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The Earth’s climate is a complex and high-dimensional dynamical system. At large scale its vari-
ability is dominated by recurrent patterns, interacting with each others on a vast range of spatial
and temporal scales. Identifying such patterns and their linkages offers a powerful strategy to sim-
plify, study and understand climate dynamics. We propose a data-driven framework to first reduce
the dimensionality of a spatiotemporal climate field into a set of regional modes and then infer their
time-dependent causal links. Causality is inferred through the fluctuation-response formalism, as
shown in Baldovin et al. (2020) [I]. The framework allows us to estimate how a spatiotemporal
system would respond to local external perturbation, therefore inferring causal links in the inter-
ventional sense. We showcase the methodology on the sea surface temperature field in two cases
with different dynamics: weekly variability in the tropical Pacific and monthly variability over the
entire globe. In both cases, we demonstrate the usefulness of the methodology by studying few indi-
vidual links as well as “link maps”, visualizing the cumulative degree of causation between a given
region and the whole system. Finally, each climate mode is ranked in terms of its “causal strength”,
quantifying its relative ability to influence the system’s dynamics. We argue that the methodology
allows to explore and characterize causal relationships in high-dimensional spatiotemporal fields in
a rigorous and physical way.
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the atmosphere and hydrosphere, and their interactions
[2].  Such linkages give rise to nontrivial feedbacks,
generating self-sustained spatiotemporal patterns [3, 4].
An example is the El Nifio Southern Oscillation (ENSO),
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a recurrent pattern of natural variability emerging from
air-sea interaction in the tropical Pacific Ocean [5] [6].
Other examples include the Asian Monsoon, the Indian
Ocean Dipole, the Atlantic Nifio, just to cite a few
[(H9]. Such patterns, commonly referred to as modes
of variability, interact with each other on a vast range
of spatial and temporal scales, see for example [T0HIZ].
Spatiotemporal climate dynamics can then be thought
of as a collection of modes of variability and their link-
ages, or as commonly referred to, a “climate network”
[13, 14]. The identification of such a complex array of
interactions and the quantification of its response to
external forcings (e.g., [15], [16]) is a fundamental (but
nontrivial) problem at the root of our understanding
of climate dynamics. It requires hierarchies of models,
theories, observations, and new tools to analyze and
simplify the description of high-dimensional, complex
data [4, [I7]. In fact, the exponential growth of data
from models and observations, together with appropriate
and rigorous frameworks, promise new ways to explore
and ultimately understand climate dynamics [I7]. An
important step when “learning” from climate data is to
infer meaningful linkages among time series, whether
among modes of variability or other features of the
system (e.g., global averages). Traditionally, this has
been done by quantification of pairwise similarities,
whether linear or nonlinear (for example [TI6] 18] [19] and
[20], respectively). Such statistical similarities cannot
quantify what we may refer to as “causality”, limiting
our ability to discover meaningful mechanisms in high-
dimensional dynamical systems such as climate. In the
context of dynamical systems, the main idea of causal
inference can be informally summarized as follows: given
a system x(t) = [z1(t),22(t),...,zn(t)] € RVT with N
time series, each of length 7', we aim in quantifying (a) to
what extent and (b) at what time scales a variable xy(t)
can be influenced by changes in another variable z;(¢) [1].

This study explores and further develops a causal
inference framework stemming from non-equilibrium
statistical mechanics [T}, 21, together with dimensional-
ity reduction tools, to characterize and understand the

dynamics of high-dimensional, spatiotemporal climate
fields.

Causality is a fundamental topic in science ranging
from foundational questions in physics and philosophy
[22H28] to practical design and implementation of
inference algorithms [29]. In the last decades, there has
been a great interest in developing new methodologies to
infer causal associations directly from data. In the case
of time series data, attempts to infer causal connections
start from the work of Granger [30], who framed the
problem of causal inference in terms of prediction. The
main idea of Granger causality was to draw a causal
link between two variables x; and xj if the past of
x; would enhance the predictability of the future of
. Another attempt, coming from the dynamical

system literature, was based on the concept of transfer
entropy [31L B2]. Crucially, as noted in [I], Granger
causality and transfer entropy give similar information
and are equivalent for Gaussian variables [33]. In the
last decades, new ideas from computer science, mainly
driven by Pearl [29] [34], have given us practical ways
to design and implement causal tools mainly based on
graphical models. Frameworks of such kind have been
recently developed in climate science with contributions
ranging from the work of Ebert-Uphoff and Deng (2012)
in [35] to the newer “PCMCI” method led by Runge
et al. (2019) [30]; see [37] for a review. Additionally,
the Machine Learning (ML) community is actively
interested in causality and applications and we refer to
[38] for details on new developments and open problems
in “Causal ML”.

Recently, it has been noted that linear response
theory [39] may serve as a rigorous framework to
understand causality in physical systems [I]. The main
rationale is that the fluctuation-response formalism [39)]
quantifies responses of the system to small ezternal
perturbations, therefore allowing to capture causal
relations in the interventional sense, as done typically
in physical experiments. This differs from commonly
employed causal discovery methods, such as the ones
based on conditional independence testing [40]. The
main difference is conceptual: many causal questions in
climate can be cast into the paradigm of perturbations
and responses as proposed in [I]. Examples of such
questions may in fact be: how much do changes in
fresh water fluxes in Antarctica affect sea level rise in
the North Atlantic? How do changes in sea surface
temperature anomalies in the Pacific Ocean affect
temperatures in the Indian Ocean? Answering such
questions often relies on quantifying the time-dependent
“flow of information” along the underlying causal graph
rather than discovering the graph itself [I] (see also [41]
in the context of information theory). Such difference is
further explored and discussed in Section [[TC] On the
computational side, causal discovery algorithms such as
the one based on conditional independence, do not scale
to high-dimensional systems [37, [38]. Differently, linear
response theory scales to high-dimensional data and
allows to write rigorous, analytical relations between
perturbations and responses.

It should be noted that linear response theory is an
active field of research in climate studies [3, [42]. Tt
has been used mainly as a tool to quantify long-term
changes in climate observables forced by time dependent
forcings [43H48]. The important conceptual difference
here is that we will consider (a) stationary fields and (b)
impulse perturbations. This will allow to recover causal
links, at least given the physical definition proposed in

(.

In this paper we contribute to (a) linear response the-



ory and (b) causal inference in climate in the following
ways:

i) We propose an analytical null model for the
fluctuation-dissipation relation. The model can
be used to assign confidence bounds to linear
responses estimated from experiments, thus dis-
tinguishing between {rue and spurtous responses.
This allows for trustworthy statistical inference
from data.

ii) We introduce a scalable strategy for dimensionality
reduction in spatiotemporal climate fields based on
community detection. Crucially, we propose a sim-
ple heuristic constraining the identification of local
communities in longitude-latitude space. This step
allows to decompose a large spatiotemporal climate
fields into a set of regionally constrained modes.
Their linkages can then be inferred through the
linear response formalism. Such framework scales
well with high-dimensional fields making it useful
for climate studies.

iii) We showcase the proposed framework on two very
high-dimensional, turbulent climate fields: sea sur-
face temperature (SST) in the tropical Pacific and
at global scale, respectively at weekly and monthly
temporal resolution. For this step we consider a 300
years long, stationary integration of a global cou-
pled climate model and show how the formalism
of linear response theory, together with the pro-
posed statistical significance test and dimensional-
ity reduction, allows to characterize and describe
the dynamics of such a complex system in an inter-
pretable way.

The paper is organized as follows: in Sec. [[] we in-
troduce the proposed framework. The data analyzed are
described in Sec. [Tl The methodology is applied to cli-
mate data in Sec. [[Vl Sec. [V] concludes the work.

II. FRAMEWORK: CAUSALITY,
DIMENSIONALITY REDUCTION AND
CLIMATE FIELDS

Baldovin et al. (2020) [I], proposed the following
physical definition of causality: given a dynamical
system x(t) = [z1(t),2(t),...;zn(t)] € RYT with N
time series, each of length T' we say that z; causes xy,
i.e. x; = xp, if a small perturbation applied to variable
x; at time ¢ = 0, i.e. ;(0) = x;(0) + 0z,(0), induces on
average a change on variable z;(7) at a later time ¢t = 7.

