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Accurate forecasts of the ocean state and the estimation of forecast uncertainties
are crucial when it comes to providing skilful seasonal predictions. In this study
we analyse the predictive skill and reliability of the ocean component in a seasonal
forecasting system. Furthermore, we assess the effects of accounting for model
and observational uncertainties. Ensemble forcasts are carried out with an updated
version of the ECMWF seasonal forecasting model System 4, with a forecast length
of ten months, initialized every May between 1981 and 2010. We find that, for
essential quantities such as sea surface temperature and upper ocean 300 m heat
content, the ocean forecasts are generally underdispersive and skilful beyond the
first month mainly in the Tropics and parts of the North Atlantic. The reference
reanalysis used for the forecast evaluation considerably affects diagnostics of fore-
cast skill and reliability, throughout the entire ten-month forecasts but mostly during
the first three months. Accounting for parametrization uncertainty by implementing
stochastic parametrization perturbations has a positive impact on both reliability
(from month 3 onwards) as well as forecast skill (from month 8 onwards). Skill
improvements extend also to atmospheric variables such as 2 m temperature, mostly
in the extratropical Pacific but also over the midlatitudes of the Americas. Hence,
while model uncertainty impacts the skill of seasonal forecasts, observational
uncertainty impacts our assessment of that skill. Future ocean model development
should therefore aim not only to reduce model errors but to simultaneously assess
and estimate uncertainties.
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1 INTRODUCTION

The ocean varies on a wide range of time-scales. Through
coupling with the atmosphere, slowly varying anomalies
in ocean heat content allow some predictive skill for near-
surface atmospheric variables, months in advance. As a con-
sequence, seasonal forecasting systems (e.g. Wang et al.,
2010; Molteni et al., 2011; Arribas et al., 2011; Saha et al.,
2014; MacLachlan et al., 2015) are able to generate skilful
forecasts of monthly and seasonal average conditions. A
forecast is said to be skilful if the model performs signifi-
cantly better than a forecast consisting of the respective mean

climatology. Prominent examples of skilful seasonal fore-
casts are the El Niño Southern Oscillation (ENSO; Barnston
et al., 2012) and the North Altantic Oscillation (Scaife et al.,
2014). The ENSO tropical Pacific sea surface temperature
(SST) anomalies can be predicted with some skill for about
six months in advance (Wang et al., 2010; Barnston et al.,
2012). Since the effects of strong ENSO anomalies can be
detected in many regions of the globe, skilful predictions
can extend far beyond the tropical Pacific (e.g. Palmer and
Anderson, 1994). Predictability on seasonal time-scales also
arises from other slowly varying aspects of the climate sys-
tem such as the land surface and sea ice (Doblas-Reyes et
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al., 2013). Skilful seasonal forecasts have attracted attention
from stakeholders across a variety of sectors including health,
energy, and agriculture.

To achieve robust and reliable predictions of the atmo-
sphere on seasonal to annual time-scales, an accurate
representation of the ocean becomes essential (MacLachlan
et al., 2015). Therefore, in addition to atmospheric variables,
ocean forecasts need to be analysed and evaluated for their
predictive skill (Ho et al., 2013). Although the last decade has
seen substantial improvements in dynamical model perfor-
mance, it is still proving difficult for those dynamical models
to outperform simpler and computationally less expensive
statistical models (van Oldenborgh et al., 2005; Barnston et
al., 2012; Doblas-Reyes et al., 2013). Additionally, poten-
tial predictability studies in which dynamical models try to
predict themselves often claim a higher predictive skill than
what is observed in actual seasonal forecasts (e.g. Becker
et al., 2014). In these studies models tend to be overconfi-
dent in their ability to produce skilful predictions; a result of
model-specific systematic errors and an insufficient repre-
sentation of model uncertainty. For the sake of completeness,
however, it should be noted that counterexamples to such
studies exist as well, where forecasts tend to have higher
skill than expected from potential predictability studies
(Eade et al., 2014; Kumar et al., 2014).

Seasonal forecasting is an inherently probabilistic problem
(Palmer and Anderson, 1994). It cannot be solved by a sin-
gle integration, from a single initial condition with one fixed
model configuration. Uncertainties arising from model error
grow considerably on the monthly time-scale and need to be
accounted for. Due to the length of the forecast, this becomes
even more important for seasonal than short-term weather
forecasting. The emphasis is no longer on accurately estimat-
ing atmospheric initial condition uncertainty. Uncertainties
in the ocean, land surface, and sea ice initial states of fully
coupled seasonal forecasting models need to be accounted
for, as well as uncertainties in the model set-up and con-
struction, for all relevant components. In weather forecasting,
incorporating model uncertainty estimates has already led to
significant improvements of forecasts (e.g. the Stochastically
Peturbed Parametrized Tendency, SPPT, scheme described
in Buizza et al., 1999, with the most recent version dis-
cussed in Leutbecher et al., 2017. Stochastic schemes are
able to substantially improve reliability, i.e. the balanced
ratio between forecast error and ensemble forecast spread,
by increasing underdispersive ensemble spread and simulta-
neously decreasing forecast error (Palmer et al., 2005). The
implementation of stochastic schemes also led to an increase
in skill scores. In accordance with weather prediction, sim-
ilar improvements hold for seasonal forecasts (Weisheimer
et al., 2014; Batté and Doblas-Reyes, 2015). In this context
the incorporation of stochastic schemes as a way to repre-
sent unresolved sub-grid variability has also led to decreased
model biases (Weisheimer et al., 2014). In a recent study,
Andrejczuk et al. (2016) extended the atmospheric SPPT

approach to the ocean model component, showing improve-
ments in reliability of upper 300 m heat content, especially at
the end of 3-month forecasts.

