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a b s t r a c t 

Jets are an important element of the global ocean circulation. Since these jets are turbulent, it is 

important that they are characterized using a statistical framework. A high resolution barotropic channel 

ocean model is used to study jet statistics over a wide range of forcing and dissipation parameters. The 

first four moments of the potential vorticity distribution on contours of time-averaged streamfunction 

are considered: mean, standard deviation, skewness and kurtosis. A self-similar response to forcing is 

found in the mean and standard deviation for eastward barotropic jets which exhibit strong mixing 

barriers; this self-similarity is related to the global potential enstrophy of the flow. The skewness and 

kurtosis give a behaviour which is characteristic of mixing barriers, revealing a bi/trimodal statistical 

distribution of potential vorticity with homogenized potential vorticity on each side of the barrier. The 

mixing barrier can be described by a simple statistical model. This behaviour is shown to be lost in 

westward jets due to an asymmetry in the formation of zonal mixing barriers. Moreover, when the 

statistical analysis is performed on eastward jets in a streamfunction following frame of reference, the 

distribution becomes monomodal. In this way we can distinguish between the statistics due to wave-like 

meandering of the jet and the statistics due to the more diffusive eddies. The statistical signature of 

mixing barriers can be seen in more realistic representations of the Southern Ocean and is shown to be 

an useful diagnostic tool for identifying strong jets on isopycnal surfaces. The statistical consequences of 

the presence, and absence, of mixing barriers are likely to be valuable for the development of stochastic 

representations of eddies and their dynamics in ocean models. 

© 2017 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

Ocean jets such as the Gulf Stream, Kuroshio Extension, as well

as the jets embedded within the Antarctic Circumpolar Current,

represent some of the most turbulent regions of the ocean (e.g.,

Stammer and Wunsch, 1999 ). Such jets have an important influ-

ence on the large scale circulation of the ocean and atmosphere.

For example, Scaife et al. (2011) highlight that model represen-

tation of winter atmospheric blocking is greatly improved when

the horizontal resolution of the North Atlantic ocean is increased,

thereby improving the representation of the Gulf Stream. From a

hydrographic survey, Bower et al. (1985) determined that water

masses are mixed across the Gulf Stream at depth, but that the

Gulf Stream acts as a barrier towards the surface where the jet

is strongest, inhibiting exchange of tracers between the subtropi-

cal and subpolar gyre. More recent studies ( Ferrari and Nikurashin,

2010; Klocker et al., 2012 ) show the suppression of mixing, and

consequently the transport of heat and salt, across jets within the
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ntarctic Circumpolar Current. This suppression of mixing can be

ttributed to the tendency of strong jets to form mixing barriers,

egions of high potential vorticity gradient which eddies have dif-

culty penetrating. 

The tendency for strong jets to form mixing barriers is, in fact, a

onsequence of the turbulence which sharpens the jets and main-

ain strong potential vorticity gradients by providing up-gradient

uxes of momentum ( Starr, 1968 ). Evidence for this jet sharpening

ehaviour has a long history in baroclinic (e.g. Fultz et al., 1959 )

nd barotropic (e.g. Sommeria et al., 1989 ) jets which is compre-

ensively reviewed in Dritschel and McIntyre (2008) . The highly

nisotropic picture we have formed from these studies is that of

 potential vorticity step corresponding to the jet itself, sharpened

y the eddies, with regions of near homogenized potential vorticity

o either side of the jet within which the eddies act diffusively. 

The dynamical description of ocean jets is complemented by at-

empts to derive statistical models of turbulent geophysical flow

 Esler, 2008 ). This is motivated in part due to the stochastic nature

f turbulent flows which necessarily require more than a purely

eterministic description. Moreover, with increasing interest in the

pplication of stochastic parameterization to ocean modelling (e.g.,
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Fig. 1. Left : examples of positively skewed ( red ) and negatively skewed ( blue ) distributions compared with a normal distribution ( black ). Right : examples of leptokurtic ( red ), 

kurtosis greater than three, and platykurtic ( blue ), kurtosis less than three, distributions compared with a normal distribution with a kurtosis of three ( black ). All distributions 

shown have a mean of 0 and a standard deviation of 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 

B  

Z  

i  

i  

t  

p  

t  

1  

r  

t  

v  

2  

w

 

d  

n  

s  

e  

i

 

a  

i  

s  

s  

T  

s  

f  

a  

t  

o  

o  

s  

t  

t  

T  

s  

1  

s  

d

 

a  

i  

a  

v  

i  

b  

t  

t  

B  

a  

b  

t  

s  

i  

r  

w  

v  

t  

s  

t  

fi  

p

 

 

 

 

 

 

s  

p

 

a  

w  

a  

f  

t  

f  

d  

A  

i  

S  

t  

s  

o  

i  

j  

t  

i  

t  
erloff, 2005; Porta Mana and Zanna, 2014; Grooms et al., 2015;

anna et al., 2017 ) it is important to understand the underly-

ng statistics of geophysical flows and the fundamental organiz-

ng principles behind them. Many statistical mechanics theories of

urbulent flow are derived in the absence in of forcing and dissi-

ation: the so-called Robert–Sommeria–Miller equilibrium statis-

ical mechanics ( Bretherton and Haidvogel, 1976; Salmon et al.,

976; Robert, 1990; Miller, 1990; Robert, 1991; Robert and Somme-

ia, 1991 ). Equilibrium statistical mechanics theories of geostrophic

urbulence predict a functional dependence of the mean potential

orticity on the mean streamfunction (e.g., Bouchet and Venaille,

012 ). However, the ocean lies in a forced-dissipative regime for

hich a non-equilibrium statistical mechanics theory is required. 

The goal of this study is to understand the statistics of forced-

issipative ocean jets and how these are influenced by the dy-

amics of a mixing barrier. We explore the sensitivity of the jet

tatistics to forcing and dissipation and show that self-similarity

xists across a wide range of parameters, describing the character-

stic statistical signature of a mixing barrier. 

To address this goal, we examine the mean state of the flow

nd its variability in the presence of forcing and dissipation us-

ng mean, standard deviation and higher order moments such as

kewness and kurtosis. We will also compare and contrast these

tatistics to the predictions of equilibrium statistical mechanics.

he energy and enstrophy conserving theory considered in this

tudy is that presented in Jung et al. (2006) . Jung et al. (2006) dif-

ers from other tests of equilibrium statistical mechanics (e.g. Qi

nd Marston, 2014; Dritschel et al., 2015 ) in that it derives a spa-

ially coarse-grained version of the theory in order to test the the-

ry in a barotropic rotating annulus laboratory experiment. When

nly energy and potential enstrophy are conserved, the relation-

hip between mean potential vorticity and the mean streamfunc-

ion is linear while the standard deviation is constant with respect

o streamfunction according to equilibrium statistical mechanics.

hese predictions are derived in Jung et al. (2006) and are con-

istent with other interpretations of the theory (e.g. Salmon et al.,

976 ). Understanding these relationships in a forced-dissipative

ystem, however, remains an open problem which we will discuss

uring the course of this study. 

