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An optimisation scheme is developed to accurately represent the sub-grid scale forcing of a high dimen-
sional chaotic ocean system. Using a simple parameterisation scheme, the velocity components of a
30 km resolution shallow water ocean model are optimised to have the same climatological mean and
variance as that of a less viscous 7.5 km resolution model. The 5 day lag-covariance is also optimised,
leading to a more accurate estimate of the high resolution response to forcing using the low resolution
model.

The system considered is an idealised barotropic double gyre that is chaotic at both resolutions. Using
the optimisation scheme, we find and apply the constant in time, but spatially varying, forcing term that
is equal to the time integrated forcing of the sub-grid scale eddies. A linear stochastic term, independent
of the large-scale flow, with no spatial correlation but a spatially varying amplitude and time scale is used
to represent the transient eddies. The climatological mean, variance and 5 day lag-covariance of the
velocity from a single high resolution integration is used to provide an optimisation target. No other high
resolution statistics are required. Additional programming effort, for example to build a tangent linear or
adjoint model, is not required either.

The focus of this paper is on the optimisation scheme and the accuracy of the optimised flow. However
the forcing can provide insights in the design of deterministic and stochastic parameterisations. In the
present study, we found that the stochastic parameterisation correcting the model variance is associated
with the spatial pattern of eddy-decorrelation timescales rather than the spatial pattern of the amplitude
of the variance. The method can be applied in future investigations into the physical processes that
govern barotropic turbulence and it can perhaps be applied to help understand and correct biases in
the mean and variance of a more realistic coarse or eddy-permitting ocean model. The method is
complementary to current parameterisations and can be applied at the same time without modification.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Due to the limitations of finite computational power, current
numerical methods are not capable of accurately resolving the
ocean circulation down to the viscous scale. Since there exists no
universal sub-grid scale turbulence model that can close for all
unresolved quantities (Reynolds stresses, turbulent fluxes, etc.)
ad hoc representations are required, and state of the art numerical
models exhibit serious differences and inaccuracies in their
climatologies (e.g. Flato et al. (2013, Section 9.4.2)). The simplest
approach to parameterise sub-grid scale processes is to dissipate
any small-scale motion while simultaneously stabilising the
model. This is typically achieved by employing an eddy diffusivity
designed, for example, to improve spectral characteristics near the
grid-scale (e.g. Smagorinsky (1963), Leith (1967)), or by using a dif-
fusive integration scheme (e.g. Ritchie (1988)). Another approach is
to mimic the physical processes in the real ocean. For example,
mesoscale eddies in the ocean interior tend to rearrange fluid par-
cels along isopycnals (constant density surfaces) which leads to the
widely implemented Gent–McWilliams parameterisation scheme
in the tracer equations (Gent et al., 1990). Such approaches to find
the sub-grid momentum or buoyancy forcing are often based upon
the time-mean effect of the sub-grid scale forcing upon the large
scale flow as diagnosed by comparing a low resolution model with
measurements, or a high resolution integration. The approximate
functional form of the sub-grid momentum or buoyancy forcing
in terms of the grid scale flow of a turbulent system may be found
using high resolution integrations (e.g. Achatz and Branstator
(1999)), using, for example, a polynomial fit. A stochastic term
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may be used to represent the fit residual (e.g. Wilks (2005),
Frederiksen and Kepert (2006), Zidikheri and Frederiksen (2009),
Kitsios et al. (2013), Arnold et al. (2013)) or realistic variance
(e.g. Hasselmann (1976), Buizza et al. (1999), Palmer (2001),
Berloff (2005)). The deterministic and stochastic sub-grid forcing
can be derived from theoretical considerations (e.g. Kraichnan
(1959), Herring and Kraichnan (1972), Frederiksen and Davies
(1997), Holm et al. (1999), Marshall et al. (2012), Grooms and
Majda (2013), Mana and Zanna (2014)), although such an approach
can be practically difficult to implement (Foias� et al., 2001; Mana
and Zanna, 2014).