Stochastic schemes targeting uncertainties in other com-
ponents of the climate system show promise, though they
are not yet used operationally. For example Brankart (2013);
Brankart et al. (2015); Cooper and Zanna (2015); Grooms
(2016); Williams et al. (2016); Juricke et al. (2017); Cooper
(2017) and Zanna et al. (2017) have investigated the impact
of stochastic schemes in the ocean, MacLeod et al. (2016) in
the land surface, Williams (2012) in ocean–atmosphere sur-
face coupling, Juricke et al. (2013); Juricke and Jung (2014);
Juricke et al. (2015) in sea ice, and Ollinaho et al. (2017) in
the atmosphere. Also Berner et al. (2017) gives an overview
and outlook of stochastic parametrization approaches. The
European Centre for Medium-Range Weather Forecasts
(ECMWF) recently described their future plans for dealing
with forecast uncertainty, from the medium range to seasonal
forecasts (Leutbecher et al., 2017), highlighting the impor-
tance of improving the representation of model uncertainties
in all model components.

Enhanced model resolution and increased model complex-
ity can lead to improved simulations and better predictions
but must be constrained and developed through the extensive
use of observational data (Alves et al., 2004; Vidard et al.,
2007; Balmaseda et al., 2009; Balmaseda and Anderson,
2009). Assimilating ocean observations is essential for the
generation of adequate initial conditions and estimates of
initial condition uncertainty, and a topic of ongoing research.
We refer the reader to Mogensen et al. (2012) and Waters
et al. (2015) for data assimilation developments regarding
the Nucleus for European Modelling of the Ocean (NEMO)
model used in this study, or e.g. Martin et al. (2015) for a more
general comparison of ocean data assimilation approaches.
Models rely in their verification and evaluation on reanaly-
sis products which assimiliate the spatially and temporally
sparse observational data into the model to constrain the
model dynamics. Unfortunately, large regions of both the sur-
face and subsurface ocean remain insufficiently constrained,
due to poor spatial and temporal resolution of the observa-
tions. The resulting reanalyses are therefore strongly model-
and assimilation method-dependent. This has been shown in
a reanalysis intercomparison (Balmaseda et al., 2015), for
example for the meridional overturning streamfunction in
the North Atlantic (Karspeck et al., 2017) where reanalysis
products widely differ in their estimate of the mean state and
interannual variability. Observational and reanalysis uncer-
tainty is therefore an issue that cannot be ignored, as it limits
the precision of model performance evaluation and objective
judgement of model development.

In this study we will analyse seasonal to annual coupled
ten-month forecasts with an emphasis on the ocean model
performance. We will investigate the importance of observa-
tional uncertainty in the verification process by comparing the
forecasts with two different reanalysis products. Furthermore,
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we will investigate how incorporation of model uncertainty
estimates in the ocean model impacts forecast skill.

The paper is structured as follows: section 2 describes the
forecasting system, the experimental set-up, and the diagnos-
tics used for verification. In section 3 the general performance
of the forecasts in terms of reliability and skill is discussed.
The impact of observational uncertainty on forecast skill
and reliability is investigated in section 4. Section 5 deals
with the improvements observed when parametrization uncer-
tainty estimates are incorporated in the ocean model. Finally,
section 6 summarizes the results.

2 SEASONAL FORECASTING SYSTEM
2.1 Model set-up
The forecasting system used for this study is an intermediate
model cycle between the ECMWF seasonal forecasting model
System 4 (version c36r4; Molteni et al., 2011) and the new
seasonal forecasting system SEAS5 (version c43r1). It con-
sists of the Integrated Forecasting System (IFS, version c41r1;
Weisheimer et al., 2017) modelling the atmospheric circula-
tion, which includes the land surface model HTESSEL. IFS is
coupled to the ocean model NEMO (Madec, 2008). The res-
olution of the IFS is T255 (≈ 80 km) in the horizontal with
91 vertical levels. NEMO has a 1◦ horizontal resolution with
refinement to 1/3◦ in the Tropics and 42 vertical layers (i.e.
non-eddy resolving outside the tropical belt). Molteni et al.
(2011) give further details of the model set-up.

2.2 Forecast set-up and diagnostics

The assessed hindcast period in this study ranges from 1981
to 2010, with start dates 01 May and a forecast length of
ten months, covering May until February. Each start date has
20 ensemble members which are initialized with different
ocean states based on the five-member reanalysis ensem-
ble of the ECMWF 1◦ ORAS4 ocean renanalysis product
(Balmaseda et al., 2013), with additional stochastic temper-
ature perturbations in the upper ocean layers (Molteni et al.
(2011) give details). Atmospheric initial conditions are from
ERA-Interim (Dee et al., 2011) and singular vectors are used
for initial condition perturbations. The atmospheric model
uses two stochastic schemes: SPPT (mentioned in the previ-
ous section; Buizza et al., 1999) and a stochastic backscatter
implementation (Shutts, 2005; Berner et al., 2009).

Two different experiments were carried out with this set-up.
One ensemble has no stochastic perturbations in the ocean
model (henceforth called REF) except for the initial condition
perturbations, while the other (called STO) applies stochastic
perturbations to three ocean parametrizations.

The three schemes perturbed are:

1. the Gent–McWilliams parametrization for eddy induced
advection;

2. the enhanced vertical diffusion used in cases of unstable
stratification;

3. the turbulent kinetic energy (TKE) scheme used to define
vertical diffusivity and viscosity;

The exact set-up and motivation for these schemes has
been described by Juricke et al. (2017). The pertubations are
designed to estimate uncertainties related to these schemes,
either to some specific parameter (which is the case for 1 and
2) or related to specific tendencies within the parametrization
(which is the case for 3). As discussed by Juricke et al. (2017),
each of these parametrization perturbations acts in very spe-
cific regions of the ocean. While 1 has a strong impact in
the Southern Ocean and the western boundary currents, 2 is
especially active at the deep convection sites in the high lat-
itudes, and 3 acts in the upper ocean in the Tropics and also
the western boundary currents.

To diagnose the quality of the forecasts, different diag-
nostics have been applied. These include the computation of
atmospheric and oceanic biases as well as debiased diagnos-
tics of the ensemble spread and ensemble mean error, and
also some probabilistic skill scores. The main diagnostics
presented in this paper are listed in Table 1. All diagnos-
tics are based on monthly or seasonal means. Except for the
bias, all diagnostics also use anomalies with respect to the
reanalysis or model climatology.

Although the biases for all variables discussed here have
been computed and analysed, we will mostly focus on the
debiased ensemble information from the seasonal forecasts.
Especially for the discussion of the effects of observational
and model uncertainty on the seasonal forecasts (sections 4
and 5), the effects on model biases for most variables have
been more or less inconclusive.