In addition to understanding how the mean and standard devi-

tion relations change in the presence of forcing and dissipation, it

s important to consider higher order moments of the flow, such

s skewness and kurtosis, which exist only when the potential

orticity distribution is non-Gaussian. As illustrated schematically

n Fig. 1 , different values of skewness and kurtosis of the proba-

ility distribution characterize asymmetry and intermittency (ex-

reme events) in turbulent flow. These moments have been shown
 t
o be important in describing the statistics of passive tracers (e.g.,

ourlioux and Majda, 2002 ). The character and nature of skewness

nd kurtosis in turbulent geophysical flows have been considered

y Thompson and Demirov (2006) and Hughes et al. (2010) . In par-

icular, Hughes et al. (2010) establish a mechanistic link between

kewness and kurtosis and the large scale dynamics of jets, allow-

ng these authors to use these moments to identify mixing bar-

iers. In a highly non-linear dynamical system such as the ocean,

e might expect extreme events in active tracers such as potential

orticity to have an impact on the mean large-scale circulation and

o be sensitive to forcing and dissipation. In this manuscript, we

tudy the potential vorticity statistics of a barotropic jet in a reen-

rant channel, varying the strength of forcing, the linear drag coef-

cient, and the direction of forcing. These experiments are used to

ursue the following aims: 

• To understand the dependence of the statistics of a turbulent

flow on forcing and dissipation in the presence and absence of

a mixing barrier. 
• To establish a statistical picture of mixing barriers with a sim-

ple statistical model which will inform the stochastic parame-

terization of eddy-mean flow interaction. 
• To distinguish between the statistics of eddies and the statistics

of waves. 

The results are restricted here to barotropic flows, an under-

tanding of which is a prerequisite for understanding more com-

lex flows with baroclinicity. 

The structure of the paper is as follows. In Section 2 , the model

nd experiments are presented. In Section 3 , the dynamics of the

est/eastward jet asymmetry is discussed. In Section 4 , the mean

nd standard deviation of potential vorticity are calculated as a

unction of time-averaged streamfunction in order to contrast with

he equilibria of the ideal dynamics, and a self-similar response to

orcing and dissipation is discussed. In Section 5 , the higher or-

er moments of skewness and kurtosis are similarly considered.

 clear link is made between the presence of a meandering mix-

ng barrier and a characteristic skewness/kurtosis behaviour. In

ection 6 , the importance of the meandering mixing barrier in de-

ermining the statistics of the flow is further considered, and the

tatistics calculated on instantaneous contours of streamfunction in

rder to follow the large scale meanderings of the mixing barrier

n a quasi-Lagrangian sense. In Section 7 , a further discussion of:

oint potential vorticity and streamfunction statistics; the impor-

ance of mixed distributions; implications for stochastic parameter-

zation; and application to Southern Ocean jets using an observa-

ion constrained primitive equation model. Finally, Section 8 con-

ains some concluding remarks. 
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Fig. 2. Geometry of the model domain, consisting of a zonal channel of meridional 

width L y and zonal extent L x . The wind-stress, τ , is zonal and varies only with the 

meridional coordinate, y . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

List of experiments and non-dimensional parameters. Note that simulations N and 

E are identical. 

Simulation Wind stress Linear drag Timestep, 

ID strength, τ 0 coefficient, r d t 

A 0 .005 0 .005 0 .001 

B 0 .01 0 .005 0 .001 

C 0 .02 0 .005 0 .001 

D 0 .04 0 .005 0 .001 

E 0 .08 0 .005 0 .001 

F 0 .16 0 .005 0 .001 

G 0 .32 0 .005 0 .001 

H 0 .08 0 .0 0 08 0 .0 0 05 

I 0 .08 0 .0 0 09 0 .0 0 05 

J 0 .08 0 .001 0 .001 

K 0 .08 0 .002 0 .001 

L 0 .08 0 .003 0 .001 

M 0 .08 0 .004 0 .001 

N 0 .08 0 .005 0 .001 

O −0 . 005 0 .005 0 .001 

P −0 . 01 0 .005 0 .001 

Q −0 . 02 0 .005 0 .001 

R −0 . 04 0 .005 0 .001 

S −0 . 08 0 .005 0 .001 

T −0 . 16 0 .005 0 .001 

U −0 . 32 0 .005 0 .001 
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2. Model and dynamics 

In this study we focus on a idealized barotropic model of

forced-dissipative turbulent flow in a channel. Although ocean jets

are baroclinic in nature, barotropic instability plays an important

role in the large scale dynamics of the meandering jet ( Waterman

et al., 2011 ). In this way, by learning about the statistical nature

of turbulent jets in the idealized system considered here, we can

build expectations of the behaviour of more complex systems. Re-

cent studies on the equilibration of freely decaying turbulence are

Esler (2008) and Harnik et al. (2014) which consider the baro-

clinic and barotropic channel problem respectively. In both stud-

ies the formation and statistics of mixing barriers are important in

determining the equilibrated state. Here we consider the forced-

dissipative statistics. In addition, the use of a barotropic model al-

lows us to draw a direct comparison of Jung et al. (2006) who

found good agreement between a barotropic rotating annulus ex-

periment and an (energy-enstrophy) equilibrium mechanics theory.

The non-dimensional, prognostic equation to be solved is 

∂q 

∂t 
= −{ ψ, q } − r∇ 

2 ψ − νh ∇ 

6 ψ − ∂ y τ (y ) , (1)

where ψ is the streamfunction, 

{ A, B } = ∂ x A∂ y B − ∂ x B∂ y A, (2)

is the horizontal Jacobian operator, τ ( y ) is the zonal wind stress

which varies only with meridional coordinate y, r is the linear drag

coefficient and νh is the hyper-viscosity. Linear drag is included to

remove momentum at large scales and the hyper-viscosity is in-

cluded in order to preferentially damp potential enstrophy at small

scales. The potential vorticity is given by 

q = ∇ 

2 ψ + βy, (3)

where ∇ 

2 ψ is the relative vorticity and βy is the planetary vortic-

ity. Here we adopt a β-plane approximation in which the planetary

vorticity varies linearly with y . In this study we refer to q as the

potential vorticity, and to the integral of q 2 as the potential enstro-

phy, in order to facilitate comparison with studies that incorporate

baroclinicity; however, in the barotropic model the potential vor-

ticity is identical to the absolute vorticity. 

The numerical code used is a modified version of that de-

veloped for the freely decaying turbulence problem in Esler

(2008) and, originally, Esler and Haynes (1999) . The model is

solved using a quasi-spectral method, spectral in the zonal direc-

tion making use of the periodicity. In the meridional direction a fi-

nite difference method is used. The first obvious difference is that

the original code solved for two-layer quasi-geostrophic dynamics

whereas the modified code solves for a barotropic flow with rigid

lid. Secondly, a wind stress forcing has been added which required

an alternative boundary condition to be applied to ensure the so-

lution is consistent with momentum conservation. The domain ge-

ometry is given in Fig. 2 . The boundary conditions follow those

specified in McWilliams (1977) requiring an integral momentum

balance to be applied at each time-step. The no normal flow con-

dition is written 

∂ x ψ | N,S = 0 , (4)
here the subscripts refer to the northern and southern bound-

ries respectively. To calculate the hyper-viscosity term we need

wo boundary conditions. To ensure no boundary stress we use the

ree slip conditions, 

 

2 n ψ | N,S = 0 , (5)

here n = 1 , 2 . Finally, the momentum conserving condition is

ritten 

| N,S = ±�(t) 

2 

, (6)

here �( t ) is spatially constant along the north and south bound-

ries and evolves temporally through the integral momentum bal-

nce, 

d�

dt 
= −

∫ 
d 

2 x 

[
r 
∂ψ 

∂y 
+ τ

]
. (7)

Two parameters are varied across a wide range of experiments,

abelled A through to U. In the first group of experiments, A-G, the

trength of forcing, τ 0 , is changed holding the linear drag coeffi-

ient, r , constant. The meridional variation of the wind stress is

ept the same for all experiments, 

= τ0 sech 

2 
(

y 

δ

)
(8)

here δ is a constant controlling the width of the wind forcing. In

he second group of experiments, H-N, the linear drag coefficient, r ,

s changed while holding the forcing strength, τ 0 , constant. Finally

he third group of experiments is a repeat of the first but with

he direction of the forcing reversed. The parameters for all three

xperiments are given in Table 1 with the parameters which are

eld constant for all experiments are given in Table 2 . 

