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Abstract.  An equilibrium, or maximum entropy, statistical mechanics theory 
can be derived for ideal, unforced and inviscid, geophysical flows. However, 
for all geophysical flows which occur in nature, forcing and dissipation play 
a major role. Here, a study of eddy-mixing entropy in a forced-dissipative 
barotropic ocean model is presented. We heuristically investigate the temporal 
evolution of eddy-mixing entropy, as defined for the equilibrium theory, in a 
strongly forced and dissipative system. It is shown that the eddy-mixing entropy 
provides a descriptive tool for understanding three stages of the turbulence life 
cycle: growth of instability; formation of large scale structures; and steady state 
fluctuations. The fact that the eddy-mixing entropy behaves in a dynamically 
balanced way is not a priori clear and provides a novel means of quantifying 
turbulent disorder in geophysical flows. Further, by determining the relationship 
between the time evolution of entropy and the maximum entropy principle, 
evidence is found for the action of this principle in a forced-dissipative flow. 
The maximum entropy potential vorticity statistics are calculated for the flow 
and are compared with numerical simulations. Deficiencies of the maximum 
entropy statistics are discussed in the context of the mean-field approximation 
for energy. This study highlights the importance of entropy and statistical 
mechanics in the study of geostrophic turbulence.
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1.  Introduction

Due to the highly chaotic nature of turbulence and its large number of degrees of free-
dom, the methods of statistical physics are an attractive approach for understanding 
the physics of turbulent systems. An equilibrium, or maximum entropy, theory has 
been proposed for ideal geophysical flows; by ideal we mean an isolated system with no 
forcing nor dissipation. However, it is not clear to what extent this equilibrium theory 
is useful for realistic, forced and dissipative, geophysical flows. With increasingly press-
ing concerns about the Earth’s climate it is pertinent to consider whether a statistical 
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mechanics approach can be used to improve our in sub-gridscale parameterizations of 
ocean turbulence at length scales of 10–100 km.

The first example of the application of statistical mechanics to two-dimensional 
turbulence comes from [28], where a model of singular point vortices was proposed to 
characterize turbulent features. The statistical mechanics of point vortices has received 
much study since then. Studies such as [19] and [20] led the way towards continuous 
vorticity fields through utilizing the invariance of energy and enstrophy in variational 
problems. Geostrophic flows over topography were tackled using this methodology: in 
[38] via the maximization of an entropy; and independently in [7] via a phenomenologi-
cal minimum enstrophy principle.

Work by Miller, Robert and Sommeria established a theory of equilibrium statisti-
cal mechanics of two-dimensional and simple geophysical flows [26, 27, 33–35], which 
we refer to as the ‘Miller–Robert–Sommeria theory’. Miller–Robert–Sommeria theory 
produces an equilibrium statistical mechanics, by forming a variational problem to 
maximize an appropriate entropy, of two-dimensional or quasi-two-dimensional flow 
which: relies on the underlying Hamiltonian structure of the dynamics; applies to 
continuous vorticity fields; and conserves the invariants of motion of the flow (e.g. see 
reviews by [6, 8, 22, 40]). The power of the Miller–Robert–Sommeria theory is that 
the work of [7, 20, 28, 38] are contained within this framework as particular limits or 
simplifications. This equilibrium/ideal (no forcing, no dissipation) theory has been used 
to suggest a statistical mechanical explanation for: the formation of ocean rings and 
jets [45]; the dynamics of the stratospheric polar vortex [31, 48]; Jupiter’s Great Red 
Spot [5, 42]; bottom trapped ocean currents [44]; the vertical structure in stratified 
quasi-geostrophic flow [24, 39, 46]; as well as the global ocean circulation and its 
associated density profiles [37]. Miller–Robert–Sommeria statistical mechanics theory 
suers from the restrictive assumption of ideal flow; understanding how this statistical 
mechanics framework can be used in a forced-dissipative context is essential in order to 
apply these powerful ideas to realistic geophysical flows.

An application which is of particular interest to the authors, is ocean mesoscale 
(10–100 km) turbulence. The eddies which make up this large-scale ocean turbulence lie 
beyond the computational reach of modern climate models when run to dynamic and 
thermodynamic steady state. These climate models typically have an ocean resolution 
of 50–100 km while mesoscale eddies have typical length scales of 10–100 km, meaning 
that it is necessary to parameterize the eect of eddies on the mean flow via turbulence 
closures. Although these motions are generated internally, from the advective term of 
the equations of motion, they are influenced by forcing and dissipation at wide range of 
scales. Recent studies have explored the possibility of a stochastic approach [3, 16, 30, 
49] for ocean models. With this growing interest in the stochastic nature of mesoscale 
eddies, it is timely to study the statistics of vorticity, and the underlying organizing 
principles influencing these statistics, in simplified ocean models. Consequently, we 
search for theories of turbulence which are statistical in nature and include both forc-
ing and dissipation.

In this study, inspired by the Miller–Robert–Sommeria theory we follow here a 
heuristic approach [17], in order to analyse entropy in forced and dissipative numerical 
simulations of simplified geophysical flows. Motivated by eorts to parameterize ocean 
mesoscale turbulence we consider the ability of a statistical mechanics approach in 
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determining small-scale statistics given knowledge of the large-scale flow. In this study 
we will not determine nor characterize the equilibria of the ideal system as this will be 
unaccessible to us as we assume knowledge of the large-scale flow; this problem has, 
however, been approached in [9]. In this study we will consider a wide range of forcing 
and dissipation strength complimenting studies which have found that equilibrium sta-
tistical mechanics can give good predictions in the weak forcing and weak dissipation 
regime [4]. The specific aims of this study are as follows.

	•	 �To determine the impact of forcing and dissipation on the evolution of entropy in 
a turbulent barotropic jet, both analytically and numerically.

	•	 �To test the maximum entropy principle1 and to understand the utility of this 
principle in the context of a forced-dissipative turbulent jet.

	•	 �To use the maximum entropy principle as a means to formulate a relationship 
between dynamically balanced quantities and the small-scale statistics of the 
flow.

The paper is structured as follows. In section 2, we describe the barotropic model 
and the numerical experiments used in this study. In section 3, we introduce some key 
concepts, especially the eddy-mixing entropy. In section 4, we derive analytical expres-
sions for the influence of forcing and linear drag on the entropy. In section 5.1 and 
5.2, we diagnose the entropy for a freely-decaying and a forced-dissipative turbulent 
jet, respectively to test the predictions of section 4 and consider entropy as balanced 
dynamical quantity. In section 6, we derive a test for entropy maximization in a forced-
dissipative system and compute the maximum entropy statistics, comparing with the 
numerical simulations. In section 7, we discuss the mean-field approximation for energy 
and its relation to the maximum entropy statistics. In section 8, the study is concluded 
with some closing remarks.