One of the first aspects that needs to be analysed in the con-
text of ensemble weather and seasonal forecasts is the fore-
cast reliability, i.e. the ratio between root mean square error
(RMSE) and mean ensemble standard deviation (SPREAD).
A reliable ensemble forecast captures the RMSE with the
SPREAD. It therefore adequately accounts for forecast uncer-
tainty related to the chaotic, unpredictable behaviour of the
climate system as well as the additional sources of uncertainty
such as initial condition or model uncertainty. While a single
forecast is very unlikely to remain close to the true system
with increasing lead time, an ensemble system should ide-
ally account for all possible deviations from the true state and
hence balance RMSE with SPREAD.

A probabilistic diagnostic that makes use of the informa-
tion provided by all the ensemble members is the Brier skill
score (BSS). In the case of this study, the BSS looks at how
well the forecasted likelihood of an anomaly to be above
(or below) the climatological median compares to the actual
occurance of such an anomaly. The median here is always
based on the respective climatology, i.e. model or reference
reanalysis (cf. Table 1).

Bootstrapping of the data (sample size 1,000, with replace-
ment) is used for significance testing of the BSS and mean
squared skill score (MSSS), RMSE, and SPREAD, and for
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TABLE 1 Main diagnostics presented in this paper. Upper-case variables X and O mark total fields for
model and reanalysis, respectively. Lower-case variables x and o mark anomalies with respect to the
respective climatology. Diagnostics are carried out for a specific 1- or 3-month average. Overbars represent
ensemble means. The number of ensemble members is M, number of start years is N, any specific model
variable under consideration is denoted by x, and o are the respective observations/observational
estimates. For the probabilistic Brier skill score, p defines the probability of the ensembles members (px)
or the observations (po) to be below their respective climatological median. The angle brackets denote
averages with respect to time, i.e. < o > is the time mean of the observations (climatology) and < po

> is
the time mean probability to be below the median for the observations (which is exactly 0.5).

Name Formula

Model anomaly (year n) xn = Xn −
1
N

∑N
i=1

(
1
M

∑M
j=1 Xij

)
= Xn −

1
N

∑N
i=1 X̄i

Observational anomaly (year n) on = On −
1
N

∑N
i=1 Oi

BIAS 1
N

∑N
i=1

(
1
M

∑M
j=1(Xij − Oi)

)
= 1

N

∑N
i=1(X̄i − Oi)

Mean Ensemble SPREAD 1
N

∑N
i=1

(√
1

M−1

∑M
j=1(xij − x̄i)2

)

Mean RMSE (Root Mean Square Error) 1
N

∑N
i=1

(√
1
M

∑M
j=1(xij − oi)2

)

MSSS (Mean Squared Skill Score) 1 − RMSE
/(

1
N

∑N
i=1(oi− < o >)2

)

BSS (Brier Skill Score) 1 −
(

1
N

∑N
i=1(px

i − po
i )

2
)/(

1
N

∑N
i=1(po

i − < po
>)2

)

= 1 − 4
(

1
N

∑N
i=1(px

i − po
i )

2
)

the significance testing of differences in those diagnostics
between the stochastic and deterministic ensembles. As
reference data (i.e. truth) for the ocean diagnostics the two
ECMWF ocean reanalysis products ORAS4 (Balmaseda
et al., 2013) and ORAP5 (Zuo et al., 2017) are used. For
ORAS4, which is a five-member reanalysis and based on
the ECMWF seasonal forecasting model System 4, only the
unperturbed member is used as reference truth. ORAP5 is
the preliminary version of the new ocean reanalysis based on
the ECMWF seasonal forecasting model SEAS5 and consists
of only one member. The two reanalysis products differ espe-
cially in the horizontal and vertical resolution of the ocean
model, with 1◦ compared to 1/4◦ horizontal resolution and
42 vertical levels compared to 75 for ORAS4 and ORAP5,
respectively. In accordance with the seasonal forecasts, both
reanalyses were generated with NEMO. Therefore, it is a
relatively optimistic but also fair comparison between the
forecast and the reanalyses when all are based on a simi-
lar model structure. However, as discussed in Juricke et al.
(2017) for low-frequency variability of sea surface height
and overturning streamfunctions, and by Karspeck et al.
(2017) for the overturning streamfunction mean and vari-
ability in the North Atlantic, different reanalysis products
often differ considerably. This is especially true for any local,
depth-integrated or subsurface variables that are less well
constrained by the assimilated observational estimates.

For the atmospheric diagnostics, ERA-Interim (Dee et al.,
2011) was used as reference data.

3 SEASONAL TO ANNUAL OCEAN
FORECASTS

3.1 Forecast spread, error, and reliability
The change of SPREAD for the reference forecast with
increasing lead time is illustrated in Figure 1 for SST.

SPREAD increases most rapidly in turbulent regions such
as the western boundary currents and, to some degree, the
Southern Ocean, and in regions of strong coupling such as the
Tropics. It also has a very strong seasonal signal, with a more
rapid SPREAD increase in the Northern Hemisphere during
the first three months. Here SPREAD seems to saturate in
July (Figure 1c), especially in the midlatitudes. In general
the SPREAD development in the midlatitudes follows the
seasonal cycle of mixed-layer depth. Shoaling of mixed-layer
depth in the summer hemisphere increases the impact of
the atmosphere on SST variability, therefore enhancing SST
SPREAD. On the other hand, deepening of the mixed layer
in the winter hemisphere reduces the atmospheric influence
and decreases SST SPREAD. The Tropics show a more
consistent, continuous increase in spread, i.e. the impact
of the seasonal cycle is strongly reduced. The Subtropics
develop less ensemble spread, while the very high latitudes
are strongly constrained by the disappearence/reappearence
of sea ice. It should be noted that we capture spread evolu-
tion on the monthly time-scale. On interannual time-scales,
more subtle increases in spread over the years will be related
to slow modes of variability. As a consequence, the appar-
ent saturation followed by decline in spread in the Northern
Hemisphere does not signify the true climatological spread
of the system, as interannual variations are not yet captured.
Previous studies have shown that there is potential skill in
predicting low-frequency anomalies in, for example, the
North Atlantic (e.g. Zanna, 2012; Huddart et al., 2016).