In Section [[TA] we review how such a question can be
answered in the linear response theory formalism. In Sec-
tion [[IB] we introduce a null model for the fluctuation-
dissipation relation allowing for computation of confi-
dence bounds, therefore distinguishing between real and

spurious responses. This model is then showcased on a
simple Markov process, the same as proposed in [I]. We
then propose a few metrics similar to the “cumulative
degree of causation” in [I] to measure properties of the
inferred causal graph. Finally, we present a simple idea
for fast dimensionality reduction in spatiotemporal fields
based on community detection and introduce a simple
heuristics to identify local patterns in longitude-latitude
space.

A. Linear response theory and
fluctuation-dissipation relation

1. General case

Consider ~a  Markov  process  x(t) =
[z1(t), 22(t),....,zn(t)] € RMT.  Each time series
x;(t) is scaled to zero mean. The system is stationary
with invariant probability distribution p(x). We perturb
the system «(t) at time ¢ = 0 with a small, impulse
perturbation dz(0) = [6z1(0),dx2(0), ..., 02N (0)]. We
aim in answering the following question: how does this
external perturbation dx(0) affect the whole system (1)
at time ¢ = 7, on average? Formally, we are interested
in quantifying the following object:

6z (1) = (2k(7))p — (Tk(7)), (1)

where the brackets (zp(7)) indicate the ensemble
averages of x(7), i.e. the average over many realizations
of the system, and the subscript p specifies the per-
turbed dynamics. Therefore, Eq. [1| defines the difference
between the components xy(7) of the perturbed and
unperturbed systems in the average sense. Eq. [l can be
used to study changes 6O(xx (7)) for a generic observable
O(xk (1)) (ie., a physical measurable quantity, function
of the state space vector (1) at time ¢t = 7). To study
causality, here we simply consider the identity case
O(xk(7)) = 2k(7), see [I].

Under the assumption of a small perturbation dx(0)
and with p(z) sufficiently smooth and non-vanishing, the
following result holds:

Olnp(x)
3mj

Riej(7) = S = = ()

m(o)>' 2)

R(7) is the linear response matrix and we refer to
Section II of Boffetta et al. (2003) [49] for a derivation
of Eq. Ry, ;(T) quantifies the response of a variable
2k () at time ¢ = 7 given a small perturbation d§z,(0)
applied to variable z;(0) at time t = 0. Eq. is
known as the generalized fluctuation-dissipation relation
(FDR) and valid for both linear and nonlinear systems
[39]. Note that in case of deterministic systems the
invariant measure p(x) is singular almost everywhere on
the attractor. Therefore in practice one needs to add
Gaussian noise even to deterministic systems in order to



“smooth” the probability distribution before applying
FDR as proposed here [47].

Eq. [2|is a powerful formula as it allows to compute
responses to perturbations solely given the gradients of
the probability distribution p(x) of the unperturbed sys-
tem. However, the functional form of p(x) is not known
a priori and can be highly nontrivial, especially for high-
dimensional systems. To overcome such issue, applica-
tions often focus on the simpler case of Gaussian distri-
butions (see for example [43, [48]). This is the case of
linear systems as shown in the next section.

2.  Linear systems and quasi-Gaussian approrimation

We now consider a stochastic linear process x(t) €
RN:T of this type:

a(t +1) = Mx(t) + Bn(t). (3)

The matrix M € RN gpecifies the deterministic
dynamics of the system. The term n(t) € RMT with
n; (%) LN (0,1) represents time-dependent delta cor-
related white noise (i.e., (n(t)n(s)) = 6(t — s)). The
matrix B € RNY specifies the amplitude of the noise
(i.e., standard deviation).

In this case, the probability distribution p(x) is Gaus-
sian and Eq. [2| factorizes to:

R(r) =M™ = C(r)C(0)". (4)

Where C; (1) = (xi(t + 7)x;(t)) (x; is assumed to be
zero mean). Eq. [4| shows that the response of a linear
system to small external perturbations is encoded in
its covariance functions and can be therefore estimated
from its time history [49].

a. Relevance for nonlinear systems. Such form of
the FDR has been the one commonly used in climate
applications and it is commonly referred to as “quasi-
Gaussian approximation” [44H47, [50]. Importantly, it
has been shown that such formula performs well for
weakly nonlinear systems. For instance Baldovin et
al. (2020) [I] showed remarkably good results when
analyzing linear responses in a Langevin equation with a
quartic potential. Gritsun et al. (2007) [47] also pointed
out how this formula works well also for non-Gaussian
systems with second order nonlinearities. Additionally,
Eq. has been shown to give reliable results in the
case of nonlinear deterministic dynamical systems also
in case of finite perturbations, see Fig. 1 in Boffetta et
al. (2003) [49]). Furthermore, we will show in Appendix
[B] and [C] that the probability distributions considered
in this study can be well approximated by Gaussians,
further justifying the use of this approximation in our
context.

Results presented in this section hold in the sense of
ensemble average, therefore correlations C(7) and C(0)
are computed by averaging over many realizations of the
system. This gives rise to an additional complication in
real world experiments for which we only have access to
a single trajectory.

B. A null model for fluctuation-dissipation relation

In real-world applications we cannot compute en-
semble averages. The common way to overcome such
problem and reconcile data analysis with theory, is
through the assumption of ergodicity [21]. If the system
x(t) is ergodic it holds: O(x) = (O(x)) in the limit
T — oo; where O(x) is a general observable, O(x)
indicates the time average and T is the length of the
trajectory x(t).

This is the main assumption behind any work in
climate using fluctuation-dissipation theorem (see
[45] and references therein). In this case, covariance
functions are estimated using temporal averages, e.g.
C;i(1) = zi(t + 7)x;(t) (; is assumed to be zero mean).
However, even in this case we are left with the problem
of observing the system over a finite time window.
Therefore we can always expect spurious results when
estimating response functions. To the best of our
knowledge, a clear statistical test to distinguish between
spurious and real responses in the linear response theory
formalism has not been proposed in the literature.
Here we fill this void by proposing a null model for
fluctuation-dissipation relation and derive its analytical
solution. We start by proposing a null hypothesis for a
general stochastic dynamical system.

a. Null hypothesis. Given a system x(t) € RVT it
holds Ry (1) =0, Vj,k =1,...,N; with j # k. In the
context of causality this implies that there is no causal
link z; = a, Vi, k=1,....,N;j #k.

b.  Null model. Given a process z(t) € RMT we de-
fine a null model as &(¢t) € RY-T. Every time series in
x(t) and Z(t) are rescaled to zero mean. The null model
takes the following form:

Z(t+1) = Mz(t) + Bn(t)

#1 0 -+ 0
_ 0 ¢y -+~ O
with M =1 . . . . ;
0 0 - ¢on
5
g1 0 0 (5)
- 0 oo 0
B= , :
0 0 oN




Here, ¢; is the lag-1 autocorrelation of the “original”
time series z;(t); 6; = o;(1 — ¢?) is the standard
deviation of the Gaussian noise, where o; is the standard
deviation of the “original” time series x;(t). Therefore,
each time series in Z(t) has the same mean, variance and
lag-1 autocorrelation of process x(t), however every pair
Z;(t), Z;(t) is now independent. Note that this test is
largely inspired by the commonly adopted red noise test
in climate analysis [51H54].

The matrix M, defining the deterministic evolution, is
diagonal; therefore at asymptotic times T" — oo there is
no causal link among variables. However, for finite time
windows, the response matrix estimated through time
averaged covariance matrices as R(1) = C(7)C(0)~!
will give rise to spurious off-diagonal elements. The
distribution of responses of the null process &(t) defines
confidence bounds of responses of the original process

x(t).

To compute the confidence level of the response Ry, ;(T)
at each lag 7 we first propose a numerical implementa-
tion. We then solve the problem analytically for the case
T>>1.