2. Model and experiments

2.1. Model setup

We solve the barotropic vorticity equation on a β plane within a singly-periodic domain, 
recently used and described in [10]. The simplicity of this model allows us to perform 
many high resolution simulations, while the channel configuration provides an analogue 
to the Southern Ocean turbulent jet dynamics. The equation of motion is given by

∂q

∂t
= −{ψ, q} − r∇2ψ − νh∇6ψ − ∂yτ(y),� (1)

where the potential vorticity q is given by

q = ∇2ψ + βy;� (2)

1 Not to be confused with the similarly named maximum entropy production principle.

https://doi.org/10.1088/1742-5468/aad19a
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∇2ψ is the relative vorticity and βy is the planetary vorticity making q equivalent to the 
absolute vorticity in this barotropic model; τ is the zonal wind stress which is defined 
to be a function of meridional distance only; r and νh are the linear drag coecient and 
the hyper-viscosity respectively; the braces denote the horizontal Jacobian operator 
given as

{A,B} = ∂xA∂yB − ∂xB ∂yA.� (3)
The biharmonic diusion is used for numerical stability, preferentially dissipating the 
grid-scale noise compared to Laplacian diusion. The hyper-viscosity is chosen to be as 
small as possible while allowing us to treat the linear drag as the dominant dissipative 
term in this study. Linear drag is an attractive choice of dissipative term due to its ana-
lytical tractability as well as its being analogous to oceanic bottom drag. A quadratic 
drag term could also be used but we leave this analysis for future study.

The periodicity in the zonal direction is employed to solve the model using a pseudo-
spectral method and is modified from a pre-existing code [13–15]. The model domain is 
shown in figure 1. The boundary conditions are free-slip

∇2nψ|N ,S = 0,� (4)

where n = 1, 3; no normal flow

∂xψ|N ,S = 0;� (5)
and global momentum conserving

ψ|N ,S = ±Γ(t)

2
.� (6)

We find Γ by solving the prognostic integral momentum balance,

dΓ

dt
= −

∫∫
d2x

[
r
∂ψ

∂y
+ τ

]
.� (7)

This is the same condition used by [41] and is the barotropic (and rigid lid) limit of 
the general integral momentum balance derived in [23]. By applying this boundary 
condition we are able to impose a fixed wind stress forcing rather than relaxing to a 
background shear as is often done for models of this type (e.g. [29]).

The ideal dynamics of this flow conserves various other quantities in addition to 
momentum as described below. In ideal flow the energy

Figure 1.  Geometry of domain. wind stress, τ, in this study points from left 
to right. Lx and Ly are the longitudinal and latitudinal extents of the domain 
respectively. Macro-cells (blue) and micro-cells (red) in this study. Exploiting zonal 
symmetry zonal bands are used as macro-cells whilst micro-cells are the grid-
points within.

https://doi.org/10.1088/1742-5468/aad19a
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E =
1

2

∫∫
d2x (∇ψ) · (∇ψ)� (8)

is conserved. This can be rewritten as

E =
Γ

4
(uS − uN)−

1

2

�
d2xψ(q − βy),� (9)

exploiting the relationship between q and ψ as well as the boundary condition described 
above, where uN and uS are the velocities along the north and south boundaries respec-
tively. When the the boundary flow is North–South asymmetric (e.g. when the wind 
stress is North–South asymmetric) the first term in will be non-zero, however, this is 
not the case in the flow realizations presented in this study where uN = uS.

In addition, ideal flow conserves the integral of any function of potential vorticity, 
called Casimirs (e.g. [36]), such that

C =

∫∫
d2x c(q),� (10)

where c is an arbitrary function. We are primarily interested in the polynomial Casimirs 
which we will denote as

Cn =

∫∫
d2x qn.� (11)

Two Casimirs of particular physical importance are the circulation, n  =  1, and the 
enstrophy, n  =  2. Alternatively, all Casimirs can be conserved simultaneously by con-
serving the global potential vorticity distribution, Π, given by

Π(q) =
dA(q)

dq
,� (12)

where A(q) is the area of the domain occupied by points with a value of potential 
vorticity less than q. A(q) is proportional to the global cumulative potential vorticity 
distribution function.

2.2. Numerical experiments

We perform two sets of numerical experiments. The first set of experiments is based on 
a freely-decaying unstable jet in which the initial jet has a velocity profile

u(y) = u0sech
2(y),� (13)

with u0  =  10. The unstable jet evolves freely under the action of hyper-viscosity and 
varying strengths of linear drag. The drag coecient is varied over a wide range from 
a lowest value where flow is just numerically stable to a highest value where the tur-
bulence is beginning to be damped away.

The second set of experiments is based on a forced-dissipative turbulent jet spun 
up from rest with varied strength of the wind stress. The wind stress profile is kept the 
same for all simulations as,

https://doi.org/10.1088/1742-5468/aad19a
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τ = τ0sech
2
(y
δ

)
,� (14)

but the magnitude of the jet is varied by changing the value of τ0. The wind stress 
strength is doubled seven times to ensure a very wide range of turbulent flows. δ is the 
width parameter and is fixed for all simulations. Table 1 summarizes the values used in 
the dierent simulations. The parameters which are held constant for both experiments 
are given in table 2; these parameters were extensively tested for both this study and 
[10] to ensure numerical convergence.

3. Eddy-mixing entropy

The eddy-mixing entropy is not the same as the thermodynamic entropy associated 
with molecular motions. The eddy-mixing entropy is a measure of the disorder of 
the large scale turbulent flow, and depends on the choice of coarse-graining which 

Table 1.  List of experiments and non-dimensional parameters.

Simulation ID
Wind stress 
strength, τ0

Linear drag 
coecient, r Timestep, dt

Freely-decaying experiments
D1 0.000 0.0008 0.0005
D2 0.000 0.0009 0.0005
D3 0.000 0.0010 0.0010
D4 0.000 0.0020 0.0010
D5 0.000 0.0030 0.0010
D6 0.000 0.0040 0.0010
D7 0.000 0.0050 0.0010
Forced-dissipative experiments
FD1 0.005 0.0050 0.0010
FD2 0.010 0.0050 0.0010
FD3 0.020 0.0050 0.0010
FD4 0.040 0.0050 0.0010
FD5 0.080 0.0050 0.0010
FD6 0.160 0.0050 0.0010
FD7 0.320 0.0050 0.0010

Table 2.  Fixed parameters of model simulations.

Parameter Value

Meridional extent, Ly 5π/2
Zonal extent, Lx 20π
Number of zonal grid-points, nx 1024
Number of meridional grid-points, ny 128
Time-step, dt 1× 10−3

Output frequency 1
Total time of output 1× 104

Hyper-viscosity, νh 2× 10−6

Wind stress width parameter, δ 0.4
Beta parameter, β 0.2

https://doi.org/10.1088/1742-5468/aad19a
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distinguishes between the large scales and the small scales of the flow. The form of 
entropy we will use is chosen by analogy to the equilibrium entropy which has been 
shown to be the appropriate form for deriving an equilibrium statistical mechanics for 
ideal two-dimensional and geophysical flows and can be justified from a large deviation 
theory framework [25]. It is important to note that there is no a priori justification 
for there use of this entropy for non-equilibrium systems but follow empirically driven 
approach in this study.

To define the eddy-mixing entropy we follow the heuristic approach presented in 
[17]. To proceed we will define two sub-systems of the full flow:

	•	 �a micro-cell which is the smallest scale over which the details of the flow are 
important. The micro-cell is equivalent to the grid-cell for a high resolution 
numerical simulation. We think of each micro-cell as being characterized by only 
one value of the potential vorticity. We choose the grid-cell here for practical 
convenience but a more physically motivated choice could be used, for example 
the Batchelor scale.

	•	 �a macro-cell which is comprised of a number of micro-cells and is related to a 
choice of some coarse graining scale. The macro-cells should be chosen to exploit 
some dynamical symmetry of the system. In our case we, for the most part, choose 
zonal bands exploiting the zonal symmetry of the system apart from in section 6.1 
where we choose contours of instantaneous streamfunction. It important to note 
that the first choice of macro-cell cannot be used for zonal-symmetry-breaking 
flows (e.g. emergence of coherent eddies) while the second choice assumes knowl-
edge of the answer we are seeking. To extend the analysis presented in this study 
to coherent eddy flows a sophistical, partly Lagrangian, averaging method which 
respects the large-scale flow topology would be required.

