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Abstract
Interannual sea surface height (SSH) forecasts are subject to several sources of uncertainty. Methods relying on statistical 
forecasts have proven useful in assessing predictability and associated uncertainty due to both initial conditions and bound-
ary conditions. In this study, the interannual predictability of SSH dynamics in the North Atlantic is investigated using the 
output from a 150 year long control simulation based on HadGEM3, a coupled climate model at eddy-permitting resolution. 
Linear inverse modeling (LIM) is used to create a statistical model for the evolution of monthly-mean SSH anomalies. The 
forecasts based on the LIM model demonstrate skill on interannanual timescales O(1–2 years). Forecast skill is found to be 
largest in both the subtropical and subpolar gyres, with decreased skill in the Gulf Stream extension region. The SSH initial 
conditions involving a tripolar anomaly off Cape Hatteras lead to a maximum growth in SSH about 20 months later. At this 
time, there is a meridional shift in the 0 m-SSH contour on the order of 0.5◦–1.5◦-latitude, coupled with a change in SSH 
along the US East Coast. To complement the LIM-based study, interannual SSH predictability is also quantified using the 
system’s average predictability time (APT). The APT analysis extracted large-scale SSH patterns which displayed predict-
ability on timescales longer than 2 years. These patterns are responsible for changes in SSH on the order of 10 cm along 
the US East Coast, driven by variations in Ekman velocity. Our results shed light on the timescales of SSH predictability in 
the North Atlantic. In addition, the diagnosed optimal initial conditions and predictable patterns could improve interannual 
forecasts of the Gulf Stream’s characteristics and coastal SSH.

Keywords  North Atlantic Ocean · Sea surface height · Internal variability · Predictability · Optimal initial conditions · 
Statistical forecasting

1  Introduction

Forecasts of sea surface height (SSH) on interannual time-
scales are affected by several sources of uncertainty. Assess-
ing such uncertainty and associated mechanisms are crucial 
to provide reliable forecasts and potentially mitigate the 

effects of coastal flooding in certain regions. Furthermore, 
this can have implications for devising strategies on how 
best to design ocean observing systems and initialise cli-
mate models (Zanna et al. 2018). Finally, more skilful SSH 
predictions could help improve predictions of other parts of 
the climate system, for example increased skill in predicting 
the Gulf Stream’s meridional position could impact predic-
tions of air–sea heat fluxes and atmospheric blocking (Scaife 
et al. 2011).

Increased understanding of the ocean-atmosphere pro-
cesses which modulate interannual sea level variability 
could aid in improving SSH forecasts. Cabanes et al. (2006) 
found that the mechanisms which contribute to observed 
interannual SSH variability are regionally dependent, with 
the majority of the interannual variability controlled by both 
the local steric response to heat fluxes, and the large-scale 
oceanic adjustments to variations in the wind stress. In mod-
elling studies (e.g., Roberts et al. 2016), the SSH interannual 
variability in subpolar gyre has been found to be mostly 
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buoyancy driven through variations in both thermosteric 
and halosteric SSH components. Whereas, in the subtropi-
cal gyre, variability is primarily driven by the momentum 
forcing and variations in the thermosteric SSH component 
(e.g., Roberts et al. 2016). In the Gulf Stream region, intrin-
sic ocean processes (which are defined as ocean processes 
generated in the absence of atmospheric forcing variability) 
are responsible for the majority of the SSH interannual vari-
ability (Penduff et al. 2011). Such intrinsic ocean processes 
include mesoscale eddies.

Several studies have investigated seasonal to interannual 
SSH predictability (Chowdhury et al. 2007; Wang et al. 
2013; Qiu et al. 2014) with some key mechanisms identi-
fied in General circulation models (GCMs) (e.g., Roberts 
et al. 2016). Nonaka et al. (2016) and Roberts et al. (2016) 
focused on interannual SSH variability in eddy-resolving 
and eddy-permitting ocean models, respectively. Nonaka 
et al. (2016) investigated the predictability of mid-latitude 
ocean currents, using an ensemble of eddy-resolving ocean 
GCM (OGCM) experiments with horizontal resolution of 
∼ 1∕10◦ . They find a lack of predictability in the jet regions 
due to the contribution from the mesoscale eddy field. Rob-
erts et al. (2016) examined interannual SSH predictability 
using the eddy-permitting ( ∼ 1∕4◦ ) Hadley Centre Global 
Environment Model version 3 (HadGEM3) and found pre-
dictive skill in the Tropics on timescales of several years 
with a lack of skill in jet regions. Ensemble forecasts of SSH 
did not exhibit skill on 2–5 years that could beat persistence 
forecasts.

Other predictability studies, have used low resolution 
OGCMs ( 1◦–2◦ ) to investigate dynamic and steric SSH pre-
dictability (Schneider and Griffies 1999; Miles et al. 2014; 
Polkova et al. 2015). Polkova et al. (2015) found predictive 
skill in interannual steric SSH predictions in the subtrop-
ics on timescales of 2–5 years. Such skill was related to 
adjustments due to baroclinic Rossby waves. Skill was also 
found in the North Atlantic subpolar gyre on timescales of 
2–5 years, which was related to changes in spiciness along 
isopycnals. Schneider and Griffies (1999) found SSH pre-
dictability in the North Atlantic on times of up to 17 years, 
using an ensemble of coupled climate model runs, related 
to the large-scale ocean circulation.

The work presented here focuses on the predictability of 
dynamic sea level, i.e. variations which arise from ocean 
processes. These variations are linked to changes in ocean 
circulation, large scale heat transports, position of gyre 
boundaries and thus air–sea interactions.

The aims of this study are to

–	 Establish the timescales of predictability due to internal 
variability of SSH in the North Atlantic;

–	 Identify the regions where forecasts are most sensitive to 
perturbations in the initial conditions;

–	 Evaluate the spatio-temporal characteristics relevant to 
assessing North Atlantic SSH predictability.

–	 Relate any internally generated predictability to large-
scale ocean characteristics, with an emphasis on both 
mid-latitude jets and the gyre circulations;

We focus our analysis on statistical methods, which are used 
to evaluate predictability generated via internal variability 
in a fully coupled climate model. We will make use of an 
extended model control run, without interannual variations 
in the model’s boundary conditions. This should enable us to 
isolate any interannual predictability related to the model’s 
internal variability. A perfect model approach and a combi-
nation of Linear Inverse Modeling (LIM), non-normal mode 
analysis, and average predictability time (APT) are used to 
evaluate how initial conditions influence error growth (Pen-
land 1989; Farrell and Ioannou 1996; DelSole and Tippett 
2009a).

This paper is organised as follows, Sect. 2 details the 
model set up and the interannual SSH variability present. 
Section 3 contains information on the statistical methods 
used to evaluate predictability and an investigation into the 
influence of eddy-mean flow interactions on forecast skill. 
Section 4 examines the predictability related to the initial 
conditions of the ocean model through both the optimal 
initial conditions of SSH and the predictable components 
diagnosed by evaluation of the APT of the system. The final 
section contains a discussion of the results.