1. Confidence bounds of the response matriz: numerical
estimation

Given a process x(t) € RNT our goal is to provide an
estimation of a confidence interval of the response matrix
R(7) at each lag 7. This can be done as follows:

i) we generate a new process Z(t) € RV using the
null model proposed in Eq.

ii) Estimate the response matrix R(7) of the null
model &(t) for lags 7 € [0, Traz]-

iii) Repeat the two steps above for B times, (B should
be large, B >> 1), therefore creating an ensemble
of null responses.

iv) For each lag 7 we obtain a distribution of possible
responses generated by the null model. This allows
to estimate confidence bounds of responses for the
system x(t) by computing, for example, low and
high quantiles of the distribution (e.g., ¢ = 0.001
and ¢ = 0.999).

2. Confidence bounds of the response matriz: analytical
derivation

We note that the analytical form of the response
matrix in the null model in Eq. [5|is trivial and given by
R(7) = M7 with entries ¢}0x ;; 0k, ; being the Kronecker
delta. However, estimating responses from time series of
finite length will give rise to spurious results departing

from the expected value of M.

In this section we show that it is possible to derive the
probability distribution of the estimated (i.e., measured)
null responses R(7) in the case of finite data. The main
assumption in this derivation is that responses Ry ;(7)
follow a Normal distribution. Therefore the expected
value E[Ry ;(7)] and variance Var[Rj ;(7)] uniquely
define the probability density p(Ry ;(7)).

a. Notation adopted in this section. In order to
simplify and ease the derivation, it is useful to adopt a
simpler and more appropriate statistical formalism. The
symbols adopted in this section relate to the ones used
in the previous ones as follows: E[X]| = (X) represents
the expected value of a random variable X. This is
equal to the ensemble average considered in the previous
sections.  Consequently, Var[X] = E[(X — E[X])?]
represents the variance of a random variable X. Finally,
Cov[X,Y] = E[(X — E[X])(Y — E[Y])] represents the
covariance of two random variables X and Y.

For simplicity, we are going to refer to the null process
as x(t) = [x1(t),x2(t),....,xn(¢)] (rather than Z(¢)).
Finally, each time series x;(t) is here considered to be
scaled to zero mean and unit variance. This step greatly
simplifies the derivation. At the end of this section, we
provide the general formula for processes that are not
unit-variance.

b. Analytical derivation of confidence bounds. Con-
sider the process x(t) € RN'T defined by the proposed
null model in Eq. [f] The true mean, and covariances at
lag 7 of each individual time series in x(t) are given by
Elz;(t)] = 0 and E[zy(t + 7)z,(t)] = ¢}.0k,; respectively.
Where ¢ is the lag-1 autocorrelation of time series
x(t) and the Kronecker delta d;  differs from zero only
in the case j = k.

We note that the numerical estimation of both C(7)
and C(0)~! will lead to spurious terms in R(7). We then
rewrite the covariance matrix C(7) estimated through
time averages as a sum of the expected value E[C(7)]
plus some small Gaussian residual C(7) as:

C(r) =E[C(r)] + C(r) = D} + C(). (6)

Where D7 is a diagonal matrix with component (i, j)
defined as (D})i; = ¢7d;;; therefore D§ = I, with T
being the Identity matrix. The same can be done for
C(0). The main difficulty is that we are not interested in
C(0) but in its inverse C(0)~!. By assuming relatively
small residuals (true for time series with T >> 1), we

can approximate an estimator of C'(0)~! using Neumann
series [55]. The estimator reads as:

CO)y =T +C0) ~T1-C0). (7)

Where we only retained the first term in the Neu-
mann series. An estimator of the null response R(7) =



C(7)C(0)~! can be then written as
R(r) =C(r)C(0)' = C(r) + D}(I - C(0)). (8)

Where we neglected the term C(7)C/(0), a reasonable
step in the presence of small residuals, true for time series
with length T >> 1. The next step is to derive the
statistical properties of the estimator in Eq. [8] mainly
its expectation and variance. To do so it is useful to
rewrite Eq. [8in terms of each component j and k.

Ry j (1) = Crj(T) + 01 jo7, — ¢1.Ck,5(0). 9)

The final step is to derive the expected value E[Ry, ;(7)]
and Var[Ry ;(7)] of Eq. [9] thus uniquely defining the
probability distribution of Ry, ;(7), under the assumption
of Gaussian statistics. Here we simply show the final
result and refer the reader to Appendix [A] for details on
the derivation.

E[Ry,;(7)] = ¢10k,
21 — AT AT
1_+ 2<1 ¢k¢])

Var[Ry (7)) = k

T T\1 - g0, (10)
207 (, O; — Dk
- Tk((b%;quk,) '

Finally, in the case ¢, = ¢; we substitute the term

¢ Z=5E with the limit:
J

o0 ]
bk — @)
Equation [10] assumes that each time series has been

previously normalized to zero mean and unit variance.

In the case of non-standardized time series z;(t) we need

to account for contributions coming from the variances

v;. This can be simply done by correcting the equation

Eq. [10]as: (vk/v;) - Eq. [I0] (see also Eq. 15 in [I]).

lim

= ¢ T (11)
J

In this paper, confidence bounds are always defined by
quantiles ¢ = 1—1072 and ¢ = 103, roughly correspond-
ing to 30 (specifically, +3.090).

C. A simple example

We test these ideas in the context of a linear Markov
model. We choose the same test model used in [I] in
order to compare results and show differences between
approaches. The system considered is the following;:

z(t+1) = Mz(t) + Bn(t)

a e 0
with M = |a a 0];
a 0 a
b 0O (12)
B=|00b0];
000
ni(t) SN0, 1), i =1,2,3.

As in [I], we set ¢ = 0.5 and b = 1; we then set
e = 0.04. Note that here [x1,z2,23] correspond to
[,y, 2] in [I]. In this simple model, a small perturbation
applied on variable x5 would propagate through the
system and “cause” a change first at variable x; and
then at x5 [I]. However, a perturbation in x3 cannot
reach either x; and z3, this is clear by looking at the
underlying graph in Fig. a). Both these links are
correctly captured by the true responses (i.e., M";
shown orange in Fig. with the first nonzero response
Rs2(T) (i.e., x2 — x3) captured at lag 7 = 2 and zero
responses Rg 3(7) (i.e., 3 — x2) for any 7. As shown
in [I], such results could not have been inferred with
correlation analysis only.

Let us briefly note here the main conceptual differ-
ence between the fluctuation-response formalism and
methods for causal discovery. Causal inference methods
used in climate and based on conditional independence
such as [40] aim in discovering the underlying causal
graph in Fig. a) given time series data. Therefore,
the link zo — x3 would not be identified as a causal
link. The same holds for Granger causality and transfer
entropy [30, 56] as shown in [I]. However, in a physical
experiment an intervention over variable x5 would cause
a change in variable x3. Such “interventional” view of
causation is the one considered here and can be correctly
captured by linear response theory as shown in Fig.
[{b). We refer to Section IIIA of [I] for an in-depth

discussion.

In real-world cases we deal with time series with finite
data. We then simulate the system for T = 10° time steps
and estimate the causal links x; — x with correlation
functions (i.e., formula [4)) using temporal averages. As
expected, in this case our results are affected by spurious
terms, see blue lines in Fig. [I] The null model proposed
in Eq. [b]is then leveraged to assign confidence bounds to
the estimated responses. Responses inside the confidence
bounds in Fig. [I|can be considered as spurious. The con-
fidence bounds correctly identify the non-zero responses
R32(7) for 7 = 1 and large lags as spurious results, see
Fig. b). Additionally, the test allows us to disregard
the spurious link x3 — x2, see Fig. c).