The macro- and micro-cells used in this study are schematically illustrated in 
figure 1.

Using this definition of the macro-cells, an eddy-mixing entropy is defined by count-
ing the number of ways to arrange the micro-cells of value of potential vorticity into 
the macro-cells. The eddy-mixing entropy can be expressed as

S = lnW = ln
∏
I

M (I)!∏
r M

(I)
r !

,� (15)

where M(I) is the number of micro-cells in the Ith macro-cell and M
(I)
r  is the number of 

micro-cells with the rth value of potential vorticity in the Ith macro-cell. This counting 
method is adapted from [21].

For large numbers of micro- and macro-cells we can take the continuous limit to get

S[ρ] = −
∫

d2xdq̃ ρ(q̃|x) ln(ρ(q̃|x)),� (16)

in terms of the probability distribution function, ρ. In words, ρ is the probability of mea-
suring a value, q̃ , of the potential vorticity at the point x in the domain. In this expres-
sion x has taken the place of I in labeling the macro-cell. The coordinate x should be 
interpreted as a coarse-grained or smoothed coordinate. The q̃  is a random variable 

https://doi.org/10.1088/1742-5468/aad19a
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representing the result of a measurement of potential vorticity, and not the potential 
vorticity field, q(x). The dierence between the probability distribution, ρ(q|x), used 
here and the full probability distribution (functional) of the system, p[q(x)] should be 
noted. We interpret ρ as a marginal distribution of p and they only become equal when 
neighboring macro-cells become statistically independent, which is the case for the ideal 
theory which is in equilibrium; this is discussed in more detail in section 7. However, 
we choose to heuristically study the distribution ρ which is accessible by numerical 
computation and, as will be shown, its behaviour is important in non-equilibrium sys-
tems. The eddy-mixing entropy is the sum over the continuous information entropies 
associated with the distribution of potential vorticity in each macro-cell. The method 
of numerically determining these entropies are given in an appendix A.1 and is used 
throughout this study.

4. Analytical model for evolution for entropy

The fundamental quantity that we are interested in is the eddy mixing entropy given 
by (16) in section 3. In this section we derive a tendency equation for this entropy. 
We are not able to derive a full theory as the eects of the non-linear or non-local 
terms in the vorticity equation  (1), section 2, do not seem to be analytically trac-
table. Nevertheless it is possible to derive analytical expressions for the entropy evo
lution due to the remaining linear and local terms in the vorticity equation: the wind 
stress curl and the linear drag. We will now derive the influence of these terms on 
the entropy leaving the unknown tendency due to advection and hyper-viscosity as 
a residual, P.

Ignoring the non-local and non-linear terms, which include the hyper-viscous term 
and the advection, we have the following equation for the evolution of potential vorticity:

∂q

∂t
= −r(q − βy) + g(y)

� (17)
where g(y) = −∂yτ(y) is the constant (in time) forcing.

Equation (17) leads to the following partial dierential equation for the probability 
distribution function, ρ,

∂ρ

∂t
=

∂

∂q̃
[r(q̃ − βy)ρ]− g(y)

∂ρ

∂q̃
.� (18)

The two terms on the right hand side of equation (18) were also derived in [18] but 
here we consider the eect of these terms on the entropy. We can write the entropy 
tendency as

Ṡ = −
∫

d2xdq̃ ρ̇ ln ρ,� (19)

where the dot represents dierentiation with respect to time. By substituting equa-
tion (18) into (19) we can derive (see appendix A.2) the influence of these terms on the 
entropy, yielding

https://doi.org/10.1088/1742-5468/aad19a
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Ṡ = P − Ar,� (20)
where we have now included the eect of advection and hyper-viscosity as the residual, 
P; and A is the area of the domain. As the hyper-viscosity is small in our numerical 
calculations, we will take the liberty of referring to P as the advective production of 
entropy.

Notably, (20) does not have an explicit dependence on the zonally symmetric forc-
ing as a constant wind stress only shifts the distribution in each zonal band and the 
entropy is invariant to these shifts. The linear drag leads to a remarkably simple term 
which is a perpetual and constant sink of entropy.

5. Entropy in the numerical simulations

5.1. Eddy-mixing entropy in freely-decaying turbulence

As seen in (20) the entropy tendency has no explicit dependence on the forcing. However, 
the forcing will contribute to determining the behaviour of the advective production of 
entropy, P. To illuminate the eect of forcing we first consider the evolution of entropy 
in the absence of forcing: freely decaying unstable flow.

We begin by examining the evolution of entropy for short times as the instabili-
ties grow then decay shown in figure 2. In region A of figure 2, the entropy increases 
very quickly concomitant with the exponential growth of eddy energy through shear 

Figure 2.  Entropy as a function of time for dierent values of linear drag coecient, 
simulations D1, ..., D7. (A)—We find that exponential growth of barotropic 
instabilities lead to a very fast growth in the entropy. (B)—The entropy reaches 
a maximum value which is insensitive to the value of the linear drag coecient. 
This is followed by a decrease in entropy at a rate greater than the contribution 
of the linear drag. This implies that this decrease is due to the eddies themselves. 
(C)—At long time the entropy decay is linear and is explained by the linear drag. 
For the lowest values of linear drag coecient a persistent Rossby wave emerges 
causing a secondary increase in the entropy before the long-time behaviour is seen.

https://doi.org/10.1088/1742-5468/aad19a


Eddy-mixing entropy and its maximization in forced-dissipative geostrophic turbulence

11https://doi.org/10.1088/1742-5468/aad19a

J. S
tat. M

ech. (2018) 073206

instability in the jet. There is little spread in rate of the entropy growth in simulations 
D1, ..., D7 with changed drag parameter. This growth is arrested for all experiments at 
a maximum value in region B for the same time and where the maximum is also not 
greatly changed with the diering linear drag coecient. The entropy then decreases, 
in the period B to C, towards its asymptotic behaviour. The rate of decrease is greater 
than can be explained by the sink of entropy due to linear drag, Ar. This means that in 
the period between B to C the advective production of entropy must become negative 
and acts as a sink of entropy. As we shall see in the following sections this transient 
slump of entropy is concomitant with the emergence of large-scale flow structures and 
the decrease in disorder that this entails.

There is an interesting dierence between simulations D1, ..., D3 and the other simu-
lations. These low drag simulations see a second increase in entropy (figure 2, near 
Time = 1000) toward the long-time behaviour as well as an oscillation about the long 
time behaviour. These eects can be illuminated by examining the flow, at low linear 
drag coecient a persistent Rossby wave forms causing an increase in the disorder as 
compared to laminar flow as well as the observed oscillations. This however does not 
inhibit the asymptotic entropy decrease due to dissipation which erases small-scale 
fluctuation while, in the right parameter regime, leaving the large-scale flow intact.

In freely-decaying turbulence the eddies will ultimately die away through the action 
of linear drag and hyper-viscosity causing the advective production of entropy, P, to 
tend to zero at long times. In this case equation (20) tends to the asymptotic solution 
for the entropy evolution

S(t) ≈ −Art+K for long times,� (21)
where K is a constant of integration. We can test this hypothesis in a simulation of a 
freely decaying unstable jet as for long times we would expect the activity of the eddies 
to asymptotically decay to zero. We compare this prediction with the first numerical 
experiment described in section 2 and shown in figure 2. We see a striking agreement 
between the long time behaviour, to the right of C, predicted by (21) and the slopes 
diagnosed from the simulations. Figure 3 shows the agreement between the predicted 
and the measured long time slope of the linear entropy decrease which is found to be 
near exact.