Figure 2 shows the development of the RMSE. The error
shows a similar behaviour to the SPREAD, growing at a
similar rate and reflecting a more or less reliable system. How-
ever, when comparing the actual RMSE/SPREAD ratio in
Figure 3, it becomes apparent that the SPREAD is smaller
than the RMSE, i.e. the system is underdispersive. This is
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FIGURE 1 Sea surface temperature ensemble spread (K) of the reference forecast REF averaged over the 30 start dates 1981–2010 for months (a) May, (b)
June, (c) July, (d) September, (e) December and (f) February

especially true in those areas where the error growth is largest,
suggesting that the forecasting system is not active enough
in turbulent ocean regions. To some degree this is related
to the coarse ocean model resolution that does not resolve
mesoscale ocean eddies (e.g. Juricke et al., 2017). The first
month, however, shows too large a SPREAD, i.e. large regions
are overdispersive. A possible explanation for this is that the
initial condition spread of the system is initially too large
when compared to the ORAS4 reanalysis. While the seasonal
forecast is initialized based on the five-member reanalysis
ensemble, the verification of the forecast for the RMSE is car-
ried out with the unperturbed ORAS4 member. The overdis-
persion is therefore more or less an artifact of the choice of
the reference data. We will discuss this again in section 4.1.

Similar to the RMSE and SPREAD, the ratio between
the two exhibits some seasonal dependence. However, the
amplitude of the seasonality is reduced and shows a clear
phase shift. RMSE is significantly larger than SPREAD in
the Northern Hemisphere in February (month 10, boreal
winter), compared to June and July (months 2 to 3, boreal

summer), while September (month 5, austral winter) shows
the largest underdispersion in the Southern Hemisphere.
As discussed for SPREAD, this is again related to the
reduced impact of atmospheric variability and increased
impact of ocean dynamics in the winter hemisphere, suggest-
ing an insufficiently calibrated ocean model component at
non-eddy-resolving 1◦ resolution.

The analysis in this study is based on forecasts initialized in
May. Due to the strong seasonal SPREAD and RMSE depen-
dence, forecasts initialized in a different month may produce
different results. However, strong seasonal SPREAD depen-
dence and the large growth in SPREAD in the first 3 months
in the summer hemisphere for SST was also observed by
Andrejczuk et al. (2016) with 01 November initialization (see
their supplementary material).

In addition to SST reliability assessment, Figures 4 and 5
show the RMSE and RMSE/SPREAD ratio for integrated
upper 300 m heat content. In contrast to SST, heat content
does not exhibit a strong seasonal signal, either in SPREAD or
RMSE. The impact of the seasonal surface forcing is reduced
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FIGURE 2 Root mean square error of sea surface temperature (K) between the ensemble mean of the reference forecast REF and the ORAS4 1◦ reanalysis
for years 1981–2010 and months (a) May, (b) June, (c) July, (d) September, (e) December and (f) February

when vertically integrated quantities are considered. Error
grows in regions where there is large variability throughout
the entire upper ocean, especially along the western boundary
currents and their extensions, in the Southern Ocean, and
in the Tropics. The underdispersive nature of the ensemble
becomes even more apparent for heat content (cf. Figures 3
and 5). Similar arguments as for SST hold, also for the
slight overdispersion observed in some regions during the first
forecast month.

As a comparison to the SST and upper-ocean 300 m heat
content RMSE of REF, we have also computed the RMSE
of a climatological forecast (i.e. using monthly climatolo-
gies of ORAS4 as forecasts) and a persistence forecast (i.e.
using April anomalies of ORAS4 for each of the ten forecast
months). For SST the results suggest that REF performs bet-
ter than climatology especially in the Tropics throughout the
forecast but also in large areas of the midlatitudes until at least
July (supporting material, Figures S1 and S3). REF performs
worse than climatology especially in regions of strong model
biases such as the North Atlantic, the Kuroshio, and parts of
the high latitudes. Persistence provides a better forecast than

climatology in most areas during the first two months, but
generally performs worse than REF in most regions for all ten
months (supporting material, Figures S2 and S4). This is due
to the fact that SST anomalies generally last only a few weeks
to months and the seasonal forecast model is able to predict
this persistence as well. Similar to the climatological forecast,
persistence has a reduced error compared to REF in regions
of strong model biases. Results for upper-ocean 300 m heat
content are comparable to those for SST, except that the per-
sistence forecast tends to perform better in the midlatitudes
for slightly longer as anomalies in the subsurface can survive
for longer (supporting material, Figures S5 and S6). However,
climatology remains a better forecast than persistence during
the last three months. In summary, REF outperforms both sta-
tistical forecasts with respect to heat content in most regions,
especially during the last few months of the forecasts.

We would refer the reader to the supporting material for a
more detailed discussion of differences in skill between per-
sistence and climatological forecasts as basis of comparison
for the dynamical forecasts. However, for the remainder of
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FIGURE 3 Ratio between root mean square error (referenced to ORAS4 1◦ reanalysis) and mean ensemble spread of sea surface temperature of the
reference forecast REF for start dates 1981–2010 and months (a) May, (b) June, (c) July, (d) September, (e) December and (f) February. Areas shown are only
those which are significantly different from 1 at 95% confidence according to a 1,000 sample bootstrapping with replacement. Note the nonlinear colour scale

this article, we will keep climatology as basis of comparison,
since it outperforms persistence in most instances.

3.2 Probablistic forecast skill

Figure 6 shows the BSS for SST referenced to ORAS4. The
figure suggests that there is considerable predictive skill in the
first month, which is related to the slower ocean time-scales
(compared to the atmosphere) and the fact that a persistence
model on this time-scale is already quite useful (e.g. Barnston
et al., 2012). Skill disappears quickly in the western bound-
aries, in large parts of the Southern Ocean and the central,
midlatitude basins. However, in the Tropics, especially in the
central Pacific, significant skill is maintained (i.e. positive
BSS) until Feburary (month 10). These long-term predic-
tive modes are most likely related to low-frequency tropical
variability patterns such as ENSO. As mentioned before,
there might be additional information gained from annual or
multi-annual forecasts when looking at longer averaging peri-
ods, for example annual means instead of monthly means.
Analysis of annual anomalies might provide substantial skill

in regions such as the North Atlantic (Zanna, 2012; Huddart
et al., 2016), or for atmospheric variables such as Sahel sum-
mer rainfall (Sheen et al., 2017; O’Reilly et al., 2017). As
an indicator, the monthly means in our forecasts show some
predictive skill in and northwards of the North Atlantic sub-
polar gyre on the ten-month time-scale. There is also some
skill throughout most of the forecast in the tropical Atlantic.