D. Maetrics

The framework allows to identify any causal interac-
tion x; — x, given the definition of causality presented
in [1]. Given N time series this means N(N — 1) time-
dependent links. Analyzing all interactions in such net-
work gets rapidly out of hands with larger N; for example
N = 20 would imply 380 time-dependent links. We then
introduce a few metrics to analyze such causal graphs. In
[1], the authors proposed a simple “cumulative degree of
causation” of each link z; — x; as a Kubo formula [57).
Here we consider the same formula while summing over
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FIG. 1. Panel (a): Graph representing the Markov model
in Eq. This is the same simple system considered in
Baldovin et al. (2020) [I] (where here [z1, 22, 23] correspond
to their [z,y,2] in [I]). Panel (b): response of variable x3
when perturbing 2, i.e. testing for link zo — x3. Panel
(c): response of variable z2 when perturbing zs, i.e. testing
for link 3 — x2. Here all time series have been rescaled
to zero mean and unit variance before computing responses.
“Ground truth” of the response is computed as R(7) = M.
Blue lines are responses computed using the temporal aver-
ages, for time series of length 7' = 10°. Red dots indicate
the confidence bounds computed numerically using B = 10*
ensemble members of the null model as shown in [TB1l The
black dashed line is the analytical solution as in Eq. Con-
fidence bounds are defined by quantiles ¢ = 1 — 10~3 and
g = 1072, roughly corresponding to +3c. All responses in
between the confidence bounds are here considered as spuri-
ous.

the statistically significant responses Ry, ;(7*), defined at
lags 7*. We compute respones Ry, ;(7) up to a maximum
lag Tinaz- The “cumulative degree of causation” consid-
ered here is then defined as follows:

Tmazx

Djp =Y Riy(r") (13)

Since responses can be negative and positive, the degree
of causation such as in Eq. [I3] can be zero even in the
presence of causal links. It is therefore useful to con-
sider a modified version of Eq. by summing over the
absolute value of responses as follows:

Tmawx

k= D | Bay(r) | (14)

T

Eq. (and its slight modification quantifies the
time-dependent strength of the causal link xz; — xp.
It therefore allows to identify which variable = is
influenced the most by perturbations on variable z;: the
largest D1 (in absolute value) the strongest is the link
T; — Tk

Finally, we rank each variable x; by defining its “causal
strength” as follows:

N-1

Dj=» Dj;i#k (15)
k=1

Eq. allows to rank nodes in the climate network in
regards to their ability to causally influence other nodes.
Informally, large values of D; would mean that pertur-
bations in x; will be able to affect a large portion of the
system. Finally note that D; could be normalized by
the number of variables IV, therefore allowing for com-
parisons between datasets with different resolutions; such
step is not needed in this study.

E. Climate fields and dimensionality reduction

Spatiotemporal chaotic fields can be viewed as dynam-
ical systems x(t) € R™'T living in a N-dimensional state
space [68, [6I]. The dimensionality N is theoretically
infinite but in practice equal to the number of grid cells
used to discretize the longitude, latitude and vertical
coordinates (times the total number of variables) [60].
In the case of dissipative chaotic systems, such high-
dimensional dynamics is confined on lower-dimensional
objects known as “inertial manifolds” or “attractors”
[59, [6T), [62]. The effective dimensionality of the system
[63] is then finite and given by the attractor dimension
D. This is arguably the case of large scale climate
dynamics, where recurrent spatiotemporal patterns,
known as modes of variability (e.g., ENSO, monsoon
system, Indian Ocean modes [9, [I6] 64] etc.) are a
manifestation of the low dimensionality of the climate



attractor [60, [65]. To study climate dynamics it is then
often useful (and more interpretable) to first reduce
the dimensionality of the system. The linear response
formalism presented in previous sections can be then
leveraged by focusing directly on time series x;(¢)
quantifying the temporal variability of climate modes.

Traditionally, this is done through Principal Compo-
nent Analysis (PCA) [66] (and new variants, see [67]
and references therein). PCA, or Empirical Orthogonal
Function (EOF) analysis [68] is a useful, first order
way to reduce the dimensionality of the system based
on the singular value decomposition (see e.g., [69]) of
the covariance matrix. However, the resulting patterns
suffer from few drawbacks: first, EOF's are orthogonal by
definition. Such constraint hamper their interpretation
and make it difficult to distinguish between physical or
purely statistical modes [70} [71]. A possible solution has
been to rotate the EOFs, such as in [72]. Rotated-EOFs
have been found to be sensitive to the rotation criterion,
normalizations and number of loadings (see [71l [73]).
Another limitation comes from linearity. = Manifold
learning algorithms aim in identifying low-dimensional
representations of a high-dimensional system accounting
for non-linearities (curved manifolds) [74]. Examples
range from the Isomap algorithm [75] to the more recent
t-SNE [76], UMAP [77] and to the state-of-the-art
PHATE algorithm [78]. Finally, deep learning tools
such as autoencoders can be explored for dimensionality
reduction [79] and found applications in climate science
[80].

A limitation shared by all these tools when applied
to global climate data is that they decompose a field
in terms of global (in longitude-latitude maps) modes.
However, physically, climate dynamics can be often
thought of as a set of remote connections driven by local
phenomena (perturbations). A method proposed to do
so is -MAPS [81]. Given a climate fields, 6-MAPS first
identifies spatially contiguous clusters and then infer a
weighted and direct network between such entities based
on correlations. The method has proved to be useful in
climate studies with applications ranging from model
evaluation [82] [83], shifts in climate modes in the last
6000 years [16, 19], sea level budget at regional scale [84],
marine ecology [85] and ecosystem dynamics [86]. In
the case of relatively low dimensional fields (e.g., global
fields at 2° by 2° spatial resolution) §-MAPS shows
excellent performance. However, a known drawback
is that it does not scale well with high-dimensional
datasets (i.e., large number of grid cells).

Here we propose a scalable methodology to identify re-
gionally constrained modes of variability in climate fields.

1. Complex networks and community detection

When working with very high dimensional fields, it is
often useful to consider fast and scalable algorithms. In
the last two decades, climate data analysis have focused
on fast methodologies stemming from the complex
network literature [87]. An example is the work of [7]]
where the authors focused on the community detection
method “Infomap” [88HI0] to identify communities in
the HadISST [91] sea surface temperature dataset. Such
methods allow to find patterns that are not necessarily
orthogonal. Furthermore, they are fast, memory efficient
and scale well with the dimensionality of the dataset.
The main issue is that, similar to manifold learning
algorithms, community detection algorithms are not
constrained to be spatially contiguous.

Here we show that in the case of (a) high temporal
resolution and (b) regional domains such as in the
tropical Pacific, community detection methodologies
can still identify spatially contiguous patterns, even if
not constrained to do so. This is not necessarily true
when focusing on large, possibly global, areas and on
coarse temporal resolution. For this case, we propose a
simple heuristic to enforce the identification of “local”
communities.

Dimensionality reduction of spatiotemporal fields
through community detection (e.g., [71]) relies on two
steps: (a) graph inference between every time series
embedded in a spatial grid (b) identifying communities
in the inferred graph. We show how these two steps
can allow to identify proxies for modes of variability in
climate fields.

a. Graph inference: “usual” strategy. Consider a
spatiotemporal field z(t) € RN, Given a pair of time
series x;(t) and x;(t), scaled to zero mean and unit vari-
ance, we compute their Pearson correlation C; ;(7 = 0) =

x;(t)x;(t) at lag zero. An undirected, unweighted graph

can then be encoded in a Adjacency matrix A € RNV
as:
5 i (= >
Ay = 1-6;; if CZ’](.T 0) >k (16)
' 0 otherwise

Where the Kronecker delta d; ;, equal to 1 if i = j and 0
otherwise, allows to remove “self-links”.

The parameter k € [0, 1] sets the minimum correlation
that two time series need to have to be connected.
Different fields (e.g., sea surface temperature, cloud
fraction, relative humidity) have different distributions
of correlations. Therefore, reasonable values for k& will
depend on the field considered. The parameter can
be simply specified by the user. Alternatively, we
propose the following heuristic: (a) compute correlations
Ci;(t =0), Vi,j;i # j, (b) set k as a high quantile of



the distribution of all correlations C; ;(7 = 0). To make
this idea feasible in practice we can approximate the
distribution of correlations by random sampling S pairs
of time series i,j and then computing the correlation.
k is then estimated as a high quantile ¢ of the sampled
distribution. In this paper, we will consider ¢ = 0.95
and sampling size S = 10°. In our tests we saw that the
choice of ¢ = 0.95 is often a good compromise between
the identification of a sparse, but not too sparse, graph.

b.  Graph inference: enforcing locality. To promote
the identification of local patterns in community detec-
tion methodologies we add a simple constraint in the
graph inference step. We do so as follows:

1- 6,
Ai7j = {O J
(17)

Where d(i,j) is the distance between grid cells ¢ and j
and 7 is a distance threshold.

it C; ;(r=0)>kandd(i,j) <n
otherwise

The rationale behind this choice is that we consider
two time series x;(t) and z;(t) linked to each other if
(a) their correlation is larger than a threshold k and
(b) if they are relatively close in the spatial domain
considered. Importantly, d(i,j) is computed using the
Haversine distance, determining the distance between
two points (i and j) on a sphere given their longitudes
and latitudes. To compute the threshold 1 we propose
the following: first, we calculate the distances d(i,j) for
every pair ¢ and j. n is then estimated as a low quantile
of the distribution of all distances d(¢,7). In our case
we choose ¢ = 0.15 with no large sensitivity over such
threshold.

c. Detecting communities. Sets of highly correlated
time series correspond to group of nodes that are
more interconnected to each other than to the rest
of the network, in other words “communities” (see
[87]). Community detection algorithms (see e.g., [92])
aim in identifying such group of nodes. In this study,
we consider the Infomap methodology [88, [89]. Such
method is based on the Map Equation [93] and cast
the problem of community detection as an optimal
compression problem [89]. Mainly, Infomap exploits
the community structure to minimize the description of
a random walk on the graph [93]. Such methodology
has been found to be the best performing community
detection in different benchmarks, such as in [92], and
also shown excellent performance in climate studies [71].