2 � Characterising interannual sea surface 
height variability in the North Atlantic 
in HadGEM3

2.1 � HadGEM3 model description

We use the output from a 150-year free-running control 
simulation of a coupled climate model, HadGEM3 GC2.0 
(Williams et al. 2015). This control simulation has repeated-
year radiative forcings (e.g., aerosols and greenhouse gases) 
taken from the year 2000 (identical to experiment 2 in the 
Coupled Model Inter-comparison Project Phase 3, CMIP3). 
The ocean component of HadGEM3, GO5.0 is based on ver-
sion 3.4 of NEMO (Nucleus for European Modelling of the 
Ocean) and is described in detail in Megann et al. (2014). 
The model is on an ORCA025 horizontal grid, which uses an 
eddy-permitting 1∕4◦  horizontal resolution and 75 vertical 
levels, with the vertical level spacings increasing from 1 m 
at the surface to 200 m at depth. The vertical level spacing 
provides high resolution near the surface for short to mid-
range forecasting. It uses both a linear free surface and an 
energy conserving momentum advection scheme. The verti-
cal mixing of tracers and momentum is parameterised by a 
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turbulent closure scheme (Gaspar et al. 1990; Madec 2008). 
The horizontal viscosity used is bi-Laplacian and the bottom 
friction is quadratic (Megann et al. 2014).

Monthly mean SSH anomalies are defined as departures 
from a time-mean, constructed from the entire model run. 
These anomalies are then used to create the statistical fore-
cast models in Sects. 3 and 4. In addition, monthly mean 
fields of surface net heat fluxes and both the zonal and 
meridional wind stress are used in Sect. 4.4 in the analysis of 
the mechanisms responsible for the predictable components. 
All the fields are linearly-detrended and have their seasonal 
cycles removed. Two independent methods were trialed to 
remove the seasonal variability. In the first method, the out-
put seasonal cycle is by removed through Fourier-filtering, 
by fitting cosine and sine waves to the annual and semian-
nual harmonics and removing variability at these frequen-
cies. The second method deseasoned the model output by 
subtracting the monthly climatology from each month. The 
results are insensitive to the method used and so the second 
method is chosen for simplicity.

2.2 � Evaluation of HadGEM3 against observational 
references

Previous model verification experiments by Williams et al. 
(2015) have shown that there are some small model biases 
in SST, primarily located just to the south of Greenland. 
However, HadGEM3 fields are significantly improved rela-
tive to its predecessor HadGEM2-ES. HadGEM3 has a more 
accurate Gulf Stream path, which which leads to improved 
atmospheric blocking statistics for the UK and Europe 
(Scaife et al. 2011; Williams et al. 2015).

The time-mean SSH and its variability in the HadGEM3 
model are compared to observations to ensure the model 
demonstrates a sufficient level of realism. An AVISO mean 
dynamic topography estimate for the period 1993–2012 
(Rio et al. 2014), is used to evaluate the HadGEM3 time-
mean SSH for the full model simulation. A uniform offset is 
applied to the AVISO data to give a similar domain average 
to the HadGEM3 simulation. These mean SSH profiles of 
the observation-based data and the model output are shown 
in Fig. 1a, b. There is a reasonable agreement between the 
model and the observations in both the magnitude and spa-
tial pattern of the mean field. However, there are some slight 
discrepancies between the two: the observations have more 
prominent recirculation gyres flanking the Gulf Stream near 
to its detachment point; and the mean SSH is slightly lower 
in the west of the subpolar gyre in the model.

The observational estimate of sea level variability comes 
from the the European Space Agency (ESA) Climate Change 
Initiative (CCI) version 2.0 monthly gridded fields of surface 
height anomaly (Legeais et al. 2018). Monthly data for the 
period 1993–2012 are aggregated into annual mean values 

before computing the standard deviation for each grid box. 
For comparison, we select the last 20-years of the HadGEM3 
simulation (representative of the simulation as a whole) to 
compute the standard deviation of annual mean values. 
The standard deviation of the interannual SSH anomalies 
of both the observations and the HadGEM3 output are 
shown in Fig. 1c, d. The patterns are in good agreement 
both in magnitude and spatially. In the observations there is 
a higher amount of interannual variability located at the Gulf 
Stream’s detachment point (5 cm), this is unsurprising as the 
1∕4◦  resolution model will be missing some variability due 
to eddy-mean flow interactions in the most turbulent regions.

2.3 � Interannual sea surface height variability

Figure 2a shows the time-mean SSH of the control run. 
The characteristic double-gyre structure is evident, and 
the strong SSH gradient is indicative of the location of the 
Gulf Stream and its extension. The power spectra of SSH 
anomalies at several locations in the domain are shown in 
Fig. 2b. The power spectral density measured along the Gulf 
Stream (black and blue lines) is larger at all timescales than 
that within the gyre regions (red and green lines). The larg-
est spectral power at interannual frequencies is near Gulf 
Stream’s detachment point (blue line). As a reference, the 
spectra are compared to the Zang and Wunsch (2001) canon-
ical frequency-wavenumber spectrum (gray dashed line). As 
a function of frequency ( � ), this spectrum is proportional to 
�−1∕2 on periods longer than 100 days, whereas, for periods 
shorter than 100 days it is proportional to �−2 (i.e. red noise). 
Hughes and Williams (2010) also highlight regional devia-
tions from this canonical spectrum. The spectra taken in the 
vicinity of the Gulf Stream, display approximately red noise 
profiles up to timescales of a year with whiter noise profiles 
on longer timescales. This whitening is indicative that the 
predictability of SSH in the Gulf Stream may be limited on 
interannual timescales. In contrast, the profiles taken in the 
subpolar and subtropical gyres (red and green lines), are 
closer to being red noise like in nature for all time periods. 
This is indicative that skillful interannual SSH forecasts can 
potentially be made in these regions.

Figure 3a shows the standard deviation of annual mean 
SSH anomalies. This again shows that most of the interan-
nual variability is located in the vicinity of the Gulf Stream’s 
extension and in the subpolar gyre. There are several poten-
tial mechanisms for such interannual variability in the Gulf 
Stream’s extension, including: baroclinic Rossby waves 
directly modulating the jet extension (Sasaki and Schneider 
2011; Qiu et al. 2014); variations in the western boundary 
currents due to changes in wind forcing (Andres 2016); and 
modulation by the mesoscale eddy field (Spall 1996; Berloff 
et al. 2007).
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The signal to noise ratio of interannual variability in the 
North Atlantic is investigated by diagnosing �N

�1
 , where �N 

represents the standard deviation of N-year means of SSH. 
This measure is often referred to as potential predictability 
(Boer 2004; Hawkins et al. 2011). Figure 3b, c show the 
potential predictability associated with �3 and �5 . Regions 
with weak interannual variability (standard deviations 
< 0.02 m) are masked (white regions in Fig. 3b, c). These 
regions of low variability are located along the eastern edge 
of the basin. The US east coast south of 45◦N stands out as 
the only portion of coastline where any potential interannual 
predictability is present (Fig. 3b, c). The largest potential 
predictability is located in the subpolar gyre. The dynamics 
of this region are likely to be relatively linear, dominated by 
mixed layer’s response to forcing and mean advection, and 
not heavily influenced by the effects of turbulent mesoscale 
eddies (Sérazin et al. 2015). However, such relatively linear 
dynamics in the model may also be because the 1∕4◦ model 
resolution will not fully resolve the small internal deforma-
tion radius in the subtropical gyre and therefore will likely 

underestimate effects related to the baroclinic instability. 
Figure 3a shows large values of interannual variability in the 
Gulf Stream extension, however, Fig. 3b, c demonstrate this 
pattern of large variability does not translate into a compa-
rable pattern of large potential predictability. Nevertheless, 
although the potential predictability is lower in the Gulf 
Stream region it is still non zero, in agreement with the 
power spectra on interannual timescales in Fig. 2b (black 
and blue profiles). Therefore even in the eddy-active Gulf 
Stream region, there appears to be some potentially predict-
able interannual variability.