A noteable drawback of the ECMWF seasonal forecasting
system here is that it actually exhibits areas of negative skill,
mostly in some regions of the Southern Ocean, from month 5
onwards. Negative skill means that the system performs worse
than a system based on the mean climatology. This suggests
model biases in the forecast distribution when compared to
the climatology. While these areas are not exceedingly large,
their patterns are relatively robust in time and location which
reduces the probability of a simple sampling problem.

4 OBSERVATIONAL UNCERTAINTY

To investigate the sensitivity of the forecast verification to the
choice of the reference reanalysis, we compare the diagnostics
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FIGURE 4 As Figure 2, but for upper 300 m ocean heat content (J m−2)

of the previous sections with similar diagnostics referenced
to the ECMWF 1/4◦ reanalysis ORAP5. This comparison
provides a lower bound on the impact of observational uncer-
tainty, as the two reanalysis products do not sample the whole
spectrum of ocean reanalyses. They both use to a large extent
the same system that is also used for the seasonal forecast, are
constrained by and assimilate similar data, and mainly differ
in the horizontal resolution of the ocean model (1◦ compared
to 1/4◦), as well as vertical levels (42 compared to 75) and
resolution-dependent parametrization adjustments. It should
be noted that the forecast model and both reanalysis models
are based on the same ECMWF system.

4.1 Forecast error and reliability

Figure 7 shows the same RMSE/SPREAD ratio for SST as
Figure 3 but referenced to the 1/4◦ ORAP5 rather than 1◦

ORAS4 reanalysis. The largest differences between Figures 3
and 7 are visible in the first month. While Figure 3a suggests
that the system is overdispersive in May, Figure 7a suggests
the exact opposite. Compared to ORAP5 the seasonal forecast
is highly underdispersive in the first month, especially in the

Southern Ocean. This can partly be explained by the fact that
the forecast is initialized with the ORAS4 reanalysis spread
(section 3.1). While that leads to too large a spread when com-
pared to ORAS4, the comparison to ORAP5 suggests that the
initial condition spread might actually not be large enough
to capture the error growth. This result has strong implica-
tions for the design of initial condition perturbations. Figure 3
suggests that the initial condition spread might have been too
large and the underdispersion in later months is mainly due to
the model’s inability to generate sufficient variability. How-
ever, Figure 7 suggests that the initial spread is already too
low, especially in the Southern Ocean. The underdispersion is
probably linked to underestimated initial uncertainty and the
simulation of insufficient growth rates of the applied initial
condition perturbations.

The general conclusion that REF referenced to ORAP5
rather than ORAS4 shows stronger underdispersion in
the Southern Ocean remains true at least until September
(month 5). After that, the two diagnostics become more
similar, with some stronger underdispersion visible in the
North Atlantic for the ORAP5 reanalysis reference. In
the Tropics the two diagnostics are much more similar
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FIGURE 5 As Figure 3, but for upper 300 m ocean heat content. Note the nonlinear colour scale

throughout the entire forecast range. In general, however, the
ORAP5 reanalysis suggests slightly stronger underdispersion
everywhere (i.e. larger RMSE).

This difference in midlatitude RMSE when referenced
to ORAP5 instead of ORAS4 is also not just a conse-
quence of interpolation of more highly resolved data to a
lower-resolution grid. Spatial smoothing of the monthly SST
fields (supporting material, Figure S7) reveals that the dif-
ference remains large in the midlatitudes, which suggests
that it originates only to some degree from the interpola-
tion of an eddy-permitting reanalysis to a grid that does not
resolve eddies. Instead, the observed differences are to a large
extent an effect of the eddy–mean flow interaction (or absence
thereof) in the reanalysis model that causes the differences
between ORAP5 and ORAS4 (Juricke et al. (2017) give a dis-
cussion of resolution effects on interannual ocean variability
in the two reanalysis).

Furthermore, the very strong reanalysis dependence in the
high latitudes can be attributed to two main reasons. For
one, the seasonal forecasting model used for the ensemble
forecasts in this study does not dynamically predict sea ice

but uses sampling from previous years to generate sea ice
conditions. Therefore sea ice does not evolve dynamically
given the forcings by ocean and atmosphere. Diagnostics are
likely to highlight differences in the high latitudes with strong
diagnostic gradients to the midlatitudes as seen especially in
Figure 7. The other reason is that the two reanalysis prod-
ucts also strongly differ in their sea ice treatment. While the
model used for the ORAS4 reanalysis did not have a dynam-
ical sea ice model (similar to the seasonal forecast model),
ORAP5 does. Additionally, ORAP5 does assimilate sea ice
concentration into the dynamical model for the first time
in an ECMWF forecasting system. The sea ice and surface
ocean state estimate in the high latitudes is therefore in bet-
ter agreement with the ocean model state and the atmospheric
forcing. It is allowed to vary dynamically. That is the rea-
son why Figure 7 especially highlights the high latitudes as
exceedingly underdispersive.

Finally, it should be noted that the choice of reference
reanalysis does not affect the general conclusions of the
RMSE comparison between REF, climatological and persis-
tence forecasts in the previous section.