5.2. Eddy-mixing entropy in forced-dissipative turbulence

We now turn our attention to the entropy evolution in the forced-dissipative experi-
ments FD1, ..., FD7. We start by considering the entropy for short times, comparing 
it to snapshots of the potential vorticity. As an example we consider experiment FD3. 
Figure 4 shows the evolution of entropy as the system evolves to a statistically steady 
state. Initially, in region A, the flow is near laminar with only the small initial per-
turbation. We see that this corresponds to a low value of entropy. Once instabilities 
begin to grow the corresponding growth of entropy is fast and grows to a maximum 
value much like the evolution in the freely-decaying simulations. At the maximum of 
entropy, region B, the turbulence has covered the whole domain with small scale eddies. 
As these eddies mix the potential vorticity we see a slump in the entropy. When we 
examine the flow at the bottom of the slump, region C, we see that a large scale Rossby 

https://doi.org/10.1088/1742-5468/aad19a


Eddy-mixing entropy and its maximization in forced-dissipative geostrophic turbulence

12https://doi.org/10.1088/1742-5468/aad19a

J. S
tat. M

ech. (2018) 073206

wave has emerged propagating on a sharp potential vorticity gradient corresponding to 
a mixing barrier. This transient decrease of entropy, or disorder, in the system allows 
us to describe the way in which energy has condensed at large scales in an entropic 
sense. The concomitance of this decrease in entropy with the emergence of large scales 
leads to a novel interpretation of well known inverse transfer of energy phenomena: the 
emergence of coherent large scales can be described by the decrease of entropy in this 
system during the transient spin-up of the statistically steady state.

Figure 3.  Measured slope of long time linear decay of the entropy, diagnosed from 
simulations D1, ..., D7, plotted against the predicted slope. The agreement is near 
perfect.

Figure 4.  Evolution of entropy during spin-up of forced-dissipative flow.  
(A)—Initially laminar flow with small perturbation. As the flow becomes unstable 
the eddy-mixing entropy increases rapidly. (B)—Entropy reaches a global maximum 
at the point where turbulence has spread across the whole domain. Disorder is at 
small scales. (C)—Coincident with the emergence of a large scale Rossby wave the 
entropy decreases. Subsequently the entropy fluctuates around a balanced time-
mean value.
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At longer times the entropy fluctuates around a balanced steady state value. This 
behaviour of entropy is the same for all the forced-dissipative simulations, FD1, ..., FD7, 
shown in figure 5(a), much like statistically steady state balance of energy, shown in 
figure  5(b). Both the time-mean entropy and energy increase with the wind stress 
strength in steady state as well as exhibit fluctuations about this mean (although the 
energy fluctuations are suppressed in figure 5(b) due to the logarithmic scale). The bal-
anced steady state behaviour of the entropy is explained, according to the reasoning 
of section 4, by the competition between the advective production of entropy and the 
constant sink due to linear drag, that is

P − Ar = 0,� (22)
where the over-line denotes the time-mean in statistically steady state. It is important 
to note that, because  −r is a merely a negative number, both the increase and decrease 
in the entropy fluctuations arise from the advective production, P. That is, eddies can 
act as both a source and a sink of entropy. It is important to note that the action of P 

Figure 5.  (a) Evolution of entropy in simulations FD1, ..., FD7. We see that entropy 
behaves as a balanced quantity in a statistically steady state: in the time mean 
the sources of entropy are equal to the sinks of entropy. (b) Evolution of energy 
in simulations FD1, ..., FD7 shown on a logarithmic scale. Like entropy the energy 
is balanced in a statistically steady state. The energy takes a longer time than the 
entropy to reach steady state balance.
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as a source and a sink must be associated with the presence of dissipation which allows 
there to be fluctuations in otherwise conserved global quantities such as energy and 
entropy which exhibit inverse and direct transfers between scales.

Although the time derivative of entropy has no explicit dependence on forcing, the 
forcing does supply energy to the turbulent motions by sustaining the eddy production 
of entropy, unlike in the case of the freely-decaying experiment. The forcing implicitly 
sets the maximum and steady state value of entropy. We will further consider how the 
entropy is related to other well-known dynamical quantities in the following section.

6. Relation to the maximum entropy principle

6.1. Time evolution of entropy and the maximum entropy principle

In what has been discussed so far we have considered the derivative of entropy with 
respect to time. Now we consider its relation to the maximum entropy principle which 
is at the core of the equilibrium statistical mechanics theory of ideal geophysical flow 
[17]. Although we will refer to the ‘maximum’ entropy principle it is important to note 
that the entropy may exhibit a minimum or stationary point and that classifying these 
stationary points lie beyond the scope of this study. In order to achieve clarity in our 
discussion we define the following terminology. For the purposes of this study it is use-
ful to restrictively define equilibrium as a stationary entropy state of the ideal flow (i.e. 
MRS theory). For forced-dissipative systems, we refer to the long-time behaviour as a 
(non-equilibrium) statistically steady state.

The maximum entropy principle states that the entropy should be stationary with 
respect to variations in the probability distribution, ρ, given appropriate dynamical 
constraints. We can relate the time derivative of the entropy, S, to the functional 
derivative using the relation

dS

dt
=

∫
d2xdq̃

∂ρ

∂t

δS

δρ
.� (23)

Assuming that the system is in a stationary entropy state constrained by the value of 
energy and N polynomial Casimirs we have that the variational problem

δS

δρ
+ α(t)

δ

δρ

(
−1

2

∫
d2xdq̃ 〈ψ〉q̃ρ− E(t)

)

−
N∑

n=1

γn(t)
δ

δρ

(∫
d2xdq̃ q̃nρ− Cn(t)

)
= 0,

�
(24)

is satisfied, where α and γns are Lagrange multipliers and where E(t) and Cn(t) are the 
time varying values of energy and Casimirs. Substituting this condition into (23), we 
relate the time derivative of entropy to that of energy and the Casimirs:

dS

dt
= α∗(t)

dE(t)

dt
+

N∑
n=1

γn(t)
dCn(t)

dt
,� (25)

https://doi.org/10.1088/1742-5468/aad19a


Eddy-mixing entropy and its maximization in forced-dissipative geostrophic turbulence

15https://doi.org/10.1088/1742-5468/aad19a

J. S
tat. M

ech. (2018) 073206

where α∗ ≡ −α, and the detailed derivation of equation (25) is given in appendix A.3. 
This equation says that if the entropy is maximal under some constraints then the 
evolution of the entropy can be entirely explained by the evolution of the quantities 
constraining it. We can split the time evolution of the Lagrange multipliers into tem-
poral mean and fluctuations such that α∗(t) = α∗ + α∗′(t), and similarly for the other 
Lagrange multipliers. Assuming that the deviations in the Lagrange multipliers are 
small, which we will address in more detail in due course, and integrating (25), we can 
write an approximate relation for the time evolution of entropy in terms of the time 
evolution of energy and the Casimirs, giving

S(t) ≈ α∗E(t) +
N∑

n=1

γnCn(t) +K,� (26)

where K is a constant of integration. This expression relies on two assumptions. Firstly, 
the entropy is maximized constrained by the value of energy and the Casimirs at any 
point in time; in other words, the system is in a quasi-equilibrium state defined as a 
non-equilibrium statistically steady state where the time scales for changes in the bal-
anced quantities is larger that the time the eddies take to drive the system to station-
ary entropy state. Secondly, the fluctuations in the Lagrange multipliers (sensitivities 
of the entropy) are small. We now turn to testing the relation, (26), in order to test 
these assumptions.