. Linear stability and west/eastward asymmetry 

During this study we will refer to jets as any peaked zonal

ean flow whereas the term mixing barrier will refer to any re-

ion of high potential vorticity gradient which consequently pro-

ibits transport across it. A major dynamical difference is seen be-

ween the jets in simulations A-G (with varying forcing strength)

nd the jets in simulations O-U, with reversed forcing. This dif-

erence is evident in the snapshots of potential vorticity for sim-

lations D and R, shown in Fig. 3 for illustrative purposes as the
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Table 2 

Fixed parameters of model simulations. 

Parameter Value 

Meridional extent, L y 5 π /2 

Zonal extent, L x 20 π

Number of zonal grid-points, M 1024 

Number of meridional grid-points, N 128 

Time-step, d t 1 × 10 −3 

Output frequency 1 

Total time of output 1 × 10 4 

Hyper-viscosity, νh 2 × 10 −6 

Wind stress width parameter, δ 0 .4 

Beta parameter, β 0 .2 
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p  
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ow is typical for the respective experiments: A-G and O-U. The

ain difference to observe is the clear loss of the narrow region

f high cross flow potential vorticity gradient along with the con-

omitant large scale Rossby wave. This is a persistent structure in

he eastward jet case for all forcing strengths but is not at all ap-

arent in the westward propagating jet. It would not be correct to

ay that mixing barriers do not form at all in the reversed forcing

xperiments, this can be seen in a snapshot from simulation U in

ig. 4 . While there is no barrier prohibiting mixing across the chan-

el, we do see mixing barriers which wrap themselves around two

arge coherent eddies, partially isolating potential vorticity within

he two eddies. The topologically distinct nature of these mixing

arriers changes the barriers’ influence on the statistics as a func-

ion on time-averaged streamfunction, which is zonally symmet-

ic. A schematic representing the various flow regimes simulated

n this study is given in Fig. 5 . 

This drastic difference between the two experiments implies

hat the dynamics are not symmetric with respect to a change in

he sign of forcing. It can be seen from Eqs. (1) –(3) that changing

he sign of forcing is equivalent to changing the sign of β com-

ined with a reflection in the meridional ( y ) axis. Making such a

ransformation leads to a drastic difference in the resulting statis-
ig. 3. Snapshots of potential vorticity from the statistically steady state for simulations

orticity gradients forming a mixing barrier which meanders due to persistent travelli

ehaviour rather exhibits mixing across the channel. 
ically steady state flow. The presence and absence of this mixing

arrier will form a large part of the discussion in the following

ections. 

The Rayleigh–Kuo inflection-point criterion ( Rayleigh, 1880;

uo, 1949 ) states that a necessary condition for barotropic insta-

ility of a zonal flow is that the meridional potential vorticity gra-

ient changes sign, i.e., 

− ∂ 2 U(y ) 

∂y 2 
= 0 (9) 

omewhere in the domain where U ( y ) is the zonally symmetric ve-

ocity profile of the mean jet. While (9) is a necessary global con-

ition for instability, in practice, instability often occurs in the lo-

ality that (9) is met (e.g., Waterman and Jayne, 2012; Waterman

nd Lilly, 2015 ). During spin up, the zonally symmetric forcing pro-

le strengthens a jet with the same meridional profile until (9) is

atisfied; in the case of the westward jet, (9) is first satisfied at the

entre of the channel ( y = 0 ); whereas in the case of the eastward

et, (9) is first satisfied on jet flanks. It is in these very same re-

ions that the nonlinear eddies emerge and erode the background

otential vorticity gradient in Fig. 4 . Thus, while the linear instabil-

ty condition is not valid in the fully nonlinear, turbulent regime,

t is nonetheless successful in predicting the initial regions of eddy

tirring and subsequent emergence of mixing barriers in the adja-

ent regions where the background potential vorticity gradient and

ossby restoring force is enhanced. 

In following sections, the statistics of the eastward and west-

ard jets are compared and contrasted in order to isolate effects

ssociated with strong mixing barriers. 

. Scaling of the mean and standard deviation of potential 

orticity 

In this section we consider the relationship between the mean

otential vorticity, 〈 q 〉 , and the time-averaged streamfunction, ψ ,
 D and R. Simulation D, eastward wind stress, has strong cross-channel potential 

ng Rossby waves. Simulation R, westward wind stress, does not show the same 



38 T.W. David et al. / Ocean Modelling 113 (2017) 34–49 

Fig. 4. Snapshots of potential vorticity from the statistically steady state for simulation U which has a westward wind forcing. Here we do not see a large-scale mixing 

barrier prohibiting mixing across the channel, however we do see mixing barriers wrapped up around two large coherent eddies. 

Fig. 5. Schematic of the various flow regimens simulated in this study as a function of the non-dimensional wind stress strength, τ 0 , and linear drag coefficient, r . The 

regimes are classified by inspection where mixing barriers are defined as persistent, strong potential vorticity gradients; strong eddies are defined as persistent large eddies; 

and weak eddies are defined as smaller transient eddies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T  

d  

m  

1  

d  

l

S  

p  

e  

a  

d  

g  

r

 

p  

m  

S  

l  

i  
as well as the relationship between the standard deviation of po-

tential vorticity and the time-averaged streamfunction. The an-

gled brackets, 〈〉 , imply an average over all points in time and

space coincident with a contour of time-averaged streamfunction.

For the numerical simulations presented here it is important to

note that the time-averaged streamfunction is zonally symmetric

since the simulations are simulation for a sufficiently long time

in steady state. Therefore there is a one to one mapping be-

tween meridional distance and time-averaged streamfunction. In

Fig. 6 a the 〈 q 〉 − ψ relations for the forcing experiments, A-G are

shown. To view the 〈 q 〉 − ψ relation on the same scale, the time-

averaged streamfunction has been rescaled by its average steady

state boundary value �. Similarly the standard deviation, SD( q ), as

a function of time-averaged streamfunction is presented in Fig. 6 b

where 

SD (q ) = 〈 (q − 〈 q 〉 ) 2 〉 . (10)

We see a characteristic functional dependence of both the mean

and the standard deviation on the time-averaged streamfunction.
here is a stark contrast between these relations and those pre-

icted by the equilibrium energy-potential enstrophy statistical

echanics: mean linear, standard deviation constant ( Salmon et al.,

976; Jung et al., 2006 ). However, the mean potential vorticity

ependence on streamfunction bears resemblance to the tanh-

ike relations ubiquitous in the generalized equilibrium Robert–

ommeria–Miller theory ( Venaille and Bouchet, 2011 ). This im-

lies that these statistics require more than knowledge of the en-

rgy and potential enstrophy to be explained. A detailed consider-

tion for the applicability of statistical mechanics theory to forced-

issipative flow is left for future studies. Here we highlight the

eneric nature of these statistics and their behaviour over a wide

ange of forcing and dissipation. 