3 � LIM forecast analysis: influence of eddy 
field initialisation on interannual forecasts

Although the SSH variability analysis hints at the presence 
of interannual timescales, an investigation of SSH forecasts 
is needed to evaluate any interannual SSH predictabil-
ity present. Traditionally the statistics needed to evaluate 

Fig. 1   A comparison of mean SSH from a AVISO mean dynamic 
topography and b the HadGEM3 model output. The standard devia-
tion of the interannual SSH anomalies calculated from c the ESA 
CCI version 2.0 monthly gridded fields of surface height anomaly 
and d the HadGEM3 model output. Both observation based plots are 

based on the the 20 year period of 1993–2012 inclusive. The mean 
HadGEM3 SSH is calculated from the entire 150 year model run. 
Whereas, the model SSH anomaly standard deviation plot is calcu-
lated from a representative 20-year period of the model run
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predictability in a GCM are generated by creating an ensem-
ble of model simulations. Depending on the model used, and 
the size of the ensemble, this process can be computationally 
expensive (Collins 2007). In this paper we use a contrasting 
approach whereby the methods used to evaluate predictabil-
ity are based on statistical models created from one long 
dynamical model run. The statistical models used here have 
the benefit of being computationally cheap to run and can 
still provide insights into the dynamics of the system due to 
their simplicity (e.g., Sonnewald et al. 2018).

Linear Inverse Modeling (LIM; Penland 1989) has pre-
viously been used to evaluate predictability in sea surface 
temperature, in both models and observations (e.g., Penland 
1989; Hawkins et al. 2011; Zanna 2012; Huddart et al. 2017; 
Dias et al. 2018). The method models the evolution of the 
desired fields as a linear process forced by white noise. In 
doing so, the linear inverse model gives information about 
the predictability of the fluctuations in the system. To enable 
this calculation, the SSH anomalies are decomposed into 
empirical orthogonal functions (EOFs) and their related 
principal components (PCs),

The EOFs are constructed using monthly-mean SSH model 
output. The EOFs are also weighted by the area of their 
grid boxes as the NEMO grid is irregular. In the calculation 

(1)SSH(x, y, t) =
∑
i

EOFi(x, y)PCi(t).

of the EOFs, SSH in the Gulf of Mexico is not used as we 
wished to focus on the SSH predictability in the main ocean 
basin.

In the following analysis we use 25 EOFs explaining 
63% of the variance; the leading three EOFs (responsible 
for 9.9%, 5.2% and 5.0% of the variance, respectively) are 
shown in Fig. 4. The leading EOF has a spatial structure 
reminiscent to that calculated using observations (Häk-
kinen and Rhines 2004; Häkkinen et al. 2013). Häkkinen 
et al. (2011) attributed this pattern of SSH variability to 
variability in the wind stress curl. As the wind stress curl 
varies, there are associated variations in the strength and 
sizes of the subpolar and subtropical gyres and a resultant 
change in SSH (Häkkinen et al. 2013). This ‘gyre mode’ var-
ies between a state with a small subpolar gyre with a large 
eastward extended subtropical gyre and a state with a large 
eastward extended subpolar gyre with a small contracted 
subtropical gyre. A similar variation and associated depend-
ence on the wind stress curl has been identified in this model 
(shown in the supplementary material). Moreover, there is a 
lagged response of the first principal component of SSH to 
a leading principal component of the wind stress, again in 
agreement with Häkkinen et al. (2011).

The evolution of the PCs of SSH anomalies is approxi-
mated by a linear stochastic model (Penland and Sardesh-
mukh 1995)

Fig. 2   HadGEM3 150-year control run: a Time mean SSH; b 
Power spectra of SSH anomalies taken at the four locations in the 
North Atlantic as indicated in a: near the detachment point of the 
Gulf Stream (blue, 35.3◦N , 72.0◦W ), in the subtropical gyre (green, 
24.8◦N , 40.8◦W ), in the Gulf Stream extension region (black, 

40.7◦N , 40.8◦W ) and in the subpolar gyre (red, 56.5◦N , 40.8◦W ). 
The gray dashed line represents the Zang and Wunsch (2001) spec-
trum at an arbitrary chosen amplitude. The power spectral density is 
in units of ( m2/cpy) where cpy denotes cycles per year
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where � is the vector of n-PCs, with dimensions of n by 1, � 
is a stochastic forcing term, and A is a linear n by n matrix 
which controls the temporal evolution of the n-PCs. The 
linear operator

contains dynamical information about the variability of 
the system as it is constructed using the, n by n, covariance 
matrices at lag-�0 and lag-0, which are calculated from the 
PCs as

(2)
d�

dt
= �P(t) + �,

(3)� =
1

�0
ln[�(�0)�(0)

−1],

Here ⟨⟩ indicates an average over all times.
Forecasts, �̂ , are then generated using the model such 

that, with respect to the initial time, t,

where � is the forecast lead time and the n by n matrix B is 
the forecast propagator,

Predictability can then be evaluated by examining the differ-
ence between the probability distribution of the predictions 
and that of the climatology. For LIM to be applicable, the 
system being examined is required to possess several char-
acteristics (Penland and Sardeshmukh 1995):

–	 it can be described by Gaussian statistics;
–	 A is independent of the time lag, �0 , used to calculate it;
–	 all real parts of the eigenvalues of A must be negative and 

therefore decay.

Finally, to prevent overfitting of the linear models, the data 
used in each experiment is separated into a training and a 
verification data set. In the presented results the training 
and verification data sets are 140 years and 10 years long 
respectively. The linear model is constructed using the train-
ing data set. This model is then used to make predictions for 
the verification set, and the skill of these predictions is used 
to evaluate the system’s predictability.

Tests to assess how well these conditions are met for SSH 
anomalies in the North Atlantic and are shown in Fig. 5. 
Panel a shows a comparison of the cumulative density func-
tion of the 150 years of SSH anomalies with that of an ideal-
ised Gaussian distribution with the mean and variance of the 
model output, all calculated in the area used to calculate the 
EOFs (shown in Fig. 4e). The agreement between the two 
profiles demonstrates that the system is well described by 
Gaussian statistics. To examine the influence of mesoscale 
eddies on the skill of the forecasts two different linear opera-
tors are constructed. In each experiment, the same reduced 
basis, consisting of 25 EOFs and PCs, is used to create 
each propagator. The first propagator contains all available 
frequencies. A second temporally smoothed propagator is 
constructed by applying an 18-month running mean filter 
to the PCs. Figure 5b shows the Frobenius norm of A as a 
function of different lag times, �0 , for these two operators. 
Both operators possess regions where the norm of A only 
varies by a small amount as a function of �0 . However, for 
the 18 month filter there is strong variation in the Frobenius 

(4)
�(�0) = ⟨�(t + �0)�

T (t)⟩,
�(0) = ⟨�(t)�T (t)⟩.

(5)�̂(t + 𝜏) = �(𝜏)�(t),

(6)�(�) = exp(��) = exp

[
�

�0
ln[�(�0)�(0)

−1]

]
,

Fig. 3   a Standard deviation of SSH anomalies of the control run cre-
ated with 1 year means. Ratio of standard deviations of the b 3 and c 
5 year means to standard deviation based on 1-year means
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norm of A, when �0 is 15 months. This large variation indi-
cates that in this parameter range the model output may not 
be well represented by a system of the form shown in Eq. 2. 
When using the operator constructed with monthly means 
a �0 of 6 months is chosen and when using the smoothed 
operator a �0 of 2 months is used. In both cases, all the real 
parts of the eigenvalues of A are negative and thus satisfy 
the final necessary condition.