6.2. Reconstruction of entropy evolution

We can test equation (26) by regressing the diagnosed time evolution of entropy onto 
the time evolution of energy and the other conserved quantities, the Casimirs, and com-
paring the reconstructed entropy time series against the diagnosed entropy time series. 
It was found the this procedure does not give a good reconstruction when the spin up is 
included in the time series, however there is good agreement when we only consider the 
statistically steady state: it is likely that the time dependence of the Lagrange multipli-
ers is large during spin up but not in the statistically steady state.

An example is given in figure 6 for simulation D6. Figure 6 shows the reconstruction 
of the entropy time series using only the first two Casimirs, circulation and enstrophy, 
in addition to the energy as well as using Casimirs up to tenth order. The correlation 
for the first two Casimirs is 0.73, and when ten Casimirs are used the correlation is 
0.93. This is a striking agreement and provides evidence that the turbulence acts to 
maximize entropy given time-varying constraints, according to equation (26), at each 
point in time in statistically steady state. That is, we find evidence that the system is in 
a quasi-equilibrium state as defined above. It must be noted that the quasi-equilibrium 
approximation is likely not to hold during spin-up.

The analysis has been repeated for all forced-dissipative simulations FD1, ..., FD7 
and including diering numbers of Casimirs. Figure 7(a) shows the correlation between 
reconstructed and diagnosed entropy time series as a function of number of Casimirs 
for FD1, ..., FD7. We see a marked increase in the correlation with increased numbers 
of Casimirs. This shows the importance of higher order Casimirs in this statistical 
mechanics approach. It is also apparent that odd power Casimirs do not contribute 
significantly to increasing the correlation. We test the significance of these correlations 
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by comparing with correlations produced by reconstructing the entropy from ‘synthetic’ 
time series for the energy and Casimirs. These ‘synthetic’ time series are produced ran-
domly such that they have the same power spectra as the diagnosed time series. It is 
found that correlations derived from the model data lie beyond the 99th percentile of 
an ensemble of ‘synthetic’ data. In this way we can reject the null-hypothesis that the 
observed correlations are due to statistical over-fitting. A detailed description of this 
significance test is given in appendix A.4.

We can repeat this analysis, now calculating the entropy along instantaneous stream-
function contours. This means that the macro-cells defined in section 3 become contours 
of streamfunction rather than zonal band as has been used up to now. The entropy will 
change as a consequence of this transformation but the energy and Casimirs will not—
this implies that only the projection in (26) of the entropy evolution onto the energy 
and Casimirs that will change. The correlation of the reconstructed entropy with the 
diagnosed entropy for this choice of macro-cell is shown in figure 7(b).

The main point to note here is that the correlation is higher, and converges quickly, 
for fewer Casimirs. The fourth order Casimir seems to be of particular importance with 
all simulations having a correlation of greater than 0.7 if four Casimirs are used. This 
agrees with the observation of [10] that viewing potential vorticity distributions in a 
more of a Lagrangian sense acts to simplify the statistics, thus requiring a reduced 
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Figure 6.  Reconstruction of the entropy evolution using relation (26). Top—using 
only the first two Casimirs, circulation and enstrophy. Bottom—using first ten 
Casimirs. Both show significant correlation with the two Casimir reconstruction 
clearly matching the low frequency fluctuations, however but failing to capture the 
high frequency fluctuations. The ten Casimir reconstruction performs substantially 
better.
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number of moments to describe the local probability distribution of potential vorticity. 
The particular importance of the fourth order Casimir here is in contrast to the study 
of [1] who found that, in their numerical set-up, no Casimir above order three was 
relevant; this indicates that the particular Casimirs which are most important depend 
heavily on the particulars of any given system (i.e. domain geometry and nature of 
forcing).

The fact that it is possible, to a large extent, to reconstruct the statistically steady 
state time series for entropy using the corresponding dynamically balanced quantities 
of the flow is tantalizingly suggestive that in a statistically steady state of a forced-
dissipative flow the turbulence pushes the system into a quasi-equilibrium: a non-equi-
librium statistically steady state which nonetheless close to stationary entropy state 
at each point in time with time varying constraints. That is, although not in a true 
equilibrium (ideal flow with maximal entropy), the rate at which turbulence pushes 
the entropy to its allowed value is much faster than the time scales over which the 
conserved quantities are changing and is analogous to the quasi-static approximation 
in thermodynamics.

As we saw in sections 5.1 and 5.2, the eddies can act as a source or sink of entropy. 
Indeed, the fact that the balanced quantities such as energy (figure 5(b)) fluctuate at 
all is due to the turbulence, if there were no non-linearities then we would have steady 
flow and no fluctuations. We suggest that the eddies play a double role, simultaneously 
maintaining the quasi-equilibrium and modulating its constraints. Further work, over 
a wider range of parameters, is required to obtain firmer evidence for the maximum 
entropy principle at work.

Figure 7.  (a) Correlation between the diagnosed and reconstructed entropy time 
series following the relationship (26). Entropy is calculated on zonal bands for 
simulations FD1, ..., FD7. We see a clear improvement with number of Casimirs 
included. This improvement is quantitatively dierent for each simulation.  
(b) Correlation between the diagnosed and reconstructed entropy time 
series following the relationship (26). Entropy is calculated on instantaneous 
streamfunction for simulations FD1, ..., FD7. We see a clear improvement with 
number of Casimirs included. This improvement is quantitatively dierent for 
each simulation but now all simulations show high correlation of greater than 0.7 
with only four Casimirs. This is to be contrasted with (a).
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6.3. Solving for the Lagrange multipliers

Solving the variational problem, (24), gives us a probability distribution in terms of a 
set of unknown Lagrange multipliers, in this section we describe the method for deter-
mining these from knowledge of the energy and Casimirs of the flow. To determine the 
Lagrange multipliers it is necessary to solve the non-linear simultaneous equations

−2E = − ∂

∂α

∫
d2x lnZ(α, γ1, ..., γN)

� (27)
for the energy constraint and

Cn = − ∂

∂γn

∫
d2x lnZ(α, γ1, ..., γN)

� (28)
for each Casimir constraint. Here Z is the local normalization, or the partition func-
tion, of the probability distribution given as

Z =

∫
dq̃ exp

(
−α〈ψ〉q̃ −

N∑
i=n

γnq̃
n

)
,� (29)

thus, Z is constructed such that∫
dq̃ ρ(q̃|x) = 1.� (30)

Determining the Lagrange multipliers for given values of N constraints is numerically 
dicult and its solution is not tackled in this study.