The communities identified represent modes of vari-
ability, or spatiotemporal patterns of the system. In
what follows we are going to refer to these entities as
“communities”, “patterns” or “modes” interchangeably.

d. Defining signals for each community. Given a
set of n communities ¢ = (¢, ¢a, ¢3, ...cy,) we study their

temporal variability as the average over all time series
inside. Formally, for each community c; we define its
signal as X(c;,t) = (1/]¢j]) Zi&j x;(t) cos(6;); where 6;
is the latitude of ;(t) and |c;| is the number of grid cells
in community c;.

e. Link and strength maps. For a given commu-
nity /mode j it is possible to plot the cumulative causal
links D;_,;, and D;Lk (see Eq. and with any other
community k as a map. Given a pattern j will refer to
such map as “link map” D;_,;. Similarly, the “causal
strength” D; of each node j as defined in Eq. [I5] can be
plotted as a map, referred to as “strength map”.

III. DATA

To explore and showcase the proposed causal frame-
work we consider a long, stationary integration of the
state-of-the-art coupled climate model GFDL-CM4 [94].
The ocean component of CM4, named MOMS6, has an
horizontal grid spacing of 0.25° and 75 vertical layers [95].
The atmospheric/land component is the AM4 model
[96, [O7] with horizontal grid spacing of roughly 1° and
33 vertical layers. We consider the sea surface temper-
ature field (SST). The simulation considered, known as
“piControl”, is a 650 years long integration with constant
COs, forcing set to preindustrial level. This allows to fo-
cus on a long, stationary climate trajectory. In this work
we consider the last 300 years of this simulation. We
are going to analyze (a) tropical Pacific and (b) global
scale dynamics. Even with stationary COs forcing, the
climate system can display variability at a vast range of
time scales coming from the internal dynamics of the sys-
tem. Importantly, especially at higher latitudes the sys-
tem can display significant oscillations up to 10-100 years
time scales, i.e. “multidecadal oscillations” [98]. Even in
a 300 years long run such low frequency oscillations are
sampled only a few times. Therefore, to simplify the in-
terpretation of results, in this work we high-pass filter
every time series with a cut-off frequency of f = 1/10
years and focus on interannual variability only. Further-
more, the analysis will focus on SST anomalies only, after
removing the seasonal cycle.

IV. CAUSALITY IN CLIMATE FIELDS

A. Applicability of fluctuation-response theory in
climate studies

The main theoretical ideas justifying the application
of methods in Section [TA]in climate, trace back at least
to the work of Hasselman, K. (1976) [99]. The main
intuition of the “Hasselman’s program” [4] relies on
thinking of processes with enough time scale separation
between short and long time scales in terms of Brownian
motion. This was first tested by Frankignoul and



Hasselman (1977) [100] showing that the statistical
properties of sea surface temperature (SST) variability
can be in fact explained (at first order) by linear
stochastic models with white noise representing the
fast atmospheric variability. Such ideas were further
explored and convingly demonstrated by Penland, C.
(1989) [101] and Penland and Sardeshmukh (1995) [102]
and motivated recent work on coupling functions as in

[103] and [104].

The aforementioned studies justify the application of
concepts introduced in Section [[]] to explore causality in
climate fields. Specifically, this work will focus on the
SST fields. Physically, this means that we will make
the (rather strong) simplification of considering SST
variability as a deterministic process and treat higher-
frequency phenomena (e.g., atmospheric variability)
as noise as done in [99]. Focusing only on sea surface
temperature is however a limitation of this work and
should be taken into account when analyzing the results.
The extension to a multivariate framework is left for
future work.

In what follows, responses are computed by (a) using
the quasi-Gaussian approximation as shown in Eq. [4]and
(b) by first standardizing every time series to zero mean
and unit variance; therefore the responses considered are
computed using correlation functions (rather than covari-
ances) and equivalent to Eq. 15 in Baldovin et al. (2020)

B. Tropical Pacific dynamics
1. Causal inference at the grid level

We first focus on the general case with no dimension-
ality reduction. Notice that this is considered mainly
to showcase the scaling of the methodology to high-
dimensional data. In general, though we would always
recommend to first reduce the dimensionality of the data
and then quantify the linear responses, for (a) enhanc-
ing interpretability and (b) avoiding possible issues when
computing the inverse of the covariance matrix C(0)~*
in Eq. [} this issue is further discussed in Section [V] In
this case, the system z(t) € R™'T is the tropical Pacific
Ocean in the latitude-longitude range [10°S-10°N, 120°E-
70°W] at 1° resolution. This accounts for N = 3068 grid
cells. Temporal resolution is of 1 week for 300 years, for
a total T = 15695 time steps. We infer causal linkages
through the fluctuation-dissipation relation in Eq. [d up
t0 Timaz = 10 years. To summarize the results we then
compute the causal strength D; as in Eq. for each
grid point j and show it in Fig. 2l Additionally, we com-
pare results with or without statistical significance (see
Fig. (c)) Large values of causal strengths D; appear in
the equatorial Pacific and are maximized in the eastern
part of the basin. This is expected as the interannual
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variability in the tropical Pacific is dominated by the El
Nino Southern Oscillation (ENSO) pattern confined in
the equatorial region [6]. We then consider only the sta-
tistical significant responses through the proposed null
model [5} This allows us to neglect spuriously large val-
ues of D; and further identify the ENSO region as the
strongest in terms of causality. Physically this means
that any external SST perturbation in the central to
eastern Pacific would influence a larger part of the do-
main compared to regions with smaller strength D;. This
test shows that the methodology proposed in can (a)
scale to high-dimensional systems (i.e., up to 3068 time
series in this case) and (b) shows results in agreement
with what we would expect from the dynamics of the
system.

120°W
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0 50000 100000 150000

(a) - Panel (b)

200000 250000

Panel

180° 120°W

0 10000 20000 30000 40000 50000

FIG. 2. Total causal strength D; (see Eq. for each grid
cell j in the tropical Pacific. Spatial and temporal resolutions
are of 1° and 1 week respectively. Panel (a): D; has been
computed using all responses. Panel (b): D; has been com-
puted using only the statistically significant responses. Panel
(¢): we show the differences of strengths D; computed be-
fore and after the statistical significance test. The statistical
significance is quantified given the null Gaussian distribution
defined in Eq. Confidence bounds are then defined by
quantiles ¢ = 1 — 1072 and ¢ = 1073, roughly correspondent
to +30.