We can now create forecasts of SSH anomalies using 
the viable LIMs. Forecasts are initialised every 6 months 
throughout the 150 years of model output, creating 300 fore-
casts in total. When creating these forecasts it is crucial to 
ensure a difference between the training and test datasets. 
At each forecast initalisation date the LIM propagator used 
to generate the forecasts is trained on 140 years of model 
data. In each case these 140 years are comprised of the the 
data which is not within a ten-year window centered on the 

forecast initialisation date. In order to create a benchmark for 
the forecasts made using the LIM models, lagged correlation 
forecasts are also made (Lorenz 1963),

where � is the auto-correlation of the time series at a point 
in space, x is time series of the quantity being predicted and 
� is the lag time of the forecast. This is a type of ‘damped 
persistence’ forecast which may provide forecasts better than 
climatology ( � = 0 ) and persistence ( � = 1 ) forecasts. The 
model output used to construct these damped persistence 
forecasts is reconstructed from the same EOFs and principal 
components used to construct the LIM models, to allow for 
a fair comparison.

To evaluate the skill of the statistical models relative to 
climatological forecasts, we use a root mean square error 
metric ( RMSERelative ) (Hawkins et al. 2011):

(7)x(t0 + �) = �(�)x(t0),

Fig. 4   a The fraction of variance each of the leading 25 EOFs 
explains, calculated from 150 years of monthly mean SSH model out-
put. The error bars represent the one standard deviation error related 

to sampling (calculated using equation  24 in North et  al. (1982)). 
Timeseries of the: b first, c second and d third principal components. 
The spatial components of the: e first, f second and g third EOFs
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where RMSEclim is the root mean square error of a climato-
logical forecast over the forecast period and RMSEpred is the 
root mean square error of the predicted field. The climato-
logical forecast assumes the SSH anomalies keep their initial 
values, i.e. �̂(t + 𝜏) = �(t) and is constructed using the same 
EOFs and PCs used to construct the LIM models (i.e the 
time filtered forecasts are verified against the time-filtered 
truth). The RMSEs are calculated relative to the control 
run solution, which has been reconstructed using the same 
EOFs and PCs used to construct the LIM models. A value 
greater than unity indicates that the model’s forecasts are 
inferior to those generated using the climatology, whereas, 
a value less than unity demonstrates forecast skill superior 
to climatology.

The forecast error maps for the LIM model trained on 
monthly data are shown in Fig. 6d–f. Errors emerge rapidly 
in the subpolar and subtropical gyres (seen in panels a and 
b). Only in the Gulf Stream region and southern part of the 
domain are any areas of skillful forecasts seen (confirmed 
in panel c). The damped persistence forecasts created with 
the monthly mean model output (panels j, k, and l) exhibit 
small errors in the subpolar gyre and parts of the subtropical 
gyre (panels a and b), coinciding with regions of large poten-
tial predictabilities (Fig. 3). The forecasts created with the 
LIM model trained on monthly mean SSH anomalies are less 
skillful than those produced with the damped persistence 

(8)RMSERelative =
RMSEpred

RMSEclim

model. The inclusion of the high-frequency components of 
the SSH in the construction of the LIM model means that 
predictably is not exhibited on timescales longer than a year.

The error maps which are subject to 18-month filter-
ing produce smaller errors in all regions (Fig. 6a–c, g–i, 
and m–o). These models again display the smallest relative 
RMSEs in the subpolar and subtropical gyres, with more 
substantial errors in the Gulf Stream region. The LIM model 
outperforms the damped persistence forecasts in the majority 
of areas and timescales [the exception being in the subtropi-
cal gyre (panel b)]. The subpolar gyre emerges as the region 
with the largest amount of predictability, on timescales 
longer than a year (panels a and i). Small errors are also 
exhibited in the tropics, and extending eastwards towards 
the Iberian Peninsula. The US east coast stands out as the 
only section of coastline which borders a region with fore-
cast errors of less than 0.8 on interannual timescales. These 
results are in agreement to those found by Nonaka et al. 
(2016), where a lack of any predictability, on timescales 
longer than a few months, is also found in the Kuroshio.

4 � Predictable patterns: optimal initial 
conditions and average predictability 
time

The spatio-temporal structure of the predictability can also 
be analysed by explicitly identifying any patterns which are 
predictable on interannual timescales. Two methods are now 
used: (1) an examination of the growth of optimal initial 

Fig. 5   a A comparison of the cumulative distribution functions of the 
monthly mean SSH model output and an idealised Gaussian distribu-
tion constructed using the mean and standard deviation of the SSH 
model output. b The Frobenius norm of the operator A as a func-

tion of different lag times, �
0
 . The two operators are constructed with 

monthly mean and 18 month filtered principal components respec-
tively
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conditions leading to a maximum increase of variance and 
(2) a decomposition of the system into predictable compo-
nents, ranked by their relative contributions to the total aver-
age predictability time present.

4.1 � Non‑normal mode analysis and optimal initial 
conditions

The characteristics of the trained linear model can be used 
to infer information about a system’s sensitivity to initial 
conditions. In a series of papers, Farrell and co-authors 
developed a methodology, generalised linear stability theory, 
to investigate the transient behaviour resulting from initial 
perturbations to its mean state (Farrell and Ioannou 1996). 
This methodology has been used to examine a range of geo-
physical problems including: Couette flow (Farrell 1982), 
atmospheric forecast error growth (Farrell 1990), quasi-geo-
strophic turbulence (Farrell and Ioannou 1995), the El Niño 
Southern Oscillation (Penland and Sardeshmukh 1995), Gulf 
Stream dynamics (Farrell and Moore 1992) and the Atlantic 
meridional overturning circulation (Zanna and Tziperman 
2005, 2008; Hawkins and Sutton 2009).

This analysis investigates the transient growth in linearly-
stable fluid dynamical systems. It may appear counter-intu-
itive that there can exist disturbances which lead to growth 
in a stable system. However, when the operator A is non-
normal, i.e. ���

≠ ��� , it is possible for the eigenmodes 
of the system to interact and give a large amplification of 
variance at a finite-time (Farrell and Ioannou 1996). The 
solutions to

can be written in terms of the eigenvectors, �i as

where �i are the eigenvalues of � and ai is a complex con-
stant. The SSH anomaly growth at time � by non-normal 
eigenmode interference is given by

The longest timescale on which this growth occurs can be 
thought of as an optimistic upper bound on the predictability 
of linear events without forcing. The corresponding spatial 
patterns, which lead to a maximum growth at a time � , are 
called the optimal initial conditions and are given by cal-
culating the leading singular vector of �(�) . In this section, 
the LIM constructed using 18 month temporally smoothed 
principal components is used as it exhibits skillful forecasts 
on interannual timescales.

(9)
d�

dt
= �P(t),

(10)�(t) =
∑
i

�iai exp �it,

(11)�(�) =
�(�)��(�)

�(0)��(0)
.