1956 JURICKE ET AL.

FIGURE 6 Brier skill score for sea surface temperature of the reference forecast REF compared to ORAS4 1◦ reanalysis for start dates 1981–2010 and
months (a) May, (b) June, (c) July, (d) September, (e) December and (f) February. Areas shown are only those which are significantly different from 0 at 95%
confidence according to a 1,000 sample bootstrapping with replacement

4.2 Probablistic forecast skill

Figure 8 shows 300 m heat content BSS referenced to both the
ORAS4 and ORAP5 reanalysis. Once again, the first month
shows the strongest differences. While ORAS4 suggests pre-
dictive skill basically everywhere, this is reduced to skill only
in the Tropics and some parts of the North Atlantic when ref-
erenced to ORAP5. For the high latitudes and some parts of
the Southern Ocean, it actually switches from positive skill to
negative skill. As the forecast is initialized with the ORAS4
reanalysis members, it is not surprising that it performs better
in the first month when compared to the same ORAS4 reanal-
ysis. However, the amplitude of the differences is consider-
able, especially since the switch between reanalysis products
in the forecast verification process is between reanalyses that
are technically still relatively close to each other.

The differences are also not limited to the first month,
where they can mainly be explained by the initializa-
tion process. Throughout the entire forecast, referencing
to ORAS4 suggests much higher skill than referencing to
ORAP5, possibly with the exception of the Tropics. Here,
the difference in resolution of the ocean reanalyses is not

as critical as it is in the midlatitudes, where the change
from 1◦ to 1/4◦ means a change from non-eddy-resolving to
eddy-permitting. Also, even with a 1◦ grid, the resolution is
strongly meridionally refined in the Tropics to better simu-
late wave propagation, which makes the resolution between
1◦ and 1/4◦ grids more comparable in the Tropics. How-
ever, outside the Tropics, the differences in diagnosed skill
are very large. So large in fact that, for large parts of the
mid to high latitudes, ORAP5 claims that the forecast has
as much or even less skill than climatology, while referenc-
ing to ORAS4 exhibits large areas of significant skill. For
SST the two reference reanalyses provide much more similar
results (not shown), although not for the first month where
the ORAS4 reference provides much higher skill scores. Also,
even for SST, ORAS4 is generally slightly more optimistic
than ORAP5 throughout the entire forecast. In summary, this
suggests that especially for subsurface fields – where reanal-
ysis products are not well constrained by observations – the
forecast verification strongly depends on the chosen reanaly-
sis product. But even for better-observed surface fields, it is
crucial how the reanalysis model incorporates observational
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FIGURE 7 As Figure 3, but referenced to ORAP5 (1/4)◦ reanalysis. Note the nonlinear colour scale

estimates for a given grid resolution to generate the reference
data (Massonnet et al., 2016).

5 MODEL UNCERTAINTY

5.1 Impact on forecast spread, error, and reliability

To assess how model uncertainty affects forecast skill, we
have run the two forecast sets REF and STO as described
in section 2. The stochastic perturbations to the three
parametrization schemes were mainly introduced to improve
reliability. Introducing stochastic perturbations may lead to
increased spread which evolves dynamically during the fore-
cast and reduces underdispersion. This has already been
shown in the study by Andrejczuk et al. (2016) for eddy-active
regions and a forecast length of three months, using ocean
SPPT to account for model uncertainty. Figure 9 shows the
increase in 300 m heat content SPREAD (relative to REF)
generated by STO, starting with July (month 3). The first two
months do not show a very strong signal. It is clear that, in

agreement with Andrejczuk et al. (2016), especially the west-
ern boundary currents (i.e. Gulf Stream and Kuroshio), the
Southern Ocean, and to some extent also the tropical Atlantic
show increased SPREAD for STO, by a magnitude of up to
40%. There is some seasonal dependence of the signal sim-
ilar to Figure 1, and the changes are relatively localized. In
general, the increased SPREAD leads to a better calibrated
system, i.e. reduced underdispersion (cf. Figure 5). The 300 m
heat content RMSE is also on average slightly reduced (not
shown) but the impact is more noisy and therefore less clear.

While 300 m heat content SPREAD has a strong ocean
dynamics and diffusion component, SST SPREAD at this
ocean model resolution is largely governed by atmospheric
variability (Andrejczuk et al., 2016). This is why the impact
of the stochastic schemes on SST SPREAD is much less pro-
nounced (not shown), although it shows a general increase in
SPREAD in the Southern Ocean for September to December
(months 5 to 8). Furthermore, SST RMSE is reduced during
the last three months of the forecast, which will be discussed
below in the context of SST BSS.
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FIGURE 8 Brier skill score of upper 300 m ocean heat content of the reference forecast REF compared to (a, c, e) ORAS4 1◦ and (b, d, f) ORAP5 (1/4)◦

reanalysis for start dates 1981–2010 and months (a, b) May, (c, d) September, and (e, f) February. Areas shown are only those which are significantly different
from 0 at 95% confidence according to a 1,000 sample bootstrapping with replacement

5.2 Impact on probablistic forecast skill

5.2.1 Ocean
Similar to Andrejczuk et al. (2016), the impact of incorporat-
ing model uncertainty estimates does not affect probabilistic
skill scores significantly on the three-month time-scale. How-
ever, on longer time-scales beyond November (month 7), the
impact is also visible in the BSS especially for SST, in the
midlatitude Pacific regions and in the South Atlantic, with
largest significant changes in the South Pacific (Figure 10;
also supporting material for global maps, Figure S8). Here
SST shows a stronger signal than heat content. Analysis of
SST RMSE difference between STO and REF suggests that
the improvements are related to reduced RMSE in those
regions (Figure S8). Additionally, while SPREAD changes for
SST are less consistent than for heat content, SST SPREAD
of STO is increased compared to REF especially in the south-
ern midlatitude Pacific, the South Atlantic, and south of South
America and Africa during the last three months (not shown).
This is most dominant in February. However, it is difficult
to assess the effect of the SPREAD increase, since this alone

does not necessarily improve skill scores, especially when the
focus is not on extremes. But strong changes in SPREAD
in similar regions as the BSS improvements suggest at least
some connection between the two. Our conclusion is that the
BSS improvements due to STO are related to a combination
of an improved ensemble mean (i.e. improved mean forecast
trajectory) as well as improved reliability and dynamically
evolving SPREAD.