In many cases one or more parameters that govern the strength
of these schemes must be chosen with limited guidance from the-
ory. Trial and error comparison of model output, as a function of
parameter values, with ocean data, is one method often referred
to as ‘‘tuning’’. Tuning up to around five or six parameters is possi-
ble in principle with a simple parameter search, however larger
numbers of parameters require an ‘‘expert’’ opinion, independence
from each other, or an acceptance that the optimal values will not
be found. The problem is that to explore each direction of a
parameter space of dimensionality d across n different climatolo-
gies requires nd points to be evaluated. Given a high (d� 5)
dimensional vector p of parameters, evaluation of the entire
parameter space is not practical and in order to optimise anything
we are forced to define an objective target to optimise for, or in
other words a cost function GðpÞ to minimise. From an initial guess
p0 a direction to change p may be given by the gradient of the cost
function

p1 ¼ p0 �
@GðpÞ
@p

����
p¼p0

dp: ð1Þ

Here p1 is an improved estimate of the optimal parameters in com-
parison with p0 and dp is a small positive constant with the appro-
priate units. The process can be iterated until no further
optimisation is possible. Accurate estimation of @G=@p can be diffi-
cult, requiring for example tangent linear and adjoint models to be
integrated. Implementation of adjoint models for ocean circulation
problems has been achieved for sensitivity analysis and data assim-
ilation capabilities (e.g. Marotzke et al. (1999), Moore et al. (2004))
as has optimisation of the eddy-buoyancy sub-grid parameters from
the climatological mean state (Ferreira et al., 2005). However there
are still some unresolved issues for large-scale chaotic systems.
Firstly the programming effort is substantial leading to the develop-
ment of semi-automatic differentiation packages for this purpose
(e.g. Giering (1999), Heimbach et al. (2005)). Secondly if a system
has a stochastic element the problem of optimising stochastic
parameterisation has not, to the author’s knowledge, been consid-
ered. Finally, although the adjoint approach is useful for short time
optimisation in ocean (e.g. Gebbie et al. (2006), Mazloff et al. (2010),
Balmaseda et al. (2013)) and atmosphere (e.g. Kalnay et al. (1996),
Dee et al. (2011)) state estimation, it is not currently capable of
optimising for the long time climate averages of a chaotic system
(e.g. Lea et al. (2000), Eyink et al. (2004)) and approximations are
required. Some attempts to solve this problem in a slightly different
context include the methods of Abramov and Majda (2009) applied
to climate response, who use the full non-linear model for the short
time gradient estimate and a Gaussian model approximation for
longer times, and Wang et al. (2014) who uses a modified adjoint
algorithm to stabilise the gradient estimation algorithm.
Fortunately an estimate of @G=@p does not need to be particularly
accurate for the purposes of optimisation. It is merely required to
follow a trajectory in parameter space that eventually leads toward
the optimum and to tend to zero as the optimum is approached.
Therefore we have the opportunity to optimise with a much simpler
criteria if a very approximate direction of @G=@p can be found. This
is the approach of the present paper. In our case, with the climate
change problem in mind, the goal is accurate optimisation of the cli-
matological mean and variance and approximate optimisation of
the response of the system to a forcing, using a ‘‘truth’’ as the opti-
misation target.
1.1. The mean

Current state of the art ocean models exhibit a different cli-
matological mean state to that observed in the real ocean (Flato
et al., 2013). For example, the poor representation of eddy-mean
flow processes leads to unrealistic western boundary currents
(Gulf Stream and Kuroshio) responsible for large sea surface tem-
perature biases (Large and Danabasoglu, 2006). Their predictions
are therefore approximations about a different climatological
mean point in state space to that of reality. To account for such
deviations from the observed climatology, post integration bias
correction is sometimes applied (e.g. Stockdale (1997)). A more
accurate approach would be to have a model that has the correct
climatological mean state in the first place. This can be achieved
for example by adding a spatially varying, but constant in time,
parameter to the right hand side of the governing equations
(Achatz and Branstator, 1999). This spatially-varying time-
independent parameter represents the contribution to the cli-
matological mean of all of the sub-grid processes that are not
included in the basic low resolution model minus any biases intro-
duced by incorrect additional terms, such as high viscosity. The
size of the improvement in accuracy relative to post integration
bias correction can be important. For example, in a coupled
ocean–atmosphere model some studies suggest that the mean
location of the ocean boundary currents have an important impact
upon atmospheric dynamics (e.g. Kirtman and Vecchi (2011),
Scaife et al. (2011)). The ocean bias therefore has the potential to
cause atmospheric bias that may be difficult to correct post
integration.
1.2. The variance