The curve depicting the growth of SSH anomalies, �(�) , 
is shown in Fig. 7a. The perturbations can grow through 
non-normal interactions on time scales of up to 100 months, 
with the maximum growth occurring at 20 months. The 
optimal initial condition pattern in SSH, which leads to the 
largest growth in SSH anomalies after 20 months, is shown 
in Fig. 7b. This pattern has a very weak gyre scale tripolar 
pattern, reminiscent of EOF 1 (shown in Fig. 4e). The pat-
tern has two main notable smaller scale features, a tripolar 
structure off Cape Hatteras (situated at 32.5◦–42.5◦N , 67◦
–74.55◦W , shown by the green ellipse in panel e) and a sin-
gle sign SSH anomaly along the US east coast (black ellipse, 
panel e). The propagated optimal initial condition is shown 
in Fig. 7, panels c and d, at 10 and 20 months, respectively. 
After 10 months, the SSH anomaly along the boundary no 
longer has a single sign. There is an increase in SSH along 
the path of the Gulf Stream and in the subtropical recircu-
lation gyre, and a decrease in SSH in the subpolar gyre. 
After 20 months, an SSH anomaly grows along the Gulf 
Stream path, and its magnitude is seen to double. The mag-
nitude of SSH in the subpolar and subtropical gyres is also 
seen to increase significantly. One interpretation of these 
optimal initial conditions is that it is especially important 
to constrain the position of the Gulf Stream separation in 
the initial conditions as initial errors in this region lead to 
gyre-scale errors within 10–20 months. However, it is also 
possible that it is the weaker gyre-scale pattern present in 
the optimal initial conditions which leads to this growth, as 
SSH anomalies can be integrated by the gyre circulation on 
interannual timescales.

Figure 8 shows the positive optimal initial condition (of 
the same magnitude as that shown in Fig. 7b) and its evolu-
tion after 20 months when it is added to the mean SSH field. 
It also shows the negative version of the optimal initial con-
dition added to mean field, which is an equally valid solution 
since the evolution is linear. The initial and propagated ver-
sion of the positive optimal initial condition, Fig. 8, panels 
a and b, demonstrates an increase in strength of the subpolar 
gyre, as well as an increase in the SSH gradient across the 
Gulf Stream. The change in the SSH gradient is linked to 
variations in the geostrophic transport along the Gulf Stream 
path, shown in Fig. 9. The resultant geostrophic velocity 
anomalies act in different directions in the two gyres and 
are particularly evident in the subtropical gyre. The SSH 0m 
contour is also seen to be shifted to a higher latitude. How-
ever, this is a marginal effect as shown by the contours in 
Fig. 8’s panel b (less than a degree in latitude, for an initial 
perturbation with double the magnitude of that shown in 
Fig. 7a). The evolution of the negative optimal initial condi-
tions, shown in Fig. 8c, d, demonstrates an increase in SSH 
along the US east coast North of Cape Hatteras, as well as a 
southward shifted Gulf Stream detachment point. The SSH 
gradient across the Gulf Stream is also lower, indicating a 
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decrease in Gulf Stream transport. Panel d shows that the 
SSH 0m contour’s position can move significantly southward 
(approximately 5◦  in latitude, for an initial perturbation with 

double the magnitude of that shown in Fig. 7a and that the 
subtropical gyre contracts to the west of the basin. The ini-
tial conditions associated with timescales ( � ) ranging from 
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10 to 30 months are also calculated and compared to the 
optimal calculated at the maximum amplification time. The 
spatial correlation between these initial patterns are found 
to be at least 0.8, and the patterns behave in a qualitatively 
similar manner when propagated in time. The optimal initial 
conditions, calculated from similar models with differing 
numbers of EOFs, exhibited small-scale ( 1∕2◦ ) spatial dif-
ferences in the Gulf Stream’s extension, however both the 
signal along the US east coast and the tripolar pattern appear 
robust. Moreover, the propagated optimals all resemble that 
shown in Fig. 7d.

4.2 � Optimal initial conditions occurring 
in the model output

It is important to determine how often the optimal initial 
conditions and their evolved patterns are realised in the 
model output. Figure 10a, shows the projections of the initial 
states on the model output (at each time t the projection is 
the product of the �(t) and the optimal initial condition, i.e. 
the leading singular vector of B), as well as the projections 
of the evolved initial conditions 20 months later. The growth 
in these projections is seen to be close to that predicted by 
the maximum amplification curve (Fig. 7a). The occurrences 
of the the tripolar SSH pattern, seen in the optimal initial 
condition, are detected by using an algorithm which calcu-
lates the 2D correlation coefficients between the monthly 
mean SSH anomalies and optimal initial condition in the 
relevant area (the green ellipse in Fig.  7e). Spatial correla-
tions which are greater than 0.8 are retained. Out of the 1800 
monthly-mean SSH anomalies comprising the model output, 
404 are found to display a tripolar anomaly structure off 
Cape Hatteras. After 15–20 months from those 404 tripolar 
anomaly patterns, 310 ( 77%) lead to SSH anomaly growth 
along the US east coast (as in Fig. 7f, green ellipse). This 
growth is detected by evaluating the change in sign of the 
SSH anomalies (in the the green ellipse in Fig.  7f). About 
140 (out of 310) also display a change in sign of SSH along 
the coast (as in Fig. 7f, black ellipse). The occurrence of 
these optimal evolutions in the model output indicates that 
changes in the SSH in the Gulf Stream near its detachment 

point are potentially important in predicting SSH variations 
along the US east coast.

4.3 � Average predictability time

We complement the analysis of the optimal patterns, which 
depends on the target timescale, by examining predictable 
patterns that persist over all timescales, and are therefore 
the most predictable over a range of target times (DelSole 
and Tippett 2007). This is done by calculating the average 
predictability time (APT) (DelSole and Tippett 2009a). This 
index of predictability is based on the Mahalanobis signal 
(DelSole and Tippett 2007),

where k is a constant related to the number of principal com-
ponents used in the analysis, tr is the trace of the matrix, �� 
is the covariance matrix of the forecast error at lead time � , 
�∞ is covariance matrix of the forecast distribution at long 
lead times. Here, S(�) has a value of 1 when the system is 
completely predictable, and a value of 0 when the forecast 
covariance matrix is the same as the climatological covari-
ance matrix, meaning the system is unpredictable. This 
method has been used before to examine the predictability 
of several geophysical fields, including the upper ocean tem-
perature and the AMOC (Branstator et al. 2012; Branstator 
and Teng 2014).

The APT can be defined by integrating the Mahalanobis 
signal over all lead times (DelSole and Tippett 2009a), lead-
ing to

The factor of two makes APT agree with the e-folding time 
in the univariate case. In one dimension, APT resembles a 
root mean square error and is given by DelSole and Tippett 
(2009b)

Since APT is the integral of predictability over all times, it 
is independent of the chosen lead time. This measure can 
also be used to define predictable components by finding 
the projection vectors q that maximize APT. In which case, 
the component ��� , with � being the principal component 
state vector, has forecast and climatological variances given 
by �2

�
= ����� and �2

∞
= ���∞� , respectively.

In this study, the APT of the whole system and of the 
leading predictable components are calculated using the 

(12)S(�) =
1

k
tr[(�∞ −��)�

−1
∞
],

(13)APT = 2

∞∑
�=1

S(�).

(14)APT = 2

∞∑
�=1

�2
∞
− �2

�

�2
∞

= 2

∞∑
�=1

(
1 −

�2
�

�2
∞

)
.