Fig. 6 c and d shows that the mean and standard deviation of

otential vorticity display a self-similar dependence on the nor-

alized streamfunction when both the 〈 q 〉 − ψ relation and the

D (q ) − ψ relation are rescaled by their 2-norm. The red dashed

ines in Fig. 6 c and d gives the error in this self-similarity which

s found to be small. Interestingly it is possible to relate the nor-
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Fig. 6. a) mean potential vorticity against normalized time-averaged streamfunction. b) standard deviation of potential vorticity against normalized time-averaged stream- 

function. The streamfunction is normalized by it’s steady state boundary value, �, which is the integrated zonal momentum. Each plot shows the results from seven 

experiments each corresponding to a doubling of the forcing strength from the previous. The data from panels a and b are rescaled with respect to their norm to give; c) the 

average across all seven experiments of the rescaled mean potential vorticity as the solid-black curve; d) the average across all seven experiments of the rescaled standard 

deviation of the potential vorticity as the solid-black curve. In both c and d the dashed-red curves give the standard error. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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alization factors for 〈 q 〉 and SD( q ) to the potential enstrophy of

he flow. Assuming zonal symmetry we can define a mean flow

otential enstrophy as 

 2 [ 〈 q 〉 ] = L x 

∫ 
d y 〈 q 〉 2 (11)

nd an eddy potential enstrophy as 

 2 [ q 
′ ] = L x 

∫ 
d y 

[〈 q 2 〉 − 〈 q 〉 2 ] (12)

here q ′ = q − 〈 q 〉 2 , C 2 [ q ] = C 2 [ 〈 q 〉 ] + C 2 [ q 
′ ] and L x is the zonal ex-

ent of the domain. For the mean, the normalization factor is given

s 

 Mean = 

√ ∫ 
d y 〈 q 〉 2 = 

√ 

C 2 [ 〈 q 〉 ] 
L x 

, (13) 

hile for the standard deviation the normalization factor is given

s 

 SD = 

√ ∫ 
d y [ 〈 q 2 〉 − 〈 q 〉 2 ] = 

√ 

C 2 [ q ′ ] 
L x 

. (14) 

We find that the 〈 q 〉 − ψ relation and the SD (q ) − ψ relations

re self-similar over a wide range of eastward forcing strengths

 Fig. 6 ), but not when the magnitude of the dissipation is varied,

r the sign of the forcing is changed, causing the jet to flow in the

pposite direction ( Fig. 7 ). The perturbed dissipation experiments,

f anything, show limited response in the mean while there is a

caled, although less clean, response in the standard deviation of
he potential vorticity. We suggest that this difference is related to

he fact that scale dependence of the forcing is unchanged when

ts strength is varied, it always acts at the first zonal wavenumber.

n the other hand, the linear drag term interacts strongly with the

ow over a different range of scales as the linear drag coefficient

s varied. Investigating this effect would require additional exper-

ments in which the width of the wind stress profile is varied as

ell as the structure of the wind forcing; this is not explored fur-

her here. 

An interesting feature of the experiments in which the dissipa-

ion is varied ( Fig. 7 a and b) is the asymmetry in the SD (q ) − ψ 

elation about ψ = 0 for the low dissipation simulations, in partic-

lar H and I. We can see a clue to the resolution of this puzzle in

ig. 8 which shows a snapshot of steady state potential vorticity

or simulation H, the simulation with the lowest linear drag coef-

cient. We find that a large coherent eddy has emerged in bottom

alf of the domain. A similar eddy can also be seen in simulations

 and J, see Fig. 5 ; in the case of J the eddy appears in the upper

art of the domain. It is unclear why this eddy forms when the

riction is decreased. 

When the direction of the forcing is reversed, the mean and

tandard deviation dependence on the time-averaged streamfunc-

ion is drastically altered and again there is some self-similarity, al-

hough this is much less clear that for the eastward jets. The main

hysical difference in the reversed forcing experiments is the loss

f the clear mixing barrier formed through Rossby wave dynamics.

hen the forcing is reversed the instabilities are strong enough to

nsure that a persistent Rossby wave is broken up and this changes

he nature of the flow in a significant manner. 



40 T.W. David et al. / Ocean Modelling 113 (2017) 34–49 

Fig. 7. The mean (a and c) and standard deviation (b and d) as functions of time-averaged streamfunction are shown for the dissipation (a and b) and reversed forcing 

(c and d) experiments. 

Fig. 8. Snapshot of steady state potential vorticity for simulation H, r = 0 . 0 0 08 . A large eddy with very negative potential vorticity is persistent in the bottom half of the 

domain. 
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1 Note that in some literature the term kurtosis is used to mean what is de- 
In summary, it is found for eastward forcing that the mean

and standard deviation of the potential vorticity scales with forc-

ing and that the dependence of the mean and standard deviation

on the time-averaged streamfunction is self-similar over a large

range of forcing strengths. The 〈 q 〉 − ψ relation is self-similar when

the streamfunction is scaled by the total through channel momen-

tum and the potential vorticity is scaled by the square root of

the mean field potential enstrophy. The SD (q ) − ψ relation is self-

similar when the streamfunction is scaled by the total through

channel momentum and the potential vorticity is scaled by the

square root of the eddy potential enstrophy. Thus, for this exper-

imental set-up it is possible to empirically deduce the mean and

standard deviation given that we know the potential enstrophy be-

haviour of the flow. It is inconclusive whether the mean scales

with dissipation but there is clear response in the standard devi-

ation to changed dissipation, although self-similarity is not seen.

We see a changed behaviour in the reversed forcing experiment
nd leave a full description of this flow regime for future work. In

he following sections we concentrate on describing the statistical

henomenology for the forcing experiments, A-G, referring to the

ther experiments when pertinent to the argument. 

. Skewness, kurtosis and jet meandering 

Gaussian statistics can be characterized using only knowledge

f the mean and standard deviation. When the statistics are non-

aussian it becomes important to consider higher order statistics.

e will here consider the 3rd and 4th order centred and standard-

zed moments, the skewness and kurtosis, 1 given respectively as 

 = 

〈 (q − 〈 q 〉 ) 3 〉 
SD (q ) 3 

(15)
scribed here as the excess kurtosis, K − 3 . 
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Fig. 9. a) skewness of potential vorticity as a function of time-averaged streamfunction. The line S = 0 is shown and represents statistics which is symmetric about its mean. 

b) kurtosis of potential vorticity as a function of time-averaged streamfunction. The lines K = 3 and K = 1 are shown. A kurtosis of 3 corresponds to a Gaussian distribution, 

a kurtosis greater than this is referred to as leptokurtic and while a kurtosis of greater than three is referred to as platykurtic. A kurtosis of 1 is the smallest possible kurtosis 

and corresponds to an unbiased coin toss. In c and d the skewness and the kurtosis are given respectively from the bimodal distribution, (17) , and the trimodal distribution, 

(19) . The parameters used are d = 10 and c = 0 . 6 . 
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nd 

 = 

〈 (q − 〈 q 〉 ) 4 〉 
SD (q ) 4 

. (16) 

he skewness is a measure of how asymmetric or lopsided a statis-

ical distribution is about its mean while the kurtosis is a measure

f ‘peakiness’. A high kurtosis implies a distribution which has a

harp peak with fat tails, a low kurtosis implies small tails but

 flat peak. 2 Fig. 1 illustrates these moments schematically. Plots

f the skewness and kurtosis against normalized time-averaged

treamfunction for the simulations A-G are given in Fig. 9 a and

. Contrasted with the scaling behaviour of the mean and stan-

ard deviation, for central values of the normalized time-averaged

treamfunction, the skewness and kurtosis display invariance with

espect to changed forcing. Not only is the skewness and kurtosis

ehaviour in the jet core behaviour fixed with respect to forcing

trength, but this behaviour can interpreted employing the results

f Hughes et al. (2010) and showing how they are influenced by

orcing strength, dissipation of reversed jet direction. Hughes et al.