Often, due to artificially high viscosity in a dynamical ocean
model and the lack of sub-grid variability, the variance of the prog-
nostic variables is underestimated. Without a time dependent
external forcing such as the seasonal cycle, one can often obtain
a steady state in very low-resolution ocean models, where time
derivatives of all prognostic variables are equal to zero. In non-
eddying ocean models, any effect of the variance due to eddies is
therefore reduced or missing. The fluctuations brought about by
resolving the eddies in an ocean model can potentially lead to
additional dynamical regimes being explored (e.g. Palmer (2001),
Palmer and Weisheimer (2011)) and important processes such as
eddy saturation (Straub, 1993; Munday et al., 2013) or jet rectifica-
tion (Berloff, 2005; Waterman et al., 2012; Waterman and Hoskins,
2013). In addition, the lack of variance between the members of an
ensemble of model integrations contributes to over confidence, in a
statistical sense, in model predictions. For these reasons we con-
sider it desirable for our model climatological variance, and hence
the turbulent eddy kinetic energy, to be as close as possible to the
measured ocean variance. Moreover, since the correlations of a tur-
bulent system decay in time, we would like the correlations of any
parameterised source of variance to also decay after some time.
The simplest approach is to add a stochastic term, with a spatially
varying amplitude and time scale, to the right hand side of the gov-
erning equations. In this paper we require that the parameters gov-
erning such a process ensure that the model’s climatological
variance is as accurate as possible, relative to the ‘‘truth’’.
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1.3. The response to forcing

For climate change experiments or for seasonal forecasts, the
accuracy of a model’s response to forcing is an important charac-
teristic. Unfortunately, unlike in the case of the mean and the vari-
ance, we can not always directly measure the true response of a
system to a particular forcing and compare it with our low res-
olution model response. However we would like to be able to pre-
dict in advance the change in the climatological mean and variance
due to forcing. A forcing change may be, for example, an increase in
the concentration of carbon dioxide or in wind stress over the
Southern Ocean (e.g. Fyfe et al. (2007)).

The fluctuation–dissipation theorem (e.g. Marconi et al. (2008))
guarantees, under very general assumptions, that the sensitivity to
a small forcing is equal to a time integral of the correlation of some
function of the prognostic variables. Thus fluctuation–dissipation
theorem provides a method by which we can relate the response
of a complex system to variables that we can measure. In the case
of a single variable linear stochastic system the sensitivity is sim-
ply the time integration of its autocorrelation. For application to
a general circulation model see Gritsun and Branstator (2007).
Unfortunately the response according to its autocorrelation func-
tion when assuming a linear stochastic model may not be accurate
(Cooper and Haynes, 2015) and the true response of a chaotic non-
linear system to forcing is not straightforward to evaluate using
the fluctuation–dissipation theorem (Cooper and Haynes, 2011;
Cooper et al., 2013). Despite those limitations, one can reasonably
assume that a model will respond in a more similar manner to the
truth it represents, the more the autocorrelation functions of the
respective systems are alike. We therefore require a parameter-
isation that pushes the model to have an autocorrelation function
to be close to truth. Given that a stochastic term is characterised by
an amplitude and a time scale, it can therefore be used to adjust
both the variance and lag-covariance of a model towards the true
climatological values. In our case the stochastic term is repre-
sented in a discretized model by a system of linear stochastic
ordinary differential equations