However, we can proceed by reducing the dimensionality of the problem. Ironically 
this is achieved by first considering the case of infinite dimensions. Constraining the 
entropy of the flow the first N polynomial Casimirs of the flow is a truncated version 
of the exact constraint. To constrain by all Casimirs of the flow we constrain by the 
global potential vorticity distribution discussed in section 2. The constraint is given by

Π(q̃) =

∫
d2x ρ(q̃|x),

� (31)
and the Lagrange multiplier becomes a function of q̃ , γ(q̃). The corresponding varia-
tional problem

δS

δρ
+ α

δ

δρ

(
−1

2

∫
d2xdq̃ 〈ψ〉q̃ρ− E

)
− δ

δρ

(∫
d2xdq̃ γ(q̃)ρ− Π(q̃)

)
= 0,

�

(32)

now gives the solution

ρ(q̃|x) = 1

Z
exp (−α〈ψ〉q̃ − γ(q̃)) ,� (33)

for the probability distribution. Substituting (33) into (31) we obtain the expression

Π(q̃) = e−γ(q̃)

∫
d2x

e−α〈ψ〉q̃

Z
.� (34)
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The integral here is a function of potential vorticity only and we can write γ(q̃) in 
terms of Π and the integral. This allows us to eliminate the Lagrange multiplier corre
sponding to the Casimir constraint leaving us with only α to find. Eliminating γ from 
(33), we obtain the probability distribution in terms of the Lagrange multiplier, α, and 
the global distribution, Π:

ρ(q̃|x) = 1

Z(x)
∫
d2x

(
e−α〈ψ〉q̃

Z(x)

)Π(q̃)e−α〈ψ〉q̃.
� (35)

A numerical method can be constructed for the two-dimensional problem of optimizing 
the values of α and Z simultaneously thus finding the maximum entropy distribution 
from only knowledge of global quantities. The details of the numerical method is given 
in appendix A.5 and the results of this methodology follow.

6.4. Reconstruction of statistics

In this section we reconstruct the statistics from the maximum entropy distribution, 
(35), by optimizing for the Lagrange multiplier, α. The resulting values for α in simu-
lations FD1, ..., FD7 are shown in figure 8. We see that the value of α has a strong 
dependence on the strength of wind stress and time. Figure 8(a) shows the evolution 
of α during spin up, we see a strong reduction in the value of α at short times with 
the value of α fluctuating about a statistically steady state value for long times. In 
steady state the fluctuation around the time-mean value is very small, this supports the 
assumption made in section 6.2 to derive equation (26). Also shown is the dependence 
of the time-mean value of α on the wind stress strength in figures 8(b) and (c). The 
steady state sensitivity of entropy to energy is drastically decreased with the strength 

Figure 8.  (a) Shows the evolution of log10 α with time. We see a very quick 
relaxation to a steady state value with fluctuation around this value in steady 
state being small. (b) Shows the steady state mean value of α against the strength 
of the wind stress. We see at low forcing have a very high sensitivity of entropy 
to energy while at high forcing the sensitivity is low. (c) Shows mean value of α 
against wind stress strength, now on a log–log scale. We see a near power-law 
behaviour with an approximate slope of  −1.7.
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of wind stress suggesting that the entropy of the system becomes insensitive to pertur-
bations in energy at high wind stress. Figure 8(c) displays a near power-law dependence 
of α on τ0 with an exponent of approximately  −1.7, the explanation of this feature is 
left for future work.

Interpretations of the Lagrange multiplier, α, come with a caveat; the numerically 
determined value of α is only as accurate as the maximum entropy hypothesis and, in 
particular, the mean field approximation for the energy. To test the accuracy of these 
devices we compare the reconstructed statistics from the distribution, (35), and the 
diagnosed statistics from the numerical simulations.

Figure 9 shows diagnostics comparing the maximum entropy distribution evalu-
ated using (35) with the statistics diagnosed from the numerical simulation itself, 
that is, the ‘truth’. In short, despite displaying encouraging qualitative agreement 
with the simulations, the maximum entropy distribution does not fully capture the 
quantitative statistical details of simulations FD1, ..., FD6. Figure 9(a) shows a com-

parison between the reconstructed and diagnosed 〈q〉 − 〈ψ〉 relation for simulation 

FD6. The maximum entropy reconstruction shows good qualitative agreement but 
seems smoothed compared to the diagnosed relationship. Also for simulation FD6, 

figure 9(b) compares the SD(q)− 〈ψ〉 relation and we see that the quantitative agree-

ment is poorer. The standard deviation is underestimated in the centre of channel 
while being overestimated in the flanks. It must be noted that the maximum-entropy 
reconstruction of these statistical represents a drastic improvement over the energy-
enstrophy constrained theory.

Figures 9(c) and (d) compare the diagnosed and reconstructed skewness and kur-
tosis for simulation FD7. While giving qualitatively consistent features, the recon-
structed skewness and kurtosis display significant deviations near to the boundary. 
In addition, figures  9(e) and (f) compares the probability distribution, predicted 
and diagnosed, for simulations FD4 and FD5 at y  =  0 and y  =  2.01 respectively. In 
figure 9(e) the trimodal nature of the distribution is successfully captured but we can 
see that the maximum entropy distribution overestimates the weight of the central 
peak compared to the side peaks. In figure 9(f), we again can see a good qualitative 
agreement but in the details there are deficiencies. Many of the ways in which the 
maximum entropy statistics deviates from the simulations can be interpreted as a 
degradation of the strong persistent mixing barrier which the simulations FD1, ..., FD6 
exhibit. The statistical nature and consequences of this mixing barrier has been 
extensively studied, for this model, in [10].

In summary, the maximum entropy distribution, (35), produces an encouraging 
qualitative reproduction of the flow statistics. However, the quantitative reproduc-
tion is still lacking despite the suggestive evidence for the entropy being maximized 
presented in section 6.2. The derivation of the maximum entropy distribution relies 
on two main assumptions in the equilibrium, Miller–Robert–Sommeria, statistical 
mechanics: (a) maximization of entropy; and (b) the mean field approximation. We 
argue that the deficiencies of the maximum entropy distribution presented in this 
numerical experiment can be attributed to the break-down of the mean field approx
imation in a forced dissipative system. This will be discussed in detail in the following 
section.
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7. The mean-field approximation

A possible reason for the lack of success of the predicted probability distribution func-
tion, (35), is that the maximum entropy principle is not at work. Nevertheless, we 
believe that the analysis presented in section 6.2 provides sucient evidence to look for 
other reasons why (35) fails to quantitatively capture the statistics. In this section we 
consider the mean field approximation of Miller–Robert–Sommeria equilibrium statisti-
cal mechanics. The energy of the flow is given as

E[q] = −1

2

∫
dxψ(x)(q(x)− βy),� (36)

(a) (b) 

(c)

(f) (e)

(d)

diagnosed
predicted

Figure 9.  Diagnostics testing reconstructed maximum entropy statistics. (a) 
Comparison of the time-averaged mean potential vorticity against time-averaged 
streamfunction for simulation FD6. (b) Comparison of the time-averaged standard 
deviation of potential vorticity against time-averaged streamfunction for simulation 
FD6. (c) Comparison of the time-averaged skewness of potential vorticity against 
time-averaged streamfunction for simulation FD7. (d) Comparison of the time-
averaged kurtosis of potential vorticity against time-averaged streamfunction for 
simulation FD7. (e) Comparison of the maximum entropy probability distribution 
and the diagnosed distribution from simulation FD4, distributions are evaluated 
for the centre of the channel, y  =  0. (f) Comparison of the maximum entropy 
probability distribution and the diagnosed distribution from simulation FD5, 
distributions are evaluated for the flank of the jet, y  =  −2.01.
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because of the presence of ψ it is not clear how make the necessary substitution to write 
E as a functional of ρ allowing us to tackle this constraint analytically. We rewrite the 
energy as

E[q] = −1

2

∫∫
dxdx′ (q(x)− βy)G(x,x′)q(x′)� (37)

where G(x,x′) is the Green’s function of the dierential operator defined by, 
q = ∇2ψ + βy. Now, by swapping the potential vorticity field for its average value, and 
defining 〈q̃〉 ≡ ∇2〈ψ〉+ βy, we get; 

EM [ρ] = −1

2

∫
dx 〈ψ〉(〈q̃〉 − βy).� (38)

This step is the mean-field approximation, often used in models of condensed matter 
physics. In essence, we are saying that, rather than considering the interaction energy 
between all pairs of potential vorticity patches, we consider that each patch of poten-
tial vorticity only feels mean eect of all other patches.