2010) show that a change in sign of skewness coincident with low

urtosis values is indicative of a mixing barrier. This is shown both

n relative vorticity anomaly data inferred from altimeter observa-

ions as well as in a two-layer quasi-geostrophic model in a dou-

ly periodic channel. In this study, the same skewness/kurtosis be-

aviour is seen in a barotropic model in a singly-periodic channel. 

Central to the argument of Hughes et al. (2010) is the idea that

 jet which acts as a mixing barrier leads to a step in potential
2 This picture relies on having an uni-modal distribution with one peak. 

l  

k  
orticity with homogenized values of potential vorticity either side

f the barrier. This potential vorticity staircase paradigm for jets

s reviewed in Dritschel and McIntyre (2008) and paints a picture

along with the references therein) in which mixing or homoge-

ization of potential vorticity either side of a jump in the value of

otential vorticity acts to reinforce the mixing barrier and to am-

lify the jump in potential vorticity. This feedback leads us a pic-

ure where an observer standing at the centre of the jet, defined

y either ψ = 0 or y = 0 , would see the value of potential vortic-

ty flip from negative to positive as the mixing barrier meanders

ast due to non-linearities or Rossby waves. 

With the potential vorticity step picture in mind, we can ex-

lain the skewness/kurtosis behaviour shown in Fig. 9 . A kurto-

is of K = 1 is described as sub-Gaussian. Kurtoses of greater than

hree are described as leptokurtic and kurtoses of less than three

re described as platykurtic. In Fig. 9 , the skewness plot is marked

ith the line S = 0 . The kurtosis plot is marked with the K = 3 line

orresponding to a Gaussian distribution and the K = 1 line which

orresponds to an unbiased coin toss or the unbiased Bernoulli

rocess, a stochastic process where the random variable can take

ne of two values. We see a distinct change in the value of skew-

ess for a time-averaged streamfunction of around zero. The skew-

ess behaviour is consistent across all forcing strengths for a range

f −0 . 4 < ψ / � < 0 . 4 , which we refer to as the core of the jet.

or larger values of normalized time-averaged streamfunction the

kewness becomes more varied across the different simulations.

oincident with the described behaviour of skewness we see simi-

ar consistency in the kurtosis for the range −0 . 4 < ψ / � < 0 . 4 . The

urtosis in the core of the jet is predominately platykurtic and we
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Fig. 10. The skewness (a and c) and kurtosis (b and d) as functions of time-averaged streamfunction are shown for the dissipation (a and b) and reversed forcing (c and d) 

experiments. Again the S = 0 line is shown for the skewness and the K = 3 and K = 1 for the kurtosis. 
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also see the kurtosis becoming close to sub-Gaussian. This skew-

ness/kurtosis behaviour is consistent with the findings of Hughes

et al. (2010) and can be interpreted as due to a flip in the value

of potential vorticity as the mixing barrier meanders, through the

action of passing Rossby waves. 

In fact, we can go further than the above discussion and con-

sider a simple analytical model for the skewness and kurtosis used

by Hughes et al. (2010) . This model describes the statistics as Gaus-

sian either side of a step in the value of potential vorticity, with

the meandering of the jet represented as a Bernoulli process. Thus,

the centred probability distribution for the potential vorticity is

given by the sum of two normal distributions scaled by factors,

a and 1 − a and separated by d times their standard deviation, σ .

a is a decreasing function of meridional distance to represent the

decreasing probability of observing positive potential vorticity as

the jet is crossed. The probability distribution is 

ρ(q ) = (1 − a ) N (q, aσd, σ ) + a N (q, (a − 1) σd, σ ) (17)

where 

N(q, μ, σ ) = 

1 √ 

2 πσ 2 
exp 

(
− (q − μ) 2 

σ 2 

)
, (18)

is the normal distribution as a function of potential vorticity, q ,

with a mean, μ, and standard deviation, σ . By making the mean of

each of the Gaussian peaks depend on a we ensure the total dis-

tribution has zero mean, giving us the centred statistics we need

to calculate the skewness and kurtosis. The skewness and kurtosis

corresponding to this distribution is shown in Fig. 9 c and d re-

spectively. These analytically derived curves bear a striking resem-

blance to the observed behaviour as a function of streamfunction
hown in Fig. 9 a and b (and also for the corresponding curves in

ig. 10 for the dissipation experiment only). 

This simple model is able to qualitatively reproduce the skew-

ess/kurtosis behaviour extending away from the centre of the jet

xplaining the high peaks in kurtosis at large values of streamfunc-

ion - as one of peaks gets very small the kurtosis it appears as a

ery large skewed tail of the larger peak leading to a high value

f kurtosis. However, as the height of the now small peak goes to

ero, the kurtosis must go to three - the kurtosis of a normal dis-

ribution. Due to the close similarity between the analytical curves

nd the model diagnosed curves, it tempting to forget that the for-

er is plotted as a function of normalized time-averaged stream-

unction, ψ / �, while the later is a function of the weighting fac-

or, a . Thus the resemblance suggests a close relationship between

 and ψ / �, both monotonic functions of meridional distance. 

One matter of concern lies in the fact that when we plot the

istribution of potential vorticity for a given time-averaged stream-

unction the statistics is trimodal, Fig. 11 , unlike the bimodal distri-

ution, (17) . To take account of this, the calculation of Hughes et al.

2010) is modified by a central Gaussian peak of height weight, c ,

iving a probability distribution of 

(q ) = 

1 

1 + c 

[ 
(1 − a ) N (q, aσd, σ ) 

+ cN (q, 0 , σ ) 

+ a N (q, (a − 1) σd, σ ) 
] 
. (19)

he results of this calculation is also shown in Fig. 9 . The trimodal

ature of the statistics observed in some of the experiments will

e discussed further in Sections 6 and 7 . However it is clear from
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Fig. 11. This figure shows different ways to look at the statistics in the middle of the jet for forcing experiment D. Top - joint histogram of potential vorticity and streamfunc- 

tion at the central meridional distance (close to the ψ = 0 line). Middle row - three histograms of potential vorticity with the statistics sampled in different ways. Bottom row 

- illustrations of the ways the statistics was sampled for the middle histograms. Left column - statistics taken from positions defined by the time-averaged streamfunction, 

ψ = 0 contour, these positions are fixed in time. Middle column - statistics taken from positions defined by the Galilean transformed time-averaged streamfunction, ψ GT = 0 

contour, these positions are also fixed in time. Right column - statistics taken from positions defined by the instantaneous streamfunction, ψ = 0 contour, these positions are 

allowed to change with time. The scale for the distribution above is omitted as it can be normalized away and we are only interested in the shape of the distribution at 

present. 
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Fig. 9 that the addition of a central peak does not change the qual-

itative story. 