dn ¼ Bndt þ V
ffiffiffiffi
D
p

dw: ð2Þ
Fig. 1. In this hypothetical illustration, the integral of the autocorrelation function
autocorrelation function of the true system. Therefore we might expect that the model’s
response to forcing. After adding a linear stochastic parameterisation with an appropriat
the truth is identical, presumably leading to a more similar climatological response.
Here B is a constant matrix, restricted to have all negative eigenval-
ues so that the system is stable, n is a vector of model grid points,
each element of which is to be added to the right hand side of the
discretized governing equations, w denotes a vector of independent
Wiener or white noise processes with unit variance. The covariance
of the stochastic term is set by the matrix Q with the matrix of
eigenvectors of Q denoted by V and diagonal matrix of eigenvalues
by D. Changing the values of B and Q allows us to set the integral of
the autocorrelation to approximately the true value, and hence
improve the accuracy of the model’s response to a small forcing,
see Fig. 1.

1.4. A simple parameterisation scheme

In summary we propose adding a spatially-dependent but con-
stant in time forcing term (Section 1.1) and a linear stochastic term
(Sections 1.2 and 1.3) to the equations governing a turbulent fluid.
The aim is to reproduce some of the statistics of a low viscosity
fluid with a high viscosity numerical integration. In the present
work, we focus on finding the idealised mean sub-grid barotropic
eddy forcing terms in an ocean double gyre configuration. The forc-
ing is limited to the momentum sub-grid forcing in a shallow-wa-
ter model, unlike the study of Ferreira et al. (2005) which tackled
the eddy buoyancy forcing in a primitive equation model. In this
study, geostrophic balance ensures that a constant forcing of the
momentum equations acts to correct both velocity and sea surface
height biases. The approach is similar to a standard linear relax-
ation where prognostic variables are linearly forced towards some
basic state (e.g. in the configuration described in Held and Suarez
(1994)). However, in our case the variable being relaxed, in a
stochastic sense, is independent of the unparameterised prognostic
variables. Berloff (2005) applies a similar scheme with parameters
diagnosed from single high and low resolution integrations to a
quasi-geostrophic system. The novel approach used in the present
work is to optimise the values of these parameters and to develop a
method that is applicable to complex models involving more than
one prognostic variable. We optimise a low resolution model in
such a way as to improve its characteristics when compared with
the truth as defined by observations or a high resolution
of a model without parameterisation, is much larger than the integral of the
climatological response to forcing is somewhat greater than the true climatological

e choice of parameters, the integral of the autocorrelation function of the model and
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integration. Our scheme involves empirically derived parameters
and therefore we refer to it as a parameterisation scheme.
However given the number of parameters, three for each grid cell,
that the scheme captures the bulk effect of unspecified sub-grid
scale processes as opposed to mimicking specific processes and
the fact that no dependence on the large-scale flow or external
parameters is found, some readers may not consider it to be a
parameterisation scheme in the conventional sense. Calling it a
bias correction scheme may be more appropriate, albeit in a free
running model.

Our choice of an idealised barotropic ocean gyre as test model is
primarily motivated by the more general, and to the authors
knowledge unsolved, optimisation problem for the long time
statistics of a high dimensional chaotic system. We hope that our
particular configuration, described in section 2, contains no special
features that make the optimisation problem solvable in only this
case. However further investigations would be required to check
the applicability in other physical configurations such as a periodic
channel model and moving from a two dimensional, to a three
dimensional fluid.

Integrations performed using a shallow water model are
detailed in Section 2 and the optimisation method in Section 3.
In Section 4, we compare the high and low resolution integrations
without parameterisation with the optimised low resolution sys-
tem and investigate the effect of the parametrisation scheme.
2. The truth and model integrations

Our choice of an idealised ocean model is motivated by the
ocean double gyre setup of Berloff (2005) although rather than
integrate the quasi-geostrophic equation, we are integrating the
shallow water equations with a linear free surface. To reduce the
computational cost, our system is barotropic and therefore omits
the baroclinic modes and their interaction with the mean flow.
Although the resulting setup is idealised it is sufficient to illustrate
our parameterisation scheme.