Fig. 6   RMSEs relative to the climatology in three different regions 
all with longitudes 18◦–74◦ W: a ‘Subpolar Gyre’, 46◦–65◦ N, b ‘Sub-
tropical Gyre’, 18◦–37◦ N , c ‘Gulf Stream region’, 37◦–42◦ N created 
using both LIM and damped persistence models. Two differing tem-
poral smoothings are used to construct these models shown, monthly 
mean (blue and yellow), and monthly means with an 18-month run-
ning mean applied (red and purple). The remaining panels show maps 
of relative RMSE at given lead times. Forecasts made using the LIM 
model trained on: d–f monthly means and g–i 18 month temporally 
smoothed principal components. Forecasts made with damped persis-
tence models constructed with: j–l monthly means and m–o an EOF 
reconstruction made with 18 month temporally smoothed principal 
components

◂
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method contained in DelSole and Tippett (2009b). Firstly, 
to prevent overfitting, the data is separated into training 
and verification data sets, in the same manner as described 
previously. Forecasts are then generated by forming linear 
regression models from the training data (DelSole and Tip-
pett 2009b), i.e. the projections �̂�(t + 𝜏) , are given by

Using such models and in the case of a zero-mean stationary 
process, meaning 𝐂(0) = �∞ , the forecast error covariance 
matrix is given by

(15)�̂�(t + 𝜏) = �(𝜏)�(0)−1�(t).

(16)�� = �(0) − �(�)�(0)−1�(�)T .

These values for �∞ and �� can be substituted into Eq. 13 to 
calculate the APT of the entire system. In order to maximize 
APT in Eq. 14, the problem reduces to solving the general-
ized eigenvalue problem (See DelSole and Tippett (2009b) 
for a full derivation),

where
(17)�� = ��(0)�

(18)� =

∞∑
�=1

�(�)�(0)−1�(�)T .

Fig. 7   a The maximum amplification curve (Eq. 11). b The optimal 
initial condition with its tripolar pattern. c The optimal at 10 months. 
d The optimal at 20 months, its state of maximal growth. e The initial 
optimal in just the area bordering the US east coast. f The optimal at 
20 months in just the area bordering the US east coast. The black and 

green dotted ellipses indicate the regions which are correlated with 
monthly means from the model output. The ellipses are characteristic 
anomalies described in the text. The black dotted lines indicate the 
0m contour in the time mean SSH
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The projection vectors � are uncorrelated with each other 
because G and �∞ are symmetric. The spatial patterns, � , 
associated with the projection vectors � are found by using

these spatial patterns can be projected back onto the EOFs 
and are referred to as the predictable components. The pre-
dictable components of the system are calculated using only 
the training data set. To prevent overfitting and calculate 
APT of each predictable component, the projection vector, 
� , calculated from the training data is applied to verification 
data set. Thus, the squared multiple correlation between the 
component time series and the verification data is

where � is calculated from the training data set and the cor-
relations are calculated from the verification set. Therefore, 

(19)� = ⟨����⟩ = �∞�;

(20)�2
�
=

�T�(�)�(0)−1�(�)T�

�T�(0)�
,

�2
�
 can be interpreted as the variance of the predictable com-

ponent time series, which is explained by a linear regres-
sion prediction at time lag � . The predictability time of each 
component, APTp , is then calculated as,

Figure 11a shows that the predictability of the SSH of the 
whole system, measured by the Mahalanobis signal (solid 
blue line), diminishes rapidly, reaching a value of approxi-
mately 0.25 after 10 months. This is in approximate agree-
ment with the timescale found in the LIM study. However, 
Fig. 11a (blue shaded region) also shows that several of the 
individual components of the system have Mahalanobis 
signals which decay on longer timescales. The APT of the 

(21)APTp = 2

∞∑
�=1

�2
�
.

Fig. 8   a The initial optimal added to the mean field. b The initial 
optimal propagated forward in time by 20 months added to the mean 
field. c The negative version of the initial optimal added to the mean 
field. d The negative version of the initial optimal propagated for-
ward in time by 20 months added to the mean field. The black dot-

ted lines indicate the 0m contour in the time mean SSH. The green 
lines denote the SSH 0m contour when the optimal initial condition 
of double the magnitude of that shown in Fig.  7b evolves, after 20 
months
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leading 25 predictable components shown in panel b, con-
firms that several components demonstrate predictability on 
timescales longer than 2 years. The three leading predictable 
components (those which have the largest values of APT) 
have average predictability times of 26–28 months. The cor-
responding spatial patterns of the leading three components 
are shown in panels c, d, and e. The pattern which is associ-
ated with the largest value of APT (panel c) has large SSH 
magnitudes in the jet extension region. The second pattern 
(panel d) is localised mainly to the US east coast and Gulf 
Stream extension region, whereas, the third pattern (panel e) 
is similar to the evolved optimal initial conditions (Fig. 7), 

and EOF1. The time series related to each of these spatial 
patterns, shown in panels f, g and h, all display interannual 
variability and have autocorrelation times of 30–60 months.

The similarities between the third leading predictable 
component, the evolved optimal initial conditions, and EOF1 
indicate some robustness of the constructed predictability 
patterns. The time series associated with the third predict-
able component correlates strongly with the leading princi-
pal component at zero lag. The leading predictable patterns 
(1 and 2) are not merely EOF1, highlighting that the mode 
capturing most of the variance is not necessarily the most 
predictable.

4.4 � The influence of atmospheric forcings 
on the predictable components

The steric component dominates interannual variability in 
SSH in the North Atlantic. Roberts et al. (2016) confirmed 
that this is also the case in an ocean only component of 
HadGEM3 (forced NEMO simulation) and that it is the 
thermosteric and wind-driven components which contribute 
most to the interannual variability in the subtropical gyre. 
In the subpolar gyre, the variability is caused by both the 
thermosteric and halosteric components and is dominated by 
the response of the ocean to variations in the buoyancy forc-
ings. Furthermore, in the Gulf Stream region, the variations 
due to intrinsic ocean processes are also important (Penduff 
et al. 2011; Sérazin et al. 2015).

Attempts are now made to establish the dynamical ori-
gin of the predictable patterns by examining their relation-
ships with fields relating to the wind and buoyancy driven 
circulations, namely the Ekman components of SSH and 

Fig. 9   Anomalies in the zonal geostophic velocities calculated from the SSH of: a the initial optimal, b the initial optimal propagated 10 months 
forward in time, c the initial optimal propagated 20 months forward in time (All with the same magnitudes as the patterns shown in Fig. 7)

Projection initial optimal onto output

-0.1 -0.05 0 0.05 0.1

P
ro

je
ct

io
n

 f
in

al
 o

p
ti

m
al

 o
n

to
 o

u
tp

u
t

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Fig. 10   Projections of the initial and final states on the model output. 
The black line is a linear fit to these projections, and the red line is a 
line with a slope corresponding to �1∕2 ( � = 20 months)



2189Investigating the predictability of North Atlantic sea surface height﻿	

1 3

the net heat fluxes. The interannual variability detected is 
likely related to the oceanic adjustment to variations in these 
forcings. The net heat fluxes contribute to the thermosteric 
buoyancy forced component of SSH, and the wind stresses 
contribute to the steric advective components.