In a barotropic channel, we have observed a change in sign of

skewness across a jet, this, combined with a low kurtosis, is in-

dicative of a mixing barrier. A highly simplified model describing

the statistics of the jet meandering as a Bernoulli distribution with

superimposed small-scale Gaussian noise gives surprisingly good

qualitative agreement with the observed skewness and kurtosis

across the jet over a wide range of forcing and dissipation. 

Fig. 10 shows how this behaviour changes in the dissipation

and reversed forcing experiments. For the dissipation experiments,

Fig. 10 a and b, we see a similar picture to the forcing experiments

for all but the two lowest dissipation parameters. These outliers

are linked to the clear asymmetry in the standard deviation shown

in Fig. 7 b. For the other dissipation parameters we see a cross-

ing of the S = 0 line coincident with platykurtic kurtoses close to

K = 1 . The real difference is seen in the reversed jet experiment

( Fig. 10 c and d). Here the skewness behaviour is in the opposite

sense, now going from positive to negative, and the values differ

greatly between the different (reversed) forcing strengths. In the

core of the jet the kurtosis is leptokurtic for all simulations and

does not display the near sub-Gaussian behaviour in the other two

experiments. 

The drastic change of the skewness/kurtosis behaviour can be

understood when we realize that in reversing the direction of forc-

ing, resulting in a east to west rather than a west to east jet, we

have changed the jet dynamics, as discussed in Section 2 , caus-

ing the mixing barrier to be broken up. This allows the poten-

tial vorticity to be mixed in the north-south direction, resulting in

a jet without a mixing barrier, destroying the coin-toss like pic-

ture and the corresponding signal in the skewness/kurtosis be-

haviour. When the mixing barrier is present the skewness/kurtosis

behaviour can be explained by a mixed distribution; this will be

discussed further in Section 7 . We have shown here that in a

barotropic re-entrant channel that the presence of a mixing barrier

results in a characteristic skewness/kurtosis across jet behaviour.

When the mixing barrier is removed, the skewness/kurtosis be-

haviour does not persist. 

6. Streamfunction following statistics 

In the previous section we saw that the skewness/kurtosis be-

haviour can be partially explained through a simple statistical de-

scription in the presence of a mixing barrier and that the observed

skewness/kurtosis behaviour is indeed characteristic of a mixing

barrier. In this section, we consider the dependence of the statis-

tics on the coordinate system in which the statistics calculated.

We consider three frames of reference, leading to three methods

of time-averaging: 

• Eulerian time-averaging, in which the statistics are calculated

along the zonally-symmetric, time-mean streamfunction con-

tours. 
• Galilean transformed time-averaging, in which the statistics are

calculated along the non-zonally symmetric time-mean stream-

function contours in a frame of reference moving at the phase

speed of the dominant Rossby wave. 
• Streamfunction following time-averaging, in which the statistics

are calculated along the instantaneous streamfunction contours.

In the interests of brevity, we present results only for the ex-

periments with the changed forcing strength, A-G. 

We start by considering in more detail the statistics of the flow

for a particular simulation. Fig. 11 shows the various ways to view

histograms of the potential vorticity for simulation D from the

forcing experiment. At the top of the figure the joint histogram

for potential vorticity and streamfunction is shown for all zonal
istances and times on the y = 0 (or approximately the ψ = 0

ine). The histogram is trimodal, looking like a mountain range

ith three peaks running in a fairly straight q − ψ line. We see

ere three distinct statistical populations in q and ψ . Below in

ig. 11 are histograms of potential vorticity using various ways of

aking the statistics. On the left we have shown the histogram of

otential vorticity for all zonal distances and times on the ψ = 0

ine. This is equivalent to the joint histogram above where we have

arginalized out the streamfunction. We see that although the

arginalized histogram has three peaks the joint histogram tells

s that each peak corresponds to different values of instantaneous

treamfunction. 

In what follows, it will be shown that the two side peaks cor-

espond to the regions of homogenized potential vorticity either

ide of the potential vorticity step. This gives rise to the skew-

ess/kurtosis behaviour considered in Section 5 . In the middle

lots, we consider how moving to a frame of reference travelling

t the wave-speed of the most dominant Rossby wave may affect

he statistics. In this way we hope to remove much of the mean-

ering of the jet that is due to the dominant Rossby wave passing

hrough the channel. This yields the Galilean transformed time-

veraged streamfunction shown in Fig. 11 ( bottom-middle ). Despite

hanging the relative size of the three peaks discussed previously,

his method of taking the statistics is insufficient to remove the

rimodality of the histogram. If however, we use the instantaneous

treamfunction ψ = 0 as the spatial ordinate for taking the statis-

ics we completely remove the two side peaks in the distribution

iving rise to an unimodal histogram. Thus by explicitly moving

ith the meandering jet we have drastically altered, and simpli-

ed, the structure of the potential vorticity distribution. This also

roves that the two side peaks, apparent when the statistics is

iewed from an Eulerian perspective, are due to the large scale

eandering of the mixing barrier and are distributions of the re-

ions of homogenized potential vorticity either side. This leaves

nly the potential vorticity statistics within the strong potential

orticity gradient itself as can be seen in Fig. 11 . 

Fig. 12 shows the first four moments considered in previous

ections now as a function of the normalized instantaneous stream-

unction. The behaviour of the mean is qualitatively unchanged

rom that observed in Section 4 , while the standard deviation dis-

lays major qualitative differences. For the lower forcing strengths

-E the standard deviation is suppressed around ψ = 0 while for

he two highest forcing strengths the central standard deviation

s enhanced. The variation between simulations in the skewness

nd kurtosis is very large and it is hard to discern a consistent

ehaviour. However it clear that characteristic behaviour indica-

ive of a mixing barrier is now lost and the kurtosis is on the

hole leptokurtic and does not show the low (close to K = 1 ) kur-

osis behaviour when the statistics was taken on contours of time-

veraged streamfunction. The change of sign of skewness is no

onger coincident with low kurtosis values. Thus, we have shown

hat this behaviour disappears when the mixing barrier is removed

ither through changing the physics or by moving into a frame of

eference moving with the meanders of the jet. 

At this point it is worth considering how these statistics, given

n Fig. 12 , correspond to the prediction of equilibrium statistical

echanics theory. An equilibrium, energy-potential enstrophy, the-

ry ( Salmon et al., 1976; Jung et al., 2006 ) predicts that the mean

ill be linear with respect to streamfunction, the standard devia-

ion will be constant, the skewness will have value, S = 0 , and the

urtosis will have value, K = 3 . We see that these four criteria are

pproximately met in the centre of the jet for the lowest strength

f forcing. This suggests agreement with the results of the equi-

ibrium theory when forcing is weak and the meandering of the

ixing barrier has been taken into account. This chimes with the

tudy of Jung et al. (2006) in which they moved into the frame of
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Fig. 12. a) the mean, b) standard deviation, c) skewness and d) kurtosis as functions of instantaneous streamfunction are show. Here the statistics has been sampled along 

contours of streamfunction for all times. 
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eference of their large scale Rossby wave to observe their statis-

ics. We suggest that the reason this procedure does not work here

s the absence of any significant scale separation in contrast to the

xperiment of Jung et al. (2006) . This could be due to various fac-

ors including: strength of dissipation; length scale of forcing; and

trength of the β-term. 