For an ideal fluid in statistical equilibrium, the mean-field approximation ceases to 
be approximate and becomes exact due to the non-local aspect of the Green’s func-
tion, G [6]; for example, two-dimensional vortex dynamics had a logarithmic Green’s 
function leading to long-range vortex–vortex interactions. The mean-field formulation, 
however, necessitates two related properties of ideal equilibria: (a) that the mean eddy 
potential vorticity flux is zero, ∇ · 〈u′q′〉 = 0, which is a consequence of the equilibrium-
state q-ψ relation, 〈q〉 = f(〈ψ〉); and (b) that neighbouring macro-cells of the flow are 
uncorrelated. These properties are fundamentally linked with the mean field approx
imation and are manifestly not satisfied in a forced-dissipative statistically steady 
state. Therefore, we suggest that while the maximization of entropy might be an useful 
organizing principle in forced-dissipative flow, the mean-field approximation remains 
only a crude approximation. We propose two potential avenues for future study to 
tackle this problem.

	•	 �It may be possible to find a coarse-graining (i.e. macro-cells) which is partially 
Lagrangian to reduce dierence between E[q(x)] and EM [ρ(q̃|x)]. This is the 
approach taken in [17] which produces good agreement between experiment and 
equilibrium theory by moving into a frame of reference moving at the phase speed 
of a large scale Rossby wave. However, this is unlikely to work in the presence of 
multiple wave modes as is the case with simulations FD1, ..., FD6, see discussion 
in [10].

	•	 �Alternatively, we speculate that a perturbation method could be applied to 
the mean-field approximation to yield a more realistic probability distribution. 
However, precisely how this might be achieved remains to be determined and is 
subject of future work.

Indeed, it may be that a combination of the two approaches will provide the means 
of deriving forced-dissipative statistics from the maximum entropy principle.
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8. Conclusion

In this study we have shown how an eddy mixing entropy can be used as a measure of 
turbulent disorder. By deriving the influence of forcing and linear drag, we were able to 
use entropy to describe the turbulence in a freely-decaying and forced-dissipative flow. 
The evolution of entropy describes the three stages of the eddy life cycle and eddy-
mean interaction: growth of instability, formation of large scale coherent structures 
and steady state fluctuations. In particular, the eddy production of entropy, which has 
been the focus of much theoretic inquiry, can be explicitly computed from data. The 
fact that the eddy-mixing entropy behaves in a dynamically balanced way is not a 
priori clear and provides a novel means of quantifying turbulent disorder in geophysical 
flows. This study of the temporal evolution of entropy can inform work on stochastic 
parametrization by describing the disorder in a turbulent jet in a way that links to both 
statistical physics and information theory; we can begin to piece together a picture of 
the emergent physics of the total entropy whereas the local entropy of each macro-cell 
is related to the information content of the sub-gridscale statistics.

The relationship between the temporal evolution of entropy and the maximum 
entropy principle was considered in section  6. Under the assumption of maximum 
entropy it was found that the time evolution of entropy was set by the time evolution 
of its constraints. Suggestive evidence was found that the entropy is maximized in the 
model simulations considered in this study. It is clear that if a variational problem can 
be used to infer the statistics then the number of Casimir constraints has to be large.

With this evidence for the maximum entropy principle being a physically meaning-
ful candidate for describing the behaviour of turbulence in the system studied here, we 
considered the problem of inferring the sub-grid scale statistics. This is equivalent to 
inferring the Lagrange multipliers, used in the maximum entropy variational problem, 
from the constraints applied. We presented the mathematical formulation of this prob-
lem in section 6 and showed how the dimensionality could be reduced given knowledge 
of the global potential vorticity distribution. Further, we reconstructed the maximum 
entropy statistics from knowledge of the energy, global potential vorticity distribu-
tion, and zonal mean streamfunction as a functions of time. We find that although 
the maximum entropy statistics reproduce qualitatively representative features of the 
flow, quantitative agreement is lacking, especially for higher order statistical moments. 
In section 7, the mean-field approximation was discussed as a potential culprit for the 
quantitative disagreement and avenues for future investigation were proposed.

In this study we have presented eddy-mixing entropy as both a descriptive tool 
and a dynamically balanced quantity in a barotropic turbulent jet. We have also 
demonstrated the relationship between the statistical mechanics of forced-dissipative 
flow and well-known globally balanced quantities such as the energy and enstrophy of 
the flow. In doing so we were able to provide evidence for the action of the maximum 
entropy principle at work in a forced-dissipative system. The question of the useful-
ness of statistical mechanics theories, such as the Miller–Robert–Sommeria theory, 
in understanding the statistically steady states of two-dimensional and geophysical 
turbulence has received much attention (e.g. [11, 17, 32, 47]) but remains somewhat 
unclear. By explicitly considering the evolution of eddy mixing entropy in a forced-
dissipative model we are able to demonstrate the importance and utility of eddy 
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mixing entropy in the study of forced-dissipative geophysical turbulence, opening the 
door to revisiting the application of statistical mechanics to ocean mesoscale eddy 
parameterizations (see [18]).
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Appendix

A.1. Numerical computation of entropy

It is important to note the dierence between the discrete, or Shannon, entropy

S = −
∑
i

ρi ln ρi,

� (A.1)
and the continuous, or dierential, entropy we use in this study

S = −
∫

dx ρ(x) ln ρ(x).

� (A.2)
One of the clear dierences between these two entropies is that the continuous entropy 
can become negative whereas the discrete entropy is never less than zero. On the other 
hand the continuous entropy can be negative and indeed tends to negative infinity for 
the asymptotic limit of a delta-function. This means that we need to be careful when 
numerically evaluating an estimator for the continuous entropy. Naïvely using the 
standard discrete approximation for the integral in (A.2) leads to calculating a quantity 
proportional to the discrete entropy, (A.1). To find an approximation for, (A.2), we 
must evaluate the quantity

S ≈ −∆x
∑
i

ρi ln ρi + ln∆x,

� (A.3)
where ρi becomes a histogram approximation to the distribution ρ(x). However, this 
method of approximation was found to be biased and introduced a systematic error 
into the results presented in this study.

Instead, we used a sample-spacing estimator for the distribution leading to an 
improved numerical approximation for the continuous entropy [2, 43]. The sample-
spacing estimator relies of the idea that when the data is ordered, from smallest to larg-
est value and represented by the list {x(i)}, then the reciprocal of the dierence between 
two samples, separated by m, spaces is an estimator for the probability density. That 
is, we approximate ρ by

ρ ∝ 1

x(i+m) − x(i)
.� (A.4)
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Substituting this into (A.2) and using appropriate normalizations, the following expres-
sion is found for the entropy

S ≈ 1

N −m

N−m∑
i=1

ln

(
N + 1

m
(x(i+m) − x(i))

)
.� (A.5)

Here, N is the number of samples; m is the spacing size; and x(i) represents the ith 
ordered sample. Following [43] we use the fact that the optimal of m is around 

√
N . 

This method was used to evaluate the entropy throughout this study and is found to 
be considerably better than more naïve methods. The simpler methods proved to have 
a strong dependence on the choice of histogram bin width rendering them unusable for 
quantitative comparison with theory.

