling across the 13 ensemble members). Since the

ensemble mean AMV-LME is the externally forced

component of the AMV in the model, the reasonably

large correlation with the integrated NAO from the

early instrumental data indicates that a significant frac-

tion of this may be externally forced.

We now test whether the externally forced component

identified in the proxy AMV occurs through the influ-

ence of the NAO. To test this, in Fig. 7b we again

compare the AMV-LMEwith AMV-Wang, but here we

have (linearly) regressed out the integrated NAO in-

fluence. The correlation between AMV-LME and the

AMV-Wang was r 5 0.37 prior to the regression (e.g.,

Fig. 3); however, after regressing out the integrated

NAO from AMV-Wang there is practically zero corre-

lation between the indices (r 5 0.07). Therefore, the

component of AMV-Wang that was identified as being

externally forced in section 3b (i.e., Fig. 4) seems to be

wholly associated with the integrated NAO. It is there-

fore interesting that in the LME the externally forced

AMV is not as strongly associated with the integrated

NAO, suggesting that the external forcing is exerting a

greater influence on the large-scale circulation in ob-

servations than in the LME. In the LME, the externally

forced AMV is seemingly generated more directly

through changes in radiative forcing, as argued in

Bellomo et al. (2018). It appears, therefore, that while

some of the externally forced AMV is correct, the

pathway through which the external forcing influences

the AMV is incorrect.

Detailed examination of the pathways through which

external forcing is influencing the AMV is a difficult

task given the relative paucity of observations. None-

theless, we can try to examine the response of the model

and observations/proxies to volcanic forcing, which was

found to be the dominant individual forcing factor in

section 3d. We perform a so-called superposed epoch

analysis on the five explosive eruptions that occurred

during our analysis period and are common to three al-

ternative volcanic reconstructions, based on Swingedouw

FIG. 7. (a) Integrated NAO from the Luterbacher et al. (2002) SLP reconstruction (light

gray), as in Fig. 1b; ensemble mean of the integrated NAO indices from the LME (dark gray);

ensemble mean AMV from the LME (in blue). The magenta squares in (a) indicate the five

large volcanic eruptions between 1659 and 1999, following Swingedouw et al. (2017). The

correlation between the integrated NAO indices and the AMV from the LME are also shown

in (a), along with the 90% uncertainty range based on ensemble subsampling of the LME.

(b) Proxy AMV (from Wang et al.) and the AMV index with the integrated NAO index from

observations regressed out; these indices are essentially uncorrelated.
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et al. (2017), and these are indicated in Fig. 7a. We focus

on the most explosive eruptions because the response to

more minor eruptions can be difficult to detect as they do

not necessarily inject substantial amounts of aerosol into

the stratosphere. The LME uses the Gao et al. (2008)

reconstruction, which was also used to identify the large

eruptions, so it is reasonable to also perform this analysis

for these same events in the model. Figure 8a shows the

average response of theNAO in the winters following the

large volcanic eruptions.

In the early instrumental NAO, there is a positive

NAO response in all 4 years following the eruption. Of

course, the response is fairly noisy because it is only

averaged over five eruptions. Nonetheless, this is con-

sistent to previous observational and modeling studies

that have found that the NAO is typically positive in the

years following an explosive volcanic eruption (e.g.,

Graft et al. 1993; Shindell et al. 2004; Ortega et al. 2015;

Swingedouw et al. 2017). In the LME, however, there is

no consistent NAO response to the major volcanic

eruptions, which indicates that the LME is missing the

dynamical response of the large-scale circulation to the

external volcanic forcing. In terms of integrated NAO

response, the absence of a consistent response in the

LME means there is no signal in the integrated NAO

following the major volcanic eruptions (Fig. 8b);

whereas in the early instrumental NAO index, the in-

tegrated response typically increases and becomes sig-

nificant between 5 and 10 years following the eruption.