The joint histograms agree with the interpretation of separate

tatistical populations either side of zero streamfunction and is

onsistent with presence of mixing barrier. Here we considered

ne example of the joint q − ψ statistics but will consider the his-

ograms for other simulations further in Section 7 . We have shown

hat performing the statistical analysis in a quasi-Lagrangian frame

f reference removes the multimodal nature of the distribution

implifying the statistics but at the cost of a more complicated

ime-averaging. In addition, the simulation with lowest forcing

trength gives an approximate agreement with Jung et al. (2006) in

oth the quasi-Lagrangian frame and the reversed forcing statis-

ics. It could be argued that as the strength of forcing is reduced

he statistics tends to the (energy-enstrophy) equilibrium statisti-

al mechanics prediction, but only when the mixing barrier is re-

oved. 

. Discussion 

In this discussion we will draw together the results from the

revious sections by considering: joint distributions of potential

orticity and streamfunction; the concept of mixed distributions

nd their importance to describing mixing barriers; implications

or stochastic parameterizations; and the application to the South-
rn Ocean. In this way we are able to highlight some key implica-

ions of the results of this study. 

.1. Joint probability distributions 

To highlight the statistical nature of mixing barriers it is fruitful

o consider the q − ψ joint histograms for all the forcing strengths

n simulations A-G, given in Fig. 13 . As with the example given in

ig. 11 we have plotted the joint counts of potential vorticity and

treamfunction for 100 × 100 bins, width set by the range of the

ata. As mentioned, the distributions are a mixture of bimodal and

rimodal; A and G are bimodal; B and F have a weak central peak;

, D and E are trimodal. As described previously we see the clear

eparation of the statistical populations consistent with the picture

f a meandering potential vorticity step, but further to this we see

nteresting features of the statistics. 

Firstly the question is raised of what causes the existence of

he third peak seen in B-F, centered at 0. From examining the de-

ails of the flow evolution it appears that this central peak co-

ncides with the emergence of a spatially narrow region in the

ore of the jet where the potential vorticity gradient is weak-

ned coming to zero (or even a weakly negative value). This nar-

ow homogenized region appears intermittently within the other-

ise strong potential vorticity gradient associated with the chan-

el Rossby wave. This can be seen in the snapshot from simulation

, Fig. 3 . While difficult to observe in noisy snapshots of poten-

ial vorticity, this becomes apparent when the potential vorticity

s plotted against streamfunction as the streamfunction’s latitudi-

al gradient (or zonal velocity) has its largest magnitudes near the

entre of the jet, see Fig. 11 , D. Secondly we notice that the areas
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Fig. 13. Plots of the joint histograms of potential vorticity and streamfunction for 

the forcing experiment, simulations A-G. Colour scale gives the number of counts 

in each of the 100 × 100 bins. Brighter - more counts. Black - zero counts. White - 

maximum counts. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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of high bin count are elongated in the streamfunction direction,

giving the same value of mean potential vorticity for many values

of streamfunction: apparent in the data from simulations C-G. This

quite clearly demonstrates the potential vorticity homogenization

paradigm discussed in, for example, Esler (2008) . Indeed, the po-

tential vorticity step with adjacent regions of homogenization is
ade very apparent when the flow is viewed as a potential vortic-

ty/streamfunction joint distribution. 

.2. Mixed distributions 

We have shown that the statistics of potential vorticity in the

resence of a mixing barrier are described by mixed distributions,

 sum of distributions of random variables. Mixed distributions are

istributions corresponding to random variables created by a ran-

om choice of other random variables. In other words, they are

 convolution of discrete and continuous random variables. Here,

he discrete random variable represents the regions separated by

he mixing barrier and the continuous random variable represents

he statistics of the homogenized regions. The full Eulerian statis-

ics is then given by randomly selecting which side of the mixing

arrier we are standing through a Bernoulli trial. The simple mod-

ls (17) and (19) are examples of mixed distributions. This opens

p the possibility of using Gaussian Mixture Modelling methods to

nalyse the statistics of meandering mixing barriers. These meth-

ds have been used in atmospheric dynamics ( Hannachi, 2007 ) to

onsider weather regimes and also, more recently, in oceanography

 Maze et al., 2017 ) to classify hydrographic profiles. 

An important consequence of the mixed nature of these distri-

utions is that they cannot be constructed from a maximization of

ntropy given knowledge of an arbitrary number of moments. If

e assume that we know that the first N moments of a probabil-

ty, then maximization of information entropy gives a probability

istribution of the form 

= 

1 

Z 

exp 

( 

N ∑ 

n =1 

αn x 
n 

) 

. (20)

ixed distributions such as (17) and (19) cannot be inferred in this

ay through only knowledge of the measured moments. The maxi-

um entropy distribution, (20) , can be used to approximate multi-

odal distributions such as (17) and (19) but this requires N to be

ery large (example calculations suggest N needs to be as high as

00), considerably beyond what is available from data. Essentially

his comes from the difficulty of representing a bimodal distribu-

ion by the exponential of a Taylor expansion: a very large num-

er of terms would need to be kept to capture two well separated

eaks. The maximum entropy method of approximating probabil-

ty distribution functions was successfully used in Porta Mana and

anna (2014) to fit the diagnosed distribution of a stochastic pa-

ameterization where the distributions considered were unimodal;

his method of fitting probability distribution functions would be

nappropriate for use in the case considered in this study. 

.3. Stochastic parameterization 

The results in this study have important consequences for

he way we approach the stochastic parameterization of ocean

esoscale turbulence. If we parameterize the Eulerian eddy forc-

ng tendency, then it is essential that we do this in a way that

ill lead to a mixed probability distribution for potential vorticity

n the presence of a strong mixing barrier. It is therefore prudent

o both take into account higher order cumulants as well as spa-

ial correlations as these are required to describe the structure of

ets. This is the approach followed in stochastic structural stability

heory (e.g. Farrell and Ioannou, 2003 ) and in the cumulant ex-

ansion method (e.g. Marston et al., 2008 ); by solving prognostic

quations for statistical cumulants of the flow it is possible repre-

ent eddy-mean flow interactions which respect the steady state

tructure and dynamics of turbulent jets. 

An alternative interpretation of the results presented in this

tudy is that a stochastic parameterization should be implemented
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n a Lagrangian sense, allowing the noise to be simpler in struc-

ure: monomodal instead of the multimodal statistics seen in a

ulerian frame. Recently parameterizations have been developed

hich modify the Lagrangian tendencies rather than the Eulerian

endencies ( Holm and Nadiga, 2003; Holm and Wingate, 2005;

orta Mana and Zanna, 2014; Zanna et al., 2017 ); Porta Mana and

anna (2014) do this by stochastically modifying the Lagrangian

endency of potential vorticity in a quasi-geostrophic model. We

an see this by considering the potential vorticity equation 

Dq 

Dt 
= D + F + η, (21)

here D, F and η are the dissipation, forcing and stochastic noise

espectively. In this formulation the noise can only influence the

ulerian tendency of potential vorticity. However, the parameteri-

ation introduced by Porta Mana and Zanna (2014) can be written

s 

Dq 

Dt 
= D + F + κ∇ 

2 
(

Dq 

Dt 

)
(22)

here κ is now a stochastic noise with a negative mean value. By

ewriting as 

1 − κ∇ 

2 
)Dq 

Dt 
= D + F , (23)

e can clearly see that parameterizations of this form modify the

agrangian tendency. This makes parameterizations of this form an

dvantageous framework for a stochastic treatment as the poten-

ial vorticity distributions become simpler when viewed in a La-

rangian frame of reference, see Section 6 . 