A.2. Detailed derivation of the tendency equation for entropy

Ignoring the non-local and non-linear terms the potential vorticity equation is

∂q

∂t
= −r(q − βy) + g(y),� (A.6)

and the corresponding probability distribution satisfies the equation,

∂ρ

∂t
=

∂

∂q̃
[r(q̃ − βy)ρ]− g(y)

∂ρ

∂q̃
.� (A.7)

We can derive the entropy tendency by substituting equation (A.7) into

dS

dt
= − d

dt

∫
d2xdq̃ ρ ln ρ,� (A.8)

Figure A1. Red line—mean cross-validated correlation between diagnosed and 
reconstructed entropy as a function of wind stress strength. Black lines—percentiles 
for the ensemble of mean cross-validated correlations from ‘synthetic’ time series 
of energy and Casimirs.
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= −
∫

d2xdq̃

[
∂ρ

∂t
ln ρ+

∂ρ

∂t

]
,� (A.9)

= −
∫

d2xdq̃
∂ρ

∂t
ln ρ− d

dt

∫
d2xdq̃ ρ,� (A.10)

= −
∫

d2xdq̃
∂ρ

∂t
ln ρ,� (A.11)

where the final step comes from the normalization condition on the distribution, ρ. We 
rewrite (A.7) as

∂ρ

∂t
= r

∂(q̃ρ)

∂q̃
− h(y)

∂ρ

∂q̃
,� (A.12)

where

h(y) = rβy + g(y).� (A.13)
Substituting, we obtain

Ṡ = −
∫

d2xdq̃

((
−h(y)

∂ρ

∂q̃
+ r

∂(q̃ρ)

∂q̃

)
ln ρ

)
.� (A.14)

We take each term separately in order to simplify the above expression. The first term 
is simplified, integrating by parts, as
∫

d2xdq̃

(
−h(y)

∂ρ

∂q̃
ln ρ

)
=

∫
d2xh(y)

∫
dq̃

∂ρ

∂q̃
ln ρ,� (A.15)

= −
∫

d2x

(
h(y)

(
[ρ ln ρ]+∞

−∞ −
∫

dq̃
∂ρ

∂q̃

))
� (A.16)

= 0.� (A.17)
We can see that the integral above is zero from the fact that both ρ and ρ ln ρ vanish 
at ±∞. The second term can also be simplified, integrating by parts twice, as
∫

d2xdq̃

(
r
∂(q̃ρ)

∂q̃
ln ρ

)
= r

∫
d2x

(
[q̃ρ ln ρ]+∞

−∞ −
∫

dq̃ q̃
∂ρ

∂q̃

)
� (A.18)

= −r

∫
d2x

(
[q̃ρ]+∞

−∞ −
∫

dq̃ ρ

)
� (A.19)

= Ar,� (A.20)
where A is the area of the domain. Here, we have, in addition to the appropriate bound-
ary conditions, used the normalization condition for ρ. Thus, the corresponding equa-
tion for the entropy tendency becomes

Ṡ = P − Ar,� (A.21)
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where we have reintroduced the non-local and non-linear terms as a residual via the 
advective production of entropy, P.

A.3. Time-evolution of maximal entropy

Suppose that entropy is maximized, constrained by time-varying energy and N polyno-
mial Casimirs. The variational problem to be solved is given by

δS

δρ
+ α(t)

δ

δρ

(
−1

2

∫
d2xdq̃ 〈ψ〉q̃ρ− E(t)

)

−
N∑

n=1

γn(t)
δ

δρ

(∫
d2xdq̃ q̃nρ− Cn(t)

)
= 0

�

(A.22)

taking the functional derivative of the constraints we obtain

δS

δρ
= α(t)〈ψ〉q̃ +

N∑
n=1

γn(t)q̃
nρ.� (A.23)

To find the entropy tendency, we substitute this variational problem into the relation

dS

dt
=

∫
d2xdq̃

∂ρ

∂t

δS

δρ
,� (A.24)

giving

dS

dt
=

∫
d2xdq̃

∂ρ

∂t

[
α(t)〈ψ〉q̃ +

N∑
n=1

γn(t)q̃
nρ

]
.� (A.25)

Rearranging and pulling out time derivatives we obtain

dS

dt
= α(t)

d

dt

∫
d2xdq̃ 〈ψ〉q̃ρ+

N∑
n=1

γn(t)
d

dt

∫
d2xdq̃ q̃nρ,� (A.26)

and identifying the integrals with the constraints which they are, by construction, 
equal to, we obtain

dS

dt
= −α(t)

dE(t)

dt
+

N∑
n=1

γn(t)
dCn(t)

dt
.� (A.27)

For ease of presentation we define α∗ ≡ −α, completing the derivation for the entropy 
tendency

dS

dt
= α∗(t)

dE(t)

dt
+

N∑
n=1

γn(t)
dCn(t)

dt
.� (A.28)

A.4. Significance testing

To exclude the possibility of statistical over-fitting of the entropy steady state 
fluctuations, in section 6.2, we perform a significance test for the correlations observed. 
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Firstly, cross-validate the regression by using half the data to train the regression while 
validating on the other half. We also create an ensemble of ‘synthetic’ time series 
which have the same power spectra as the diagnosed energy and Casimir time series. 
This is done using a MATLAB function, ebisuzaki.m, which is available as part of the 
WEACLIM toolbox by Vincent Moron, available on the MathWorks file exchange. 
This method follows the significance test of [12]. We test the case using energy and 10 
Casimirs to reconstruct to entropy evolutions, we cross-validate both the reconstruc-
tion by diagnosed time series as well as the ensemble of reconstructions from ‘synthetic’ 
time series. The results are given in figure A1, where we have plotted the mean cross-
validated correlation for the diagnosed time series, c, given as

c =
c1 + c2

2
,� (A.29)

where c1 is the correlation between the reconstructed and diagnosed entropy for the 
second half of the data, trained on the first half; c2 is defined vice versa. Also plotted 
are the percentiles for the ensemble of 1000 mean cross-validated correlations produced 
from the ‘synthetic’ time series. This clearly shows that the observed correlations lie 
beyond the 99th percentile of the ensemble and excludes the possibility of statistical 
over-fitting.

A.5. Reconstructing maximum entropy statistics

We have seen from equation (35) that the partition function can be written as

Z(x) =

∫
dq̃


 Π(q̃)e−α〈ψ〉q̃

∫
d2x

(
e−α〈ψ〉q̃

Z(x)

)

 ,� (A.30)

which is an implicit equation for Z . Writing R(q̃,x) = exp(−α〈ψ〉q̃) we can recast equa-
tion (A.30) as an iterative relation for the i  +  1 approximation for the partition function

Zi+1(x) =

∫
dq̃


 Π(q̃)R(q̃,x)
∫
d2x

[
R(q̃,x)
Zi(x)

]

 .� (A.31)

Starting with Z1 = 1, we can produce an approximation for the partition function 
which normalizes the probability distribution, ρ, to a better than 1% accuracy after 20 
iterations.

Using this methodology we are able to reduce the problem of determining the 
Lagrange multipliers to a one-dimensional problem of determining α by optimizing 
for the mean-field energy, EM. Using a MATLAB numerical minimization function 
(fminsearch), we can optimize α in order to match the energy of the flow, that is, by 
minimizing the cost function

L =

∣∣∣∣EM − 1

2

∫
d2x 〈ψ〉〈q̃〉

∣∣∣∣ ,� (A.32)

for given EM, N and 〈ψ〉 which are diagnosed from the simulations.
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