Comparing the regions where the improvements are visible
with the sensitivity studies carried out by Juricke et al. (2017),
we can identify the schemes that are most likely responsi-
ble for the improvements. The increase in SPREAD is mostly
visible in the vertically integrated fields of the western bound-
ary currents and the Southern Ocean, with some imprints of
SST SPREAD increase south of South America and Africa.
These are areas where especially the perturbations to the GM
scheme have a large impact. However the changes in the BSS
are most pronounced in surface fields of the Tropics and Sub-
tropics, where the perturbations to the TKE scheme are much
more important. These perturbations also affect mixed-layer
depth and through this the intensity of surface coupling.
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FIGURE 9 Ratio of upper 300 m ocean heat content ensemble spread between STO and REF averaged over the 30 start dates 1981–2010 for months (a)
May, (b) June, (c) July, (d) September, (e) December and (f) February. Significant differences are shown only where the value of the upper quartile of the
respective smaller spread (e.g. of REF) does not reach the value of the lower quartile of the respective larger spread (e.g. of STO), with quartiles generated by
the 1,000 sample bootstrapping distributions (with replacement) for STO and REF. Similar significance estimates are found when considering only those
differences where STO lies outside the 90% confidence interval of REF

FIGURE 10 Difference in sea surface temperature Brier skill score between STO and REF for start dates 1981–2010 and months a) December and (b)
February, referenced to ORAS4 1◦ reanalysis. Differences referenced to the ORAP5 (1/4)◦ reanalysis are similar. Stippled areas indicate significant
differences according to where the value of the upper quartile of the respective lower score (e.g. of REF) does not reach the value of the lower quartile of the
respective higher score (e.g. of STO), with quartiles generated by the 1,000 sample bootstrapping distributions (with replacement) for STO and REF. Similar
significance estimates are found when considering only those differences where STO lies outside the 90% confidence interval of REF. Stippling is applied to a
subset of grid points
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Interestingly, the improvements due to the stochastic
schemes are robust, independent of the reference reanalysis
used to calculate the BSS (not shown). While the absolute
value of the BSS differs depending on which reanalysis is
used, there is hardly any difference in the relative compari-
son of the skill score between STO and REF. Therefore, it is
still possible to objectively investigate the changes caused by
new model developments, at least in this case more or less
independently of the references used for the verification.

Finally, we would like to note that, while SPREAD increase
for upper-ocean 300 m heat content is large in the South-
ern Ocean and western boundary currents (Figure 9), it does
not reflect strongly in the BSS, either for heat content or
SSTs. Since atmospheric variability in the Southern Ocean is
a dominating factor for total surface variability on the sea-
sonal time-scale, the increase in SPREAD does not impact
surface skill scores except for the regions south of South
America and Africa. We speculate that the increase in heat
content SPREAD on the ten-month time-scale is not yet suf-
ficient to considerably improve or even change probabilistic
skill scores in large parts of the Southern Ocean, although
we do see some positive and negative significant changes in
SST BSS in the southern Indian Ocean (supporting material,
Figure S8). These differences will most likely become larger
with increased forecast length, as the increase in upper 300 m
ocean heat content SPREAD needs to compete with strong
atmospheric variability to ultimately affect SST forecasts.
Also, it should be noted once more that increased SPREAD
does not necessarily improve skill scores, especially when

the focus is on the probabilities of being above or below the
median. Increased SPREAD will most likely have a stronger
impact on extreme events, the assessment of which is outside
the scope of this paper.

5.2.2 Atmosphere
Figure 11 shows that, aside from the ocean SST, 2 m air tem-
perature skill also profits from the stochastic perturbations.
This is shown here for the mean squared skill score (MSSS)
which is an ensemble mean score. The score was chosen
because it shows the clearest, smoothest signal, though simi-
lar results hold for probabilistic skill scores such as the BSS,
if with somewhat reduced amplitude (not shown). Figure 11
shows large improvements in MSSS for the entire last sea-
son, i.e. DJF (months 8–10), with a focus on the Pacific
where impacts of STO are largest. These improvements are
not confined to the oceans, where Figure 10 already showed
the positive impact in SSTs, but extend over the continents
as well. Especially over North America, negative skill dis-
appears while positive skill emerges, mostly over Canada.
There appears to be a general pathway of improvements
radiating from the western tropical/subtropical Pacific to the
midlatitudes of the Americas which is more pronounced for
the Northern Hemisphere (Figure 11c). However, there is
also a slight reduction of skill in the tropical central Pacific
(also Figure 10) which might be related to increased biases
(i.e. shoaling) in both mixed-layer and turbocline depth (not
shown). The latter is a rather model-dependent diagnostic

FIGURE 11 Air temperature at 2 m mean squared skill score of (a) REF, (b) STO and (c) the difference between STO and REF for start dates 1981–2010 and
the averaged forecast months December to February, referenced to ERA-Interim. Stippled areas in (a) and (b) indicate where the score for the two ensembles
is significantly different from 0 at 95% confidence, according to 1,000 sample bootstrapping with replacement. Stippled areas in (c) indicate where the scores
of the two ensembles differ from each other at 95% confidence, according to a 1,000 sample bootstrapping with replacement of the difference STO-REF
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variable. However, for both reanalysis products and the fore-
casts, it is consistently defined as the depth where the ver-
tical eddy diffusivity falls below a certain threshold (here
5 cm s−2). This is directly affected by the vertical mixing
parametrization (see NEMO documentation within the model
code) and is a measure of vertical mixing activity in the
upper ocean. These biases could potentially be improved by
a slight retuning of the parameter regime. However, proba-
bilistic skill scores of the mixed-layer and turbocline depth
are not affected, although we do see a slight decrease in prob-
abilistic skill of the tropical 300 m ocean heat content. This
decrease in skill is mostly confined to the central and east-
ern tropical Pacific and does not seem to affect the Subtropics
and midlatidues, where the increase in skill is observed in
Figures 10 and 11. On the other hand, the skill improvement
is most likely due to an improved propagation of signals from
the (western) tropical Pacific to the midlatitudes caused by
a better representation of upper-ocean conditions and hence
surface coupling with the ocean. This in turn is most likely
achieved by the stochastic TKE perturbations. We do not see
any consistent impact on mixed-layer depth biases in these
regions but, as already mentioned, STO leads to a reduced
SST RMSE, i.e. a better ensemble mean forecast (Figure S8).
Similarly, the slight decrease in skill south of New Zealand
and Australia, which is visible both in the ocean in Figure 10
and in the atmosphere in Figure 11, is related to an increase
in SST RMSE (Figure S8). Finally, it should also be noted
that, while we do see a slight decrease in local skill in the
central tropical Pacific in Figure 10, the skill for none of the
common spatially averaged El Niño indices is significantly
reduced (not shown).