The SSH, meridional and zonal wind stress fields are used 
to decompose the ocean currents into the associated geos-
trophic �� = (ug, vg) and Ekman components �� = (ue, ve),

The Ekman components are calculated from,
(22)� = �� + ��.

where f is the Coriolis parameter, �x
s
 and �ys  are the zonal 

and meridional components of the wind stress, �
s
 , at the 

ocean’s surface. The density, �0 , and the Ekman depth, dEk , 
are taken to be constants of 1025 kg/m3 (a typical value at 
the surface of the North Atlantic (Wang et al. 2010)) and 
100m (a typical value in the Subtropical gyre in the winter 
(Stommel 1979)), as most of the variability in the Ekman 

(23)ve = −
�x
s

f�0dEk
and ue =

�
y
s

f�0dEk
,
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Fig. 11   a Predictability measured by the Mahalanobis signal ( S� 
as defined in Fig. 12) of the whole system (blue line), created using 
linear regression models and the leading 25 principal components. 
The envelope denotes the spread in predictability measured by the 
Mahalanobis signal ( S� ) for each of the leading predictable compo-
nents. The solid black line is representative of 5% significance level 
calculated using a student’s t-test. b The average predictability time 

(APT) for the first 25 predictable components. The orange line indi-
cates the 5 % significance level estimated using the Monte Carlo 
method discussed in the Appendix. The spatial patterns of the c first, 
d second and e third predictable components ( � ), ranked in order of 
their values of APT. The associated time series for the f first, g sec-
ond and h third predictable components ( ���)
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velocity component is due to variations in the wind stress. 
The Ekman pumping velocity is also calculated as

and the geostrophic currents are calculated as

where � is the monthly mean SSH, a is the radius of Earth, 
� is latitude, � is longitude and g is gravity.

These fields and the net heat fluxes are then regressed 
against the normalized time series of the three leading pre-
dictable components (Fig. 11). The fields are smoothed with 
a 6-month running mean before regression, to focus on the 

(24)we =
1

f�0
(∇ × �

s
),

(25)vg =
g

afcos�

��

��
and ug = −

g

af

��

��
,

interannual variability. The regression coefficients of the 
geostrophic currents and the first predictable component are 
shown in Fig. 12. The regression coefficients with SSH are 
also shown as contours. These show a westward propagation 
of SSH in the subtropical gyre. The meridional geostrophic 
velocities have large regression coefficients with the lead-
ing predictable component, in the subpolar gyre along the 
Canadian east coast. At times where the current is leading 
the predictable component time series, there is also a posi-
tive signal at the Gulf Stream’s detachment point. The lack 
of a clear lead–lag relationship here makes causality hard 
to distinguish. However, from these strong correlations, it 
is apparent that there is significant interannual predictabil-
ity present in the western boundary current in the subpolar 
gyre. There is a lack of any apparent changes in the large-
scale patterns of the zonal geostrophic current regression 

Fig. 12   Time lagged linear regression coefficients between the time 
series of the first predictable component and monthly mean zonal 
and meridional geostrophic currents, created using 150 years of con-
trol run output. Only regression coefficients with p values of < 0.05 
are retained. Units of the regression are m/s for those involving the 
geostrophic components and W/m

2 for those investigating the net heat 

fluxes. The contours show the time-lagged regression coefficients of 
the predictable component and SSH at 0.1 m intervals. The maximum 
regression coefficient magnitude is 0.3 m. The green contours denote 
positive regression coefficients, whereas, the purple contours denote 
negative coefficients
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coefficients. These coefficients are large in the subtropical 
gyre and in the Gulf Stream region. The regression coeffi-
cients relating to the net heat fluxes have a sizeable dipolar 
pattern in the Gulf Stream region at all times. However, in 
the east of the Subpolar gyre, a strong signal appears at lead 
times of 15 months.

The regression coefficients of the leading predictable 
component with the Ekman currents are shown in Fig. 13. 
There is an apparent time-lagged relationship present, with 
variations in the Ekman currents leading the predictable 
component strongly on timescales of up to 15 months. The 
Ekman currents are associated with the large-scale Sverdrup 
transport, within the wind-driven gyres. These regression 
coefficients imply that wind-driven variations in the gyre cir-
culations lead to a predictable change in SSH on interannual 
timescales. The associated changes in gyre scale variations 
of the Ekman currents translate to variations in SSH in the 

Gulf Stream extension and subpolar gyre regions. This result 
is also indicative that interannual forecasts of SSH can be 
improved by better representing the zonal and meridional 
wind stress fields, on longer than monthly timescales.

It is difficult to discern anything about the variability of 
the time-lagged geostrophic regression coefficients and pre-
dictable component 2 (the figures relating to the regression 
analysis for the second and third predictable components 
are contained in the supplementary information). However, 
there is a signal in the regression coefficients of the net 
heat fluxes which leads the predictable component by 8–15 
months. This signal is located in the Gulf Stream extension 
region. The regression coefficients relating to the zonal and 
meridional Ekman components also strongly lead the pre-
dictable component and are related to changes in the wind 
stress in the east of the North Atlantic and the subpolar gyre.

Fig. 13   Time lagged linear regression coefficients between the time 
series of the first predictable component and monthly mean zonal and 
meridional Ekman currents and the Ekman pumping/suction velocity, 
created using 150 years of control run output. Only regression coef-
ficients with p values of < 0.05 are retained. Units of the regression 

are m/s. The contours show the time-lagged regression coefficients of 
the predictable component and SSH at 0.1 m intervals. The maximum 
regression coefficient magnitude is 0.3 m. The green contours denote 
positive regression coefficients, whereas, the purple contours denote 
negative coefficients
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The third predictable component’s regression with the 
Ekman components demonstrate a clear lead–lag relation-
ship. The Ekman components are seen to lead variations in 
the predictable component. The patterns of the regression 
coefficients are large scale and sizeable in the west of the 
basin. The meridional components of the Ekman currents 
can be interpreted as causing a convergence or divergence of 
SSH in the Gulf Stream region as the gyres react to changes 
in the wind stress. There are also variations in the net heat 
fluxes in the subpolar gyre, which lead a change in the pre-
dictable component.

Therefore it is concluded that predictable component one 
is largely a response to variations in the wind at the latitudes 
of the Gulf Stream. Predictable component two is likely due 
to variations in both the net heat fluxes and the wind stress in 
the subpolar gyre and in the Gulf Stream extension region. 
Finally, predictable component three is likely due to the 
oceanic adjustment resulting from a combination of both 
variations in the wind stress in the subpolar gyre and east 
of the ocean basin, and the response to variations in the net 
heat fluxes in the subpolar gyre. All three patterns show that 
changes in the atmospheric forcings lead large-scale predict-
able patterns of SSH. Even though the variations in the wind 
stress and net heat fluxes are unpredictable at times longer 
than a few months, the oceans adjustment to them appears 
to be predictable on timescales of approximately 1–2 years. 
However, further experiments and analysis are needed to 
determine how the dynamical processes present generate the 
diagnosed predictable components.

5 � Summary and discussion

The predictability of SSH in the North Atlantic in a control 
run of a fully coupled model (HadGEM3) was evaluated 
using methods based on linear inverse modeling and average 
predictability time. The key findings from this study include:

–	 predictability of SSH in the subpolar gyre and along the 
west coast of the Atlantic basin on timescales of up to 20 
months (using LIM).

–	 Short predictability times in the Gulf Stream extension 
region (5–10 months).

–	 Optimal initial conditions resulting in regional SSH 
changes in the subpolar and subtropical gyres and a 
change in SSH gradient along the Gulf Stream’s exten-
sion over a timescales of approximately 20 months. The 
optimals consist of a weak large-scale SSH tripole, with 
a stronger signal at the Gulf Stream’s detachment point.