.4. Skewness and kurtosis in the Southern Ocean 

So far, we have only considered the statistics of potential vor-

icity in a highly idealized barotropic model; now we consider the

pplication of the ideas developed here to the Southern Ocean. 

Due to the sparsity of in-situ observations, we calculate the

tatistics from the Southern Ocean State Estimate ( Mazloff et al.,

010 ), a numerical model at 1/6 ° resolution, constrained to fit, as

losely as possible, a wide range of observational data. Hughes

t al. (2010) showed that the skewness and kurtosis of relative vor-

icity can be used to identify strong jets from altimetry observa-

ions; using data from the Southern Ocean State Estimate we can

ook for this skewness/kurtosis signature at depth. To provide the

est analogy to the barotropic model considered in this study as,

gnoring diapycnal mixing, the potential vorticity is conserved on

 neutral density surfaces with sources and sinks appearing only

hen the surface outcrops or interacts with topography. We will

ake statistics on 5-day mean neutral density surfaces ( Jackett and

cDougall, 1997 ) of the Ertel potential vorticity 

 = 

(ω + f ) · ∇γn 

ρ0 

, (24) 

here ω is the relative vorticity; f is the planetary vorticity; γ n 

s the neutral density; and ρ0 is the reference density under the

oussinesq approximation. By calculating the potential vorticity

rom Southern Ocean State Estimate data and interpolating onto

-day mean neutral density surfaces we are able to compute the

kewness and kurtosis as functions of longitude, latitude and neu-

ral density. 

Maps of skewness and kurtosis are given for two neutral den-

ity surfaces in Fig. 14 . Following the diagnostic tool, and intu-

tion, developed in Section 5 we look for a positive-negative fea-

ure in the skewness concomitant with a high-low-high feature in

he kurtosis. Fig. 14 a and b have several features of these type

highlighted in boxes) and correspond to regions of high poten-

ial vorticity gradient within the Antarctic Circumpolar Current as
ell as the Malvinas current (east of South America). Although

eaker in other places the skewness/kurtosis feature seems to ex-

end through the whole domain. Looking at Fig. 14 c and d, this is

ore apparent; now a connected feature can be seen circumnavi-

ating the Southern Ocean. It is interesting to note that the feature

n Fig. 14 c and d, has shifted south compared to Fig. 14 a and b;

he southward migration of the skewness/kurtosis feature be seen

ery clearly when additional density surfaces are examined. Ex-

laining this migration of the jets with increasing density lies be-

ond the scope of the present study but this migration underlines

he usefulness of this framework in studying the vertical struc-

ure of jets in the Southern Ocean using primitive equation ocean

odels. 

We have shown that the skewness/kurtosis signature provides a

iagnostic tool with which mixing barriers can be correctly iden-

ified and will be important for future studies on the influence of

hese jets on Southern Ocean mixing. 

. Concluding remarks 

The relationships between streamfunction and the various

tatistics we have diagnosed in this study cannot be explained by

quilibrium energy-potential enstrophy statistical mechanics the- 

ries, contrary to the result of Jung et al. (2006) who found

ood agreement with a barotropic rotating annulus experiment.

hether more general versions of the theory can be used to ex-

lain the generic statistical characteristics of this flow will require

 deeper understanding of the response of the statistics to forc-

ng and dissipation. In this study we explored the phenomenol-

gy of these statistics over a wide range of forcing and dissipation

trengths. We have shown that the mean and standard deviation

f the potential vorticity as a function of time-averaged stream-

unction exhibits self-similar behaviour for barotropic flow across a

ide magnitude range of eastward wind stress. The self-similarity

s also observed when the dissipation is perturbed and when the

irection of wind stress is reversed, although in these cases self-

imilarity is less clear. As the self-similarity is stronger for east-

ard forcing, and consequently eastward mean flow, we infer that

his self-similar behaviour is influenced by the emergent mixing

arrier that forms in the present set of numerical experiments.

dditionally, by relating the scaling factor of this self-similarity to

he global potential enstrophy of the flow, we have related the de-

endence of the mean and standard deviation of potential vortic-

ty to the global balanced quantities of the flow in a statistically

teady state. Importantly, this reduces the problem of determin-

ng the mean and standard deviation to only needing to know a

ingle quantity: the potential enstrophy (or eddy potential enstro-

hy in the case of the standard deviation). Further work will be

eeded to fully determine the range of parameter space for which

his self similarity behaviour exists. It is also clear that the impli-

ations of this result have not been fully elucidated with respect

o eddy-mean flow interaction in a statistically steady state jet. In

uture work it is important to relate this self-similar scaling to the

mposed parameters of the model such as the wind stress strength.

The behaviour of skewness and kurtosis as a function of time-

veraged streamfunction is characteristic of a mixing barrier and

 simple statistical model was used to paint a statistical picture

f a mixing barrier. Any potential stochastic parameterization must

espect the multimodal, and mixed, statistics of a mixing barrier

long with its consequent skewness and kurtosis behaviour. This

ighlights the importance of understanding the influence of highly

on-Gaussian noise on the mean flow. It has been shown that the

tatistics is no longer multimodal when viewed from a frame of

eference moving with the barrier itself. This suggests a separation

etween the statistics due to the diffusive eddies in the homoge-

ized regions of potential vorticity and the statistics of the barrier
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Fig. 14. Maps of skewness and kurtosis for two neutral density surfaces from Southern Ocean State Estimate data. a) Skewness at γn = 26 . 78 . b) Kurtosis at γn = 26 . 78 . c) 

Skewness at γn = 27 . 21 . d) Kurtosis at γn = 27 . 21 . Boxes indicate regions of interest. We can see positive-negative features in the skewness concomitant with high-low-high 

features in the kurtosis. These can be interpreted as meandering potential vorticity steps corresponding to a mixing barrier. White - regions of no data due to outcropping 

or land. 
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meandering, that is, the statistics of the large scale Rossby waves.

This also highlights the potential importance of Lagrangian think-

ing when attempting to parameterize eddy statistics. 

We have argued that the results presented here have impor-

tant implications for stochastic parameterizations as well as be-

ing an useful tool for the study of ocean jets and their influ-

ence on mixing. Despite the increased complexity of comprehen-

sive ocean models, the statistical picture we have painted relies

on the existence of a mixing barrier rather than on the barotropic

nature of the dynamics. For this reason, we anticipate that our re-

sults should have much broader applicability to baroclinic flows (cf.

Hughes et al., 2010 ), and seen here using Southern Ocean State Es-

timate data. In future development of this work, it will be impor-

tant to relate the neutral density dependence of the statistics to

the depth dependence of the statistics; we expect strong mixing

barriers forming near the surface but not at depth, consistent with

observations of the Gulf Stream ( Bower et al., 1985 ), observation-

constrained data in the Southern Ocean ( Abernathey et al., 2010 ),

and idealized numerical calculations ( Esler, 2008 ). 

In conclusion, we have presented a simple yet useful descrip-

tion of the statistics of a barotropic jet with a mixing barrier over

a wide range of forcing and dissipation strengths. The jet meander-

ing can be described by Bernoulli statistics while the diffusive tur-

bulence either side is described by a superposed small-scale noise.

This way in which the mixing barrier separates the statistical pop-

ulations of potential vorticity either side can be considered not

only as a statistical model of mixing barriers but as a expression

of what a mixing barrier is in a statistical sense. We hope that the

statistical picture of mixing barriers presented here can provide a

foundation for future work on the stochastic representation of ed-

dies and their dynamics in ocean models. 
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