Despite the differences in the NAO response to the

eruptions, however, the impact of the radiative forcing

in the LME is enough to give a similar AMV response to

the proxyAMV, which consists of a cooling for the years

following the eruption (Fig. 8c). This simple analysis

demonstrates that, for these five major eruptions, the

LME is apparently missing the dynamical response in

the large-scale circulation, but the radiative effects are

able to produce a similar AMV response, in both sign

and magnitude. It is therefore possible that the dynam-

ical response to other external forcings, such as solar

variability (e.g., Gray et al. 2010; Ineson et al. 2011), is

not captured by the model but that some of the exter-

nally forced AMV variability is being realized in the

model through radiative effects alone.

8. Further discussion and conclusions

In this study we have analyzed sources of AMV over a

period of more than 300 years, using proxy indices and

early instrumental data, along with a complementary

ensemble climate model simulation over the same pe-

riod. The proxy AMV is found to closely follow the

accumulated NAO forcing over almost the entire anal-

ysis period, referred to as an ‘‘internal’’ source of AMV

as it can be expected to occur to some extent in the

absence of external forcing. The dependence of the

AMV on the accumulated NAO forcing has previously

been demonstrated over the observational period, the

last 150 years or so, but here we show that this is also

evident over a significantly longer period (i.e., Fig. 1).

These results provide additional observational evidence

that much of the variance in the AMV is driven by the

oceanic response to the buildup of surface atmospheric

forcing, as has been demonstrated in targeted modeling

studies (e.g., Delworth et al. 2017).

The AMV response to the accumulated NAO forcing

is found to be present in the LME simulations, though it

is much weaker than that seen in the proxy/observa-

tional datasets. Similar behavior is seen in the majority

of the CMIP5 historical simulations so, at least in this

respect, the behavior of the LME is fairly representative

of other models. The weak AMV response to the accu-

mulated NAO forcing is particularly clear on time scales

greater than a decade in the LME, which was also found

FIG. 8. Superposed epoch analysis of climate impact following the five largest volcanic eruptions for (a) NAO index, (b) integrated

NAO, and (c) AMV index. Anomalies are shown relative to the 5-yr period prior to the eruption for the reconstructed NAO (in gray), the

proxyAMV fromWang et al. (in red), and from theLME (in blue). In (a)–(c) the shading indicates the standard error of themean; the dots

indicate where this is significantly different from zero at the 90% confidence level.
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to be the case in the preindustrial control and historical

CMIP5 simulations in O’Reilly and Zanna (2018). This

could be due to a weaker-than-expected response of the

ocean circulation to the accumulated NAO forcing (Xu

et al. 2019). Alternatively, the weak response to the

NAO could be due to the relatively weak NAO vari-

ability on multidecadal time scales. In the LME, the

decadal NAO variability is significantly lower than in

the NAO reconstruction, with sLME 5 0.13–0.20 in the

LME compared with s5 0.36 for the early instrumental

NAO reconstruction. Kim et al. (2018a) showed that the

weak multidecadal NAO variability is likely responsible

for the weak AMV amplitude in the CESM large en-

semble, which employs a very similar model setup to the

(CESM) LME analyzed here. Weak multidecadal NAO

variability has been shown to be a robust feature of the

North Atlantic jet stream across almost all the CMIP5

models in the recent studies by Simpson et al. (2018) and

Bracegirdle et al. (2018); see alsoWoollings et al. (2015).

Therefore, the lower magnitude of the decadal NAO

forcing may explain the weak response of the AMV to

the accumulated NAO in the CMIP5 ensemble (e.g.,

Fig. 4c). Moreover, the weakmultidecadal NAO forcing

may therefore explain why the amplitude of the AMV is

too low on multidecadal time scales in the CMIP5 en-

semble (Peings et al. 2016), as highlighted by the study of

Wang et al. (2017b). The misrepresentation of the

multidecadal NAO forcing on the AMV clearly has

implications for modeling past changes in the North

Atlantic but it also has important implications for

modeling the contributions of internal multidecadal

variability in transient climate projections. Models that

are missing multidecadal NAO variability are likely to

underestimate the amplitude of the AMV and the in-

ternal multidecadal variability in the continental regions

surrounding the North Atlantic, including Europe and

the Sahel.