Aside from BSS and MSSS, other scores were also inves-
tigated for the atmosphere as part of the ECMWF diagnos-
tics suite available for the seasonal forecasts, including the
ignorance score and BSS for median, and upper and lower
terciles, as well as the ensemble mean anomaly correlation
(not shown). All these results agree with the results presented
here. Furthermore, other atmospheric fields were analysed,
such as precipitation and sea level pressure. While most of
these were inconclusive (for example precipitation), the ones
that showed a significant signal (for example sea level pres-
sure) were related to the above-mentioned improvements in
the Subtropics and midlatitudes or the slight decrease in skill
in the tropical Pacific.

6 SUMMARY AND CONCLUSIONS

In this study a comprehensive set of seasonal to annual fore-
casts was analysed, focusing on the forecast skill of ocean
variables on a ten-month time-scale. An updated version
of the ECMWF seasonal forecasting model System 4 was
used with an ocean model resolution of 1◦. Forecasts were
initialized in May and carried out for ten months, with start
years 1981–2010 and an ensemble size of 20 members.

In the Tropics, results show that the dynamical ocean
forecasts exhibit up to ten-month SST forecast skill for the
probabilistic Brier skill score and outperform simple clima-
tological and persistence forecasts in terms of root mean
squared error, especially in the central Pacific. Almost every-
where else, the skill drops quickly to zero, with the exception
of the far North Atlantic. Similar results hold for upper
300 m heat content, although the skill is retained slightly
longer during the first few months (if referenced to the
1◦ ECMWF ocean reanalysis). Throughout the forecast the
system remains underdispersive for ocean variables, par-
ticularly in turbulent regions such as the Southern Ocean.
Especially sea surface temperature shows a strong seasonal
signal in the ensemble spread and forecast error, which bal-
ances to a large degree for the reliability. Investigation of
the impact of different start dates will be left for future
studies.

A comparison of Brier skill scores and reliability refer-
enced to two different reanalysis products, namely the default
ECMWF 1◦ and the recent 1/4◦ reanalysis, revealed a strong
reference data dependence, not just for subsurface (more
scarcely assimilated) quantities but also for SSTs. Especially
during the first month, slightly overdispersive regions for SST
are highlighted as underdispersive when moving from the 1◦

to the newer 1/4◦ reanalysis. In line with this, Brier forecast
skill drops significantly, especially for the 300 m heat content.
Increased amplitude of underdispersive regions and gener-
ally reduced skill remains true throughout the forecast when
choosing the 1/4◦ reanalysis as reference.

To account for model uncertainty, stochastic perturbations
to three main mixing parametrizations (described by Juricke
et al., 2017) were introduced. The applied stochastic pertur-
bations account for uncertain parameters and parametrized
tendencies within these parametrizations. Another set of fore-
casts with the stochastic ocean schemes was initialized for the
same dates and with the same ensemble size, and compared to
the reference forecasts without stochastics in the ocean model.

The stochastic schemes improve the model reliability espe-
cially for 300 m heat content from forecast month 3 onwards.
The Brier skill score was significantly improved for sea sur-
face temperature in the subtropical and midlatitude Pacific
during the last three months of the forecasts. These improve-
ments were robust, independent of the reference dataset used
to validate the model performance. They are a consequence of
improved ensemble mean forecasts and increased ensemble
spread, i.e. ensemble forecast distribution. Finally, forecast
skill was also significantly improved for 2 m air tempera-
ture, leading to significant forecast skill over North America
during the last three months of the forecast. This skill was
absent in the reference simulation. The results showed that
using stochastic schemes to represent model uncertainty can
both improve model reliability and forecast skill scores. The
former is mostly achieved by increasing model spread in
dynamically active regions. The latter results from a better
representation of both the ensemble mean as well as the
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probabilistic information contained in the distribution of the
ensemble members.

It should be noted that the improvements due to incorpo-
ration of ocean model uncertainty discussed in this paper are
based on the three stochastic schemes implemented (Juricke et
al., 2017). This is not an exhaustive set of model uncertainty
estimates but only comprises some schemes with relatively
large related uncertainties. Each scheme also acts on dif-
ferent time-scales, from a couple of weeks to decades, and
might have some seasonal dependence. Therefore, depend-
ing on the forecast length, initialization, and focus, some
schemes might be more effective than others in improving
forecast skill for different lead times. This is also the case
for stochastic schemes implemented in other components
of the forecasting system. Furthermore, the already imple-
mented schemes might develop even stronger impacts once
the model resolution allows for the development of eddies
and more chaotic, active behaviour through reduced viscos-
ity. The non-eddy-resolving resolution of the current forecasts
leads to a much more linear behaviour of the ocean model
than is observed in the real, eddying ocean (Andrejczuk et al.,
2016; Juricke et al., 2017). Increases in resolution may impact
the schemes’ effect on the climatic mean state and variabil-
ity patterns differently. Similar to a deterministic model that
incorporates a new scheme, retuning of the model might
become necessary, which is here already apparent in the case
of a slight bias increase (i.e. shoaling) for the tropical Pacific
turbocline and mixed-layer depth.

This study shows that there is still a lot of forecast skill to
be gained by improvements in the model set-up, not only from
general model development, systematic error reduction (e.g.
Zadra et al., 2018) and increase in resolution (e.g. MacLach-
lan et al., 2015), but also from adequately accounting for
forecast model uncertainty (Leutbecher et al., 2017). How-
ever, in the verification process, it should always be kept in
mind that especially for the (subsurface) ocean, it is diffi-
cult to decide upon the one true state with which the model
should be compared (e.g. Karspeck et al., 2017; Balmaseda
et al., 2015). This is why observational uncertainty needs to
be accounted for as well, also in the development of new
diagnostics (Massonnet et al., 2016; Bellprat et al., 2017;
Ferro, 2017). However, for this study, while absolute values
of skill were dependent on the reference reanalysis, the fore-
cast improvements gained by applying stochastic methods for
model uncertainty estimation were more or less independent
of that, providing robust indicators of skill increase.
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