–	 large-scale predictable patterns on timescales of 26–28 
months, characterized by SSH variations of order 5–10 
cm along the US east coast, extending to the gyre scale, 
which are predictable on timescales of 26–28 months. 

These predictable patterns are calculated using a com-
plementary method to LIM, namely APT, which is inde-
pendent of target time.

–	 these predictable components correlate significantly 
with persistent, large-scale, evolving features in SSH, 
and which appear to be induced by wind and heat flux 
forcing in the preceding 8–15 months.

To our knowledge, this is the first analysis of SSH using 
such a comprehensive set of linear predictability methods. 
These linear methods provide a computationally inexpen-
sive alternative to ensemble modelling techniques (Hawkins 
and Sutton 2009). There is an expected trade-off between 
a linear approximation of the dynamical system and com-
putational savings. However, the use of temporal filtering 
or averaging appears to improve interannual predictions, 
most likely because the direct influence on the variability 
from the strongly nonlinear ocean mesoscale is removed. 
For example, optimal initial conditions of SSH identified 
by the non-normal mode analysis, when pattern matched in 
the full, nonlinear forward model, evolve at 15–20 months 
as predicted by the linear method for almost 80 % of events.

The interannual ocean variability in mid-latitude jet 
extensions is dominated by the intrinsic component (Séra-
zin et al. 2015). Our study shows that the variability in 
the Gulf Stream extension, is not generally predictable on 
interannual timescales. As the predictability in SSH in the 
turbulent jet extension regions is limited to less than order 
5–10 months (in agreement with Nonaka et al. (2016) and 
Roberts et al. (2016)). However, in the subpolar gyre and 
in areas of the subtropical gyre significant predictive skill 
was found on timescales over a year. As, predictability in 
SSH and ocean dynamics might be enhanced via atmos-
pheric forcing integrated over large-scale regions (Cabanes 
et al. 2006). In addition, SSH predictability along the US 
east coast might be influenced by the position and strength 
of the Gulf Stream. The timescales and patterns of predict-
ability of SSH in the North Atlantic derived from statistical 
forecasts trained on model output are comparable to those 
in Roberts et al. (2016), diagnosed using multiple runs of a 
fully dynamical model indicating that the results are robust 
to the method chosen.

The maximum amplification of the optimal initial condi-
tions occurs 20 months after initialisation, which can be used 
as a predictability timescale and results in several different 
effects. Firstly, the amplification can lead to a doubling in the 
magnitude of the initial SSH anomalies in the Gulf Stream 
region (e.g., an optimal initial condition perturbation with 
such a tripolar structure and amplitude 3 cm can propagate 
to give anomalies of 6 cm along the Gulf Stream path). 
Secondly, the amplification acts to increase (or decrease, 
depending on the sign) the SSH gradient across the Gulf 
Stream, leading to a geostrophic velocity anomaly of the 
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order of 10 cm/s (for an optimal perturbation, P, with pattern 
and magnitude as in Fig. 7b). Moreover, these changes can 
lead to a meridional shift of an SSH contour of 0 m by sev-
eral degrees in latitude (a southward shift of approximately 
5◦ for a perturbation −2P ; see also Fig.  8b, d). The optimal 
perturbation, P, results in a 5 cm increase in SSH along 
the US east coast at latitudes of 30◦–40◦N (5 cm decrease 
for a perturbation −P ). This change is large compared to 
the recent (1993–2009) rate of global mean SSH rise from 
satellite altimetry, which is 3.2 ± 0.4mmyear−1 (Church and 
White 2011).

In order to investigate the dynamical evolution of the opti-
mal initial condition the climate model could be restarted 
with the optimal initial conditions, and with parts of the 
optimal initial conditions masked (however, restarting the 
climate model with optimal initial conditions would require 
multivariate 3D restarts). Such experiments would help 
examine the role of the oceanic dynamical processes which 
lead to the growth of the initial conditions, and the relative 
importance of atmospheric noise and model error.

The optimal initial conditions also have implications for 
observations. The initial conditions found are indicative that 
to better constrain interannual predictions of SSH, in the 
North Atlantic, it would be beneficial to incorporate a higher 
number of ocean observations (SSH, temperature and veloc-
ity fields) in the region near to the Gulf Stream’s detach-
ment point. This area has already been the subject of many 
observational studies (e.g., Line W, Toole et al. (2011)) and 
is well observed by altimetry (see Lillibridge and Mariano 
(2013) and references within). Furthermore, initialisation 
of GCM ensemble simulations with the optimal initial con-
ditions could provide a better estimate of initial condition 
uncertainty in SSH prediction (Zanna et al. 2018).

This study did not entirely decouple the effects of apply-
ing interannual external forcings from the intrinsic variabil-
ity due to the mesoscale eddy fields. It also made use of a 
single model, and therefore the optimal initial conditions 
presented may be model specific. It would therefore be ben-
eficial to examine the SSH predictability with a more exten-
sive ensemble of model simulations, including those which 
isolate the effects of intrinsic processes (e.g., Sérazin et al. 
(2015) and Zanna et al. (2018)). Moreover, a comparison 
with altimetry or higher resolution model output may further 
elucidate the effects of the eddy field on interannual variabil-
ity. It would be interesting to assess how a change in spatial 
resolution affect the diagnosed optimal initial conditions. 
Such a resolution change might impact the rectification and 
behavior of the jets, and therefore the diagnosed mode of 
Gulf Stream variability. Finally, a series of idealised simula-
tions, with selective timescales of the wind and buoyancy 
forcings, may aid in explaining the dynamical origin of the 
predictable components. Such ensembles already exist for 
a range of applications (Gregory et al. 2016; Roberts et al. 

2016; Meyssignac et al. 2017). Alternatively, a probabilistic 
approach as described by Bessières et al. (2017) could be 
used to disentangle the forced and intrinsic variability com-
ponents, thus, better explaining the dynamical origin of the 
predictable patterns.
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Numerical APT calculation and significance 
tests

Two significant difficulties arise when calculating APT using 
Eq. 17 and a finite time series; (1) the time lag co-variances 
cannot be estimated at large lags, as the series is finite; 
(2) there is the danger of over-fitting if the dimensions of 
state space exceed the number of samples. The first issue is 
addressed by calculating the APT using a truncated weighted 
sum, with a lag window, known as the Parzen window, (Del-
Sole and Tippett 2009b)

where

and M is the defined truncation time. To overcome the sec-
ond difficulty the APT is calculated in EOF space.

Two significance tests are employed to validate the pre-
dictable components and ensure the statistical significance 
of the calculated APT. Firstly, as �2

�
 can be interpreted as 

a multivariate generalization of the correlation coefficient, 
and therefore its statistical significance can be calculated 
using standard methods such as the student’s t-test (Jia and 
DelSole 2011). Secondly, the statistical significance of the 
APT is evaluated relative to the null hypothesis that the prin-
cipal component time series are unpredictable, as in Jia and 
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DelSole (2011). This is done by carrying out several Monte 
Carlo experiments: for Ns spatial distributions and Nt time 
steps, we generate 2NsNt random numbers from a Gaussian 
distribution with zero mean and unit variance. These distri-
butions are substituted into Eq. 17 and the eigenvalues of 
the problem are calculated. This is repeated 100 times, and 
the 95th percentile of each eigenvalue is selected. If the APT 
value calculated from the training data for each component 
exceeds the eigenvalue’s 95th percentile, the hypothesis that 
there is no predictability is rejected (Jia and DelSole 2011).
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