It is possible that the weak decadal variability in the

LME is related to a weak response of the NAO to the

AMV. In observations, a negative NAOon decadal time

scales is found to follow a positive AMV anomaly (e.g.,

Peings and Magnusdottir 2014). Lag correlations be-

tween the 7-yr low-pass NAO and AMV indices are

shown in Fig. 9 for the proxy and LME indices. Here it is

clear that the negative correlation between the AMV

and the NAO leading by 10–15 years is not captured by

the LME, which has weaker correlations when theAMV

is leading. Sun et al. (2015) showed that in a pre-

industrial control simulation (using the CCSM4 model)

the coupled feedback of the AMV onto the NAO at

later times likely contributed to the pronounced multi-

decadal NAO variability in the simulation. It is likely,

therefore, that the weak feedback of the AMV onto the

NAO is contributing to the weak NAO variability on

decadal time scales in the LME. The weak feedback

from the AMV to the NAO is not unique to the CESM

model analyzed here and is found to be a general feature

of coupled CMIP5-era models, as shown by Peings et al.

(2016) (see also Simpson et al. 2018).

The analysis of the ensemble mean AMV in the LME

reveals a substantial externally forced component. The

externally forced AMV exhibits a modest but significant

correlation with the proxy AMV (i.e., r2 5 0.13), which

implies that at least this fraction of the proxy AMV is

estimated to be externally forced. The AMV in the in-

dividual forcing simulations show that the externally

forced AMV is largely driven by volcanic forcing in both

the AMV-LME and proxy AMV before the mid-

nineteenth century. In the later period, however, GHG

forcing, aerosol/ozone forcing, and to a lesser extent

solar forcing can explain more of the AMV in both

the LME and the observational/proxy records. While

the LME is able to confirm an external influence on the

observed AMV, the model appears to respond too

strongly to this external forcing. Or, alternatively, the

AMV in the LME does not exhibit enough internal

variability. This may be related to the very weak mul-

tidecadal NAO influence on the AMV in the model,

FIG. 9. The red, orange, and green lines show the lag correlation

between the 7-yr mean proxyAMV indices and instrumental NAO

index; the solid blue line shows the median correlation of the 13

ensemblemembers of theLMEand the shading shows the interquartile

range of the ensemble member correlations; the dotted blue line shows

the correlation calculated from1155 years of a single control simulation

of LME model without external forcing. The filled circles indicate

where the proxy AMV and instrumental NAO correlation is larger/

smaller than at least 12 of the 13 LME ensemble members.
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compared with observations, which would in turn be

expected to result in a weak internal AMV.

Finally, we showed that externally forced AMV

identified in the proxy AMV is related to the accumu-

lated NAO forcing. In the LME, however, very little of

the externally forced AMV that arises in the model is

through changes in the accumulated NAO forcing. This

evidence demonstrates that the external forcing could

be influencing the AMV through different mechanistic

pathways: via changes in radiative forcing in the LME

and via changes in atmospheric circulation in the ob-

servational/proxy record. We demonstrated this by an-

alyzing the response to large volcanic eruptions in the

model and early instrumental NAO indices. The NAO

response seen in the early instrumental data is com-

pletely absent in the model, which is nonetheless able to

capture the AMV response. If the model was able to

better respond to external forcing then it is possible that

more of the AMV could be explained by the external

forcing, though this is largely speculative. The response

of the large-scale atmospheric circulation to changes in

external forcing is already an area of active research.

However, our findings motivate further study of the

impact of these circulation responses on climate vari-

ability on multidecadal time scales via interaction with

the ocean; this could also be important in governing

forced responses over the Pacific Ocean (i.e., the Pacific

decadal oscillation) as well as over the North Atlantic as

outlined in this study.
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