2. Dimensionality reduction and causal inference

We now reduce the dimensionality of the tropical
Pacific region in the latitude-longitude range [10°S-10°N,
120°E-70°W] through the Infomap community detection
framework presented in Section We consider the
case of 0.5° resolution accounting for 13640 time series.
As before, the temporal resolution is of 1 week for 300
years, for a total T'= 15695 time steps. In this case, i.e.
small regional domain sampled at very high temporal



resolution, the dimensionality reduction of the graph
defined by Eq. already results in spatially contiguous
patterns. This step allows to reduce the dimensionality
of the system from N = 13640 to N = 22. To simplify
the analysis we removed small communities with less
than 50 grid points, the total number of patterns was
N = 29. Such patterns are shown in Fig. [3(a). In the
Appendix, Section [B] we show that the time series of each
community (i.e., mode) follows approximately a Gaus-
sian distribution, therefore justifying the quasi-Gaussian
approximation as shown in Section [[IA2] We infer
causality through fluctuation-dissipation as in Eq. [ up
t0 a Tyae = 10 years and show the causal strength D;
(Eq. in Fig. [3(b). The spatial distributions of values
D; show large values in the equatorial Pacific and is
maximized in the Eastern part of the basin, in agreement
with the case without dimensionality reduction shown
in Fig. 2l Therefore, the new coarse-grained system
still retains important dynamical information and can
be used to study the dynamics of the original system,
at least in the qualitative sense. Next, we measure the
cumulative degree of causation D, (see Eq. for
the strongest pattern, found in the Eastern Pacific and
show it in Fig. c). This analysis reveals a positive
cumulative response to positive perturbation in the
eastern Pacific all around the basin but the western
part, showing a cumulative negative response. This
is consistent with ENSO dynamics developing warmer
(colder) temperature in the eastern (western) Pacific
during El Nino phase (and the opposite for La Nifa).

Finally, in Fig. [ we show the response function
representing the causal links z — y and y — z, with
x and y respectively correspondent to the eastern
and central-to-western part of the basin. In “normal”
conditions trade winds in the Pacific blow from east to
west, transporting warm surface water from the eastern
part of the basin to the western part and forming what
is known as the “warm pool” [105]. Additionally, during
El Nifio (La Nifia) events both regions x and y show
positive (negative) anomalies. A perturbation on region
x will “cause” a response of the same sign in region y
as correctly shown in Fig. (a). The “oscillating” link
from y to x in Fig. [b) can be instead interpreted
in the “delayed oscillator” framework [106]. Positive
responses at short time scales mark the onset of an
El Nino phase consistent to fast surface Kelvin waves
propagation transporting warm water from the warm
pool to the eastern side of the domain. A second train
of surface Kelvin waves, now transporting cold water,
marks then the end of an El Nifio and the start of a La
Nifia [I06 107]. The responses shown in Fig. [4[b) are
qualitatively consistent with such “delayed oscillator”
mechanism.
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FIG. 3. Panel (a): Community detection in the tropical Pa-
cific SST field. Spatial and temporal resolutions are of 0.5°
and 1 week respectively. The community detection step al-
lows to reduce the dimensionality to a total of 22 time series.
Given the high temporal resolution and the small, regional
domain we do not need to enforce spatial contiguity and per-
form community detection on the graph defined by Panel
(b): Total causal strength D; (see Eq. for each commu-
nity j in the tropical Pacific. D; has been computed using
only the statistically significant responses. Panel (c): link
map of the eastern Pacific region (pattern “”), defined by
the cumulative degree of causation as defined in Eq. [[3]

C. Global sea surface temperature dynamics
1. Dimensionality reduction and causal inference

We now focus on sea surface temperature (SST) vari-
ability at global scale. We consider the latitudinal range
60°S-60°N at 1° resolution accounting for N = 31141
time series. The SST field is saved as monthly averages
for 300 years for a total of T' = 3612 time steps. When
applying the dimensionality reduction on the graph
defined as in Eq. communities are not spatially
contiguous. This is shown in Fig. a) where the Indian
Ocean, eastern Pacific and a part of the Southern Ocean
end up in the same pattern. In fact such distant regions
can be linked by “teleconnection” patterns; for example
at interannual time scales, Indian Ocean variability is
forced by the tropical Pacific through an atmospheric
wave response to El Nino events [I2]. Consequently,
variability in such regions is often grouped under the
same cluster by community detection or clustering
algorithms. In this case it is necessary to further
constrain the graph inference step as in Eq. The
dimensionality reduction of such graph identifies local
and spatially contiguous patterns as shown in Fig.
b). Therefore, the additional constraint introduced
in Eq. is a simple but important step when coarse
graining the system. This step allows to reduce the
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FIG. 4. Panel (a): linear response of the SST variability in y
after perturbing x, i.e. causal link z — y. Panel (b): linear
response of the SST variability in x after perturbing y, i.e.
causal link y — x. The link y — x shows a “delayed oscilla-
tor” response consistent with a first Kelvin wave propagation
transporting warm surface water and marking the onset of
an El Nifo (7 € [0, 8] weeks) and then followed by a second
Kelvin wave, transporting cold surface water, marking the end
of an El Nino and the start of a La Nina phenomenon. The
statistical significance is quantified given the null Gaussian
distribution defined in Eq. Confidence bounds are then
defined by quantiles ¢ =1 — 102 and ¢ = 1073, roughly cor-
respondent to £30. All responses in between the confidence
bounds are here considered as spurious.

dimensionality from N = 31141 to N = 20 time series.
In the Appendix, Section [B] we show that the time series
of each community (i.e., mode) follows approximately
a Gaussian distribution, therefore justifying the quasi-
Gaussian approximation as shown in Section [TA2] We
infer causality up to a T4 = 10 years and show the
causal strength D; (Eq. in Fig. (c) The strongest
mode of variability at interannual time scales is in the
tropical Pacific, as expected [6]. Physically, this means
that, at interannual time scales, the variability in the
tropical Pacific is able to influence a larger part of the
world compared to other regions with smaller strength.
In what follows we are going to refer to this region as
“ENSO region”.
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FIG. 5. Community detection of global sea surface temper-
ature in the latitude range [60°S-60°N] and at monthly tem-
poral resolution. Panel (a): an undirected graph is inferred
through Eq. Then the community detection method In-
fomap is applied. Panel (b): same as panel (a) but the undi-
rected graph is inferred through the newly proposed Eq. [I7}
Panel (c): causal strength as defined by As expected the
“ENSO” region is the strongest mode in the inferred causal
network. Its strength is reported in the plot title. The re-
sponse functions are computed up to Tmae = 10 years. The
statistical significance is quantified given the null Gaussian
distribution defined in Eq. Confidence bounds are then
defined by quantiles ¢ = 1 — 102 and ¢ = 10~3, roughly cor-
responding to £30.

2. Inwvestigation of few causal interactions

We further analyze the links between three com-
ponents of the system. Specifically, we focus on the
interaction of ENSO, the Indian Ocean (IO) and South
Tropical Atlantic (STA). ENSO is known to drive
climate variability outside the tropical Pacific through
teleconnection patterns and has been studied in many
contributions. The way in which Indian and Atlantic
variability drive SST in the Pacific has been less ap-
preciated in the past and it is currently debated in the
community [I08]. Quantification of such linkages is
important to better understand climate variability and
to improve seasonal forecasting.



During an El Nino phase, the anomalous temperature
in the tropical Pacific excites waves in the atmosphere.
Such waves, known as eastward-propagating Kelvin and
westward-propagating Rossby waves, drive changes in
temperature in the whole tropical band [12]. Such causal
links are identified in Fig. @(a,b), with positive responses
of both the I0 and STA regions to perturbations in
the ENSO regions. As expected such positive lead of
ENSO is the strongest in magnitude and much larger
than the other responses in Fig. [6] Interestingly, we find
a (weak) negative link between ENSO and IO in Fig.
@(b) around 7 = 30 months, suggesting the emergence
of positive (negative) anomalies in the Indian Ocean
~ 3 years after La Nina (El Nifio) events. The positive
response around 10 years in Fig. @(b) is here considered
as a False Positive.

Fig. [6c) shows that the positive (negative) anomalies
in the STA region, mainly linked to the dynamics of the
Atlantic Nino [I09] (see also discussion in [I7]), leads
on average to the development of La Nina (El Nifo)
conditions as recently argued in the literature [IT0HIT2].

The IO pattern in our study (see pattern z in Figure
@ mainly identifies what is known as the Indian Ocean
Basin (IOB) mode [64). The IOB mode has been
traditionally considered as simply forced by ENSO.
Nonetheless, recent studies have revealed how the IOB
can also drive ENSO variability. Specifically, it has
been demonstrated how a strong IOB warming can in
fact contribute to central Pacific cooling further driving
a transition to a La Nina state [108, 113, 114]. Such
negative link is correctly identified by the proposed
framework (see Fig. [6(d)) but does not show up in
correlation-only analyses (see for example Fig. 11(b) in
82)).

As discussed also in [I08] these results suggest an
increase in potential predictability of ENSO variability
when considering the non-local interactions with the
Indian Ocean and tropical Atlantic basins.

Finally, in Fig. [7]we show the link maps for four modes:
ENSO region, Indian Ocean (I0), South and North Trop-
ical Atlantic (STA and NTA respectively). Such maps
show values of D;_,;, up to a Tyuae = 6 months. Fig. a)
quantifies the cumulative response of any region given
perturbations in the ENSO region. We notice that such
map is qualitative similar to the first Empirical Orthog-
onal Function of global SST (see for example Fig. 4 in
[115]). This is not true though if we consider longer time
scales, such as Ty,4, = 10 years, as shown in Appendix D}
The framework allows to examine causal linkages from/to
any region of the system. Figures m(b,c,d) show the cu-
mulative degree of causation respectively from regions
10, STA and NTA regions to any other region in the
world. In other words, such maps allow to summarize
the cumulative response of the whole globe, given small,
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local perturbations to any region z; of choice.

V. CONCLUSIONS AND DISCUSSION

We introduced a novel framework for causal inference
in spatiotemporal climate fields. The causal inference
step, based upon ideas of Baldovin et al. [I], frames the
problem of causality in the formalism of linear response
theory [57]. Here, we further developed these ideas by
proposing an analytical null model for the fluctuation-
dissipation relation. The model, shown in Eq.
allows to distinguish between true and spurious response
functions estimated from finite data, with applicability
not restricted to climate. The time-dependent causal
graph is inferred after coarse graining the system. This
step, based on community detection, allows to reduce
the dimensionality of a spatiotemporal field in terms
of regional “modes” of variability. Such “modes” are
defined as regionally constrained sets of time series with
large average pairwise correlation. The dimensionality
reduction and causal inference steps allow to study
how local perturbations can propagate through the
system and impact remote locations. We applied the
framework over two different sea surface temperature
fields, with different dynamics: (a) high spatial and
temporal resolution in the tropical Pacific ocean and
(b) coarser resolution in the whole globe. In both cases
we argued how the methodology allows to characterize
the dynamics of the system in a comprehensive and
physically based way.

We discuss few important limitations and caveats that
may hinder interpretations of results in future studies.

a. The case of hidden wvariables. The fluctuation-
dissipation formalism identifies causal links when we
have access to the whole state vector a(t). This is
often not the case. This is a problem common to every
causal inference methods. A “solution” is to include the
important variables for the phenomena we want to ex-
plain. In this work, we based our analysis on sea surface
temperature (SST) building on ideas first proposed by
Hasselman, K. (1977) [100] where the fast atmospheric
variability can be considered as noise, forcing the
(slower) deterministic ocean dynamics. This is clearly
a great simplification and should be taken into account
when interpreting results. The question on how many
variables are enough to consider the system as Markovian
is an old problem with warnings discussed at least since
Omnsager and Machlup (1953) [I16]; see also Section IVB
in [1]. Quite interestingly, [I] also showed that applying
Takens theorem [I17] to reconstruct the state space
vector may not always help. The main reason being
that Takens embedding theorem, proven for determinis-
tic systems [117], fails for general stochastic processes [].
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FIG. 6. : ENSO mode. y: Indian Ocean. z: South Tropical Atlantic. Panel (a,c): causal link © — y and y — z. Panel (b,d):
causal link x — z and z — x. Response functions have been computed up until 7,4 = 10 years. The statistical significance is

quantified given the null Gaussian distribution defined in Eq. Confidence bounds are then defined by quantiles ¢ = 1—1073
and ¢ = 10~3, roughly correspondent to +30. All responses in between the confidence bounds are here considered as spurious.

Dj.; j = Indian Oc.

| i |
180° 90°W 90°E 180° 90°W
—2 ~1 0 1 2 ~0.75-0.50 —0.25 0.00 0.25 0.50 0.75
C DiLe: j=S. Trop. Atl. d DiL:j = N. Trop. Atl.
60°N jo k) } b = 60°N) jo k) b -
30°N N : | 30°N N '

| 30°5 > |
0 % 90°E  180°  oo°w 0 o0°e  180°  oo°w
~06 -04 -02 00 02 04 06 -06 -04 -02 00 02 04 0.6

FIG. 7. Link maps D;_ for all k,as computed in @ and considering only up to T,qe = 6 months. Regions j considered are
ENSO region, Indian Ocean, South and North Tropical Atlantic in panels (a,b,c,d) respectively. The first Empirical Orthogonal
Function roughly correspond to the ENSO strength in panel (a). Only the statistical significant responses contribute to the
causal strength. The statistical significance is quantified given the null Gaussian distribution defined in Eq. Confidence
bounds are then defined by quantiles ¢ =1 — 1072 and ¢ = 103, roughly correspondent to £30. All responses in between the
confidence bounds are here considered as spurious.



b. Computation of the inverse covariance matrix
C(0)~!. Consider a dynamical system x(t) € RNT,
N is its dimensionality and T is the length of each
time series z;(t). If N > T the covariance matrix
C(0) € RMY is ill-conditioned and the computation
of the inverse C(0)~! will result in large errors. This
point has been described in [46], 47] and more formally
in [T18, 119] in the context of the fluctuation-response
formalism; but it is a general problem in many fields,
see for example [120, 12I]. Therefore, the proposed
framework should be applied for systems x(t) € RMT
with 7" > N, i.e., number of samples larger than the
dimensionality of the system. As a simple test, when
computing responses with the quasi-Gaussian approx-
imation R(t) = C(1)C(0)~! we recommend to check
R(0) = I (at least up to a certain numerical accuracy),
I being the Identity matrix. Solutions to this problem
have been proposed in the literature, see for example
[119, 121]. In general, dimensionality reduction steps (as
proposed in this paper) allow to reduce the number of
time series N to values much smaller than T, allowing
for trustworthy computations of C(0)~1.

c. Quasi-Gaussian  approximation. The  quasi-
Gaussian approximation considered in this study (see
Eq. has been shown to work especially well in
many climate applications, see [45] and references
therein. However, generally we suggest to often check
the underlying probability distribution of the data
before the analysis. This may be important especially
for paleoclimate applications where climate variability
shows a vast range of spectral peaks with no clear
time-scale separation. An example is the work shown
in [122], where the authors analyzed the causal link
between CO5, temperature (T') and insolation in the last
800 kyr. Distributions of both COs and T in the last
800 kyr are strongly non-Gaussian. The solution was
to high-pass filter the data and focus on high frequency
variability, with the hypothesis of slow time scales being
linked to the external forcing and faster time scales to
the internal system’s variability . This was shown to
be enough to recover Gaussian distributions [122]. In
this work, we have shown that the distributions of the
time series analyzed can be reasonably approximated
by Gaussians (see Appendix [B| and justifying the
application of the methodology shown in Section [}
A generalization to nonlinear systems is provided by
formula 2| as long as the probability distribution p(x) is
known.

The methodology proposed here can be potentially
applied to study the dynamics of any climate field; at
least given the assumptions and limitations listed above.
It serves as a useful, rigorous framework to simplify
the description of complex, high-dimensional dynamical
systems in terms of few entities and their linkages,
with the ultimate goal of a better understanding of
the system’s dynamics. Differently from other methods
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for causal inference adopted in climate, it scales to
high-dimensional datasets, as shown in Section [[V B 1]
Moreover, the method and the proposed null model have
a clear physical interpretation and can be formalized
via analytical formulas. This allows to infer causality
avoiding many heuristics and parameters.

Both applications explored here in Section [V B] and
[[VC) allowed us to detect well known links in climate,
such as the influence of tropical Pacific variability onto
other basins, as well as other linkages, such as the lead
of sea surface temperature variability in the Indian
Ocean to the Pacific basin, which received less attention
in the literature [I08]. Additionally, we showed how
the “strength maps” and “link maps” as shown in Fig.
Bi(b,c), Fig. Bfc) and Fig. [7]summarize cumulative causal
interactions across time and space in a comprehensive
and interpretable way.

Examples of future work range from quantification of
drivers of sea level change, such as basin-scale adjust-
ments in the North Atlantic driven by Rossby waves, to
studying the evolution of climate modes and their link-
ages in paleoclimate simulations, with time-dependent
orbital and trace-gases forcings (e.g., [16]). Finally, the
proposed framework offers a way to evaluate new gen-
erations of climate models in terms of their emergent
causal structure rather than statistical properties only;
for example by assessing the impact of new sub-grid
parametrizations onto the large scale dynamics.
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Appendix A: Expected value and variance of the
response estimator

The expectation of the response estimator proposed in
[ can be derived as


https://github.com/FabriFalasca/Linear-Response-and-Causal-Inference
https://github.com/FabriFalasca/Linear-Response-and-Causal-Inference

E[Ry ;(1)] = E[Ck ;(T)] + O, ;07 —
= Ok, jbr, + Ok, jPF —
= 0 Op-

The variance of the response estimator proposed in [9]
can be derived as

PLE[Cr5(0)]

PkOk.j (A1)

Var[Ry, ;(7)] = Var[Cy, ;(7) — ¢;,Ck,;(0)]
= Var[Cy ()] + ¢3" Var[Cy ;(0)]  (A2)
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Var[Cy ;(1)] = [ 3 (T)Cr (7)) =
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We remind the reader the following useful equality:
the covariance Cov[X, Y] of two random variables X and
Y can be rewritten as Cov[X,Y] = E[XY] — E[X]E[Y].
We now compute the variance of the response estimator
in Eq. To do so, we first need to provide an ex-
pression to terms Var[Cy ;(7)] and Cov[Cy ;(T), Ck ;(0)].
Such terms can be computed as follows:

2 (t")] = Or 0%

= % Z (E[xk(t' + )k (" + 7)Elx; (t)x; (1")]

t =1

+ Elzk(t' + 1)z, (') Elxy

(" +7)z; (t")]

- E[xm’ ) (U Efws () (8 + 7)) = O T

’

t/ 4= 1(

t/ t” 1

Cov[Ck, (1), Ck,;(0)] = E[Ck,;(1)Ck,;(0)] —
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1
= 72 Z Elzn(t + 7
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The computation of Equations [A3] and [A4] re-
quires to compute the followmg three terms:

t —f” tl_tll f + f// tl_ _t//
Zt/ =1 ¢| ‘¢| ‘7 Zf/ =1 ¢| T— ‘¢| T |

t'4r—t"| ¢ —t"
and Zt, =1 ¢| l(b‘v |, To solve such terms we

t/JrT*t” Py t/+_’_7t/l P
o 6 T Gy 07+ Ok 0 % ‘) ~ Ok,j Pk

¢|t +7—t \¢\t —t’ |+6 ¢\t 47—t |¢|t'7t’1|).

(

point out that a summation of type Ef’t,,zl(m%)\t’—t”l

will result in 7 points with value (¢x¢;)° 2(T — 1)
points with value (¢xr¢;) up to 2(T" — t) points with
value (¢r¢;)'. The summation can be then rewritten



ast gy (Gl = T+ S (o) 2AT — 1),

Similar reasoning can be applied for all the terms above.

1. Computation of each summation

T-1
s 3 ol =T Y 2T 1)
t =1 po
_ T = Tlon6,)* +20u0) (06 — 1)
(=1 + ¢16;)? :
(A5)
T ! " / "
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t =1
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t 1ZT
- Z oy ey (T - 1) (A6)
Sum(a)
0
+ Z ¢Lt+7—|¢;—t+7)(T+t)
t=1-T
Sum (b)

Both summation Sum(a) and Sum(b) can be further
split in sums of simple geometric series:

T-1
Sum(a) : Z ¢§€t+r)¢|jt7‘r|(T — 1)
t=1

A T R S (e s K
=1 =1
‘ T—1 ‘ T—1
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0
sum(®) : Y @l (T 1)
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We note that both Sum(a) and Sum(b) are composed
by geometric series and can be easily solved.

Sum(III) : Z gt gl
l // 1
T-—1
= > ol |t
t=1-T
T—-1
— ¢II‘/€+T¢§ (T o t) (Ag)
t=1
Sum(c)
+ Z or T (T + 1)
t=1-T
Sum(d)

We note that both Sum(c) and Sum(d) are composed
by geometric series and can be easily solved.

Sum(c) : Z ¢S (T — 1)
-1 -1 (A10)
=Top Y (ond;) — dr Y (dnds)' -t
t=1 t=1
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= T(b;'r

(A11)

We note that both Sum(c) and Sum(d) are composed
by geometric series and can be easily solved.

=To7¢7 > (6110, ) + 6,767 > (dp ;) -t

t=1-T t=1-T

0 0
+Tor05 Y (ond;
t=—7+1 t=—7+1
(A8)

Dt ore; > (ko) -t



2. Final result

We aim in computing the variance of the response esti-
mator Var[Ry, ;(7)] as shown in Eq. in the main text.
We rewrite the expression in function of the three sum-
mations Sum(I), Sum(II) and Sum(III) solved in the
previous section.
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Appendix D: Causal strength and link maps up to
Tmaz = 10 years

Panels in Figure 10| show the causal strength and link
maps for the ENSO region, Indian Ocean, South and
North Tropical Atlantic when computing responses up to

a Tmaz = 10 years. This complements the results shown
in Section for which 7p,4, = 6 months.

1
Var[Re;(7)] = 7 (Sum(I) + 627 - Sum(I) (1 = 0) — 297 - Sum(HI)>
+ 6;72] (Sum(II) + qﬁiTSum(II)(T = O) — 2¢7]; . Sum(III))_

(A12)

Where Sum(I) (7 = 0) and Sum(II) (7 = 0) evaluate
Sum(I) and Sum(II) in 7 = 0.

We focus on the asymptotic case T >> 1 and remind
the reader that |¢r¢;| < 1. The leading order of the
solution is as follows:

Gr—1 2 (1-6[67\ 267 610
Varlles (] = S 1 (1)~ 7 (9, =
(A13)

Finally, we note that in the case of ¢, = ¢; in Eq.

%% with the limit:
J

we substitute the term ¢y,

lim ¢, ——2L = ¢fr.

Al4
¢ =Pk ( )

Appendix B: Histograms of each mode z;(t) in the
tropical Pacific SST field

Histogram of signals z;(t) defined as shown in Section
for each community /mode i in the tropical Pacific,
see Each z;(t) has been first centered to zero
mean and than standardized to unit variance. A Gaus-
sian fit is shown in red. The plot shows that the quasi-
Gaussian approximation shown in [[T] is indeed relevant
for the system studied.

Appendix C: Histograms of each mode z;(t) in the
global SST field

Histogram of signals x;(t) defined as shown in Section
for each community /mode ¢ in the global dataset,
see Each x;(t) has been first centered to zero mean
and than standardized to unit variance. A Gaussian fit
is shown in red. The plot shows that the quasi-Gaussian
approximation shown in [[T]is indeed relevant for the sys-
tem studied.
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FIG. 8. Probability distributions of each sea surface temperature signal x;(¢) in the tropical Pacific (see Section as
defined in Section Each signal z;(¢) is first centered to zero mean and standardized to unit variance; therefore the x-axis
represents degC per standard deviation. Each community is here referred to as “Mode i”. A Gaussian fit is shown in red on
top of each histogram.
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FIG. 9. Probability distributions of each sea surface temperature signal x;(t) at global scale (see Section m as defined in
Section [ITE 1} Each signal x;(t) is first centered to zero mean and standardized to unit variance; therefore the x-axis represents
degC per standard deviation. Each community is here referred to as “Mode i”. A Gaussian fit is shown in red on top of each

histogram.
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FIG. 10. Link maps D, for all k, as computed in and considering only up to Tmes = 10 years. Regions j considered are
ENSO region, Indian Ocean, South and North Tropical Atlantic in panels (a,b,c,d) respectively. The first Empirical Orthogonal
Function roughly correspond to the ENSO strength in panel (a). Only the statistical significant responses contribute to the
causal strength. The statistical significance is quantified given the null Gaussian distribution defined in Eq. Confidence
bounds are then defined by quantiles ¢ = 1 — 1072 and ¢ = 1072, roughly correspondent to +3. All responses in between the
confidence bounds are here considered as spurious.
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