The integration domain (Fig. 2) is a 3840 km by 3840 km
rectangular box located on a mid-latitude beta plane with a flat
bottom. The flow is forced by a (time) constant surface wind which
varies latitudinally (see Fig. 2) but is uniform in longitude. It is dis-
sipated by a viscous term whose magnitude depends upon the res-
olution of the model grid. The ocean floor and horizontal
Fig. 2. The wind forcing profile and integration domain, see text. The autocorrelation of
mean sea surface height and eddy kinetic energy at the longitude indicated is presented
boundaries are free slip. Berloff’s domain was uniformly 3 km
deep, however for the magnitude of forcing chosen, a 3 km deep
barotropic system exhibits extremely long timescales at low res-
olution. Such long timescales makes the experiments rather expen-
sive. A simple solution to reduce the cost is to increase the
turbulent nature of the flow that in turn reduces the correlation
times present and makes estimation of the autocorrelation com-
putationally feasible. The system is made more turbulent by reduc-
ing the ocean depth to a constant 500 m and increasing the wind
forcing by a factor of three. Unfortunately this more chaotic system
might resemble even less a realistic ocean gyre but nevertheless
should not affect the main conclusions.

The equations governing the time evolution of the prognostic
variables, zonal velocity u (x direction), meridional velocity m (y
direction) and sea surface height g are

@u
@t
þu

@u
@x
þm

@u
@y
� fmþ g

@g
@x
�jr2u¼ 1

q0h
aðyÞþ Fuðx;yÞþ nuðx;y; tÞð Þ;

ð3Þ
@m
@t
þu

@m
@x
þm

@m
@y
þ fuþg

@g
@y
�jr2m¼ 1

q0h
Fmðx;yÞþ nmðx;y; tÞð Þ; ð4Þ

@g
@t
þh

@u
@x
þ@v
@y

� �
¼ 0; ð5Þ

where the acceleration due to gravity g ¼ 9:81 m s�2, density of
water q0 ¼ 999:8 kg m�3, depth h ¼ 500 m and the Coriolis parame-

ter f ¼ f 0 þ by with b ¼ 2� 10�11 m�1s�1 and f 0 ¼ 4:46� 10�5 s�1.
aðyÞ represents a zonal wind forcing of the form

aðyÞ ¼ a0 cos
2p y� L=2ð Þ

L

� �
þ 2 sin

p y� L=2ð Þ
L

� �� �
; ð6Þ

where the domain width in each direction L ¼ 3840 km with
0 6 y 6 L; 0 6 x 6 L corresponding to a domain bounded between
latitudes 17:8� N and 56:3� N. The constant a0 ¼ 0:12 Pa. The model
Eqs. (3)–(5) are discretized onto a uniform Cartesian Arakawa C-
grid (Arakawa and Lamb, 1977), initialised to zero or with low
amplitude random noise, and integrated using the MITgcm
(Marshall et al., 1997).

In the parameterised low resolution system the constant in time
but spatially varying forcing Fuðx; yÞ and Fmðx; yÞ, represented by the
vectors fu and fm, are found by optimisation. nuðx; y; tÞ and nmðx; y; tÞ
are stochastic terms, represented by nu and nm. nu and nm would, in a
fairly general case, be governed by Eq. (2) with an appropriate
the sea surface height, g at points (a), (b) is presented in Fig. 3. The climatological
in Figs. 6 and 9 respectively.
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choice of Bu; Bm; Q u and Q m found via the optimisation. We con-
sider the simpler case where all elements of nu and nm are indepen-
dent of each other (uncorrelated in space) and the equations for
their time evolution reduce to

dnui ¼ buinuidt þ
ffiffiffiffiffiffi
qui

p
dwui ð7Þ

and

dnmi ¼ bm inmidt þ
ffiffiffiffiffiffi
qm i

p
dwm i ð8Þ

for i ¼ 1 . . . d where d is the number of grid cells in the
integration and wui and wm i are white noise processes with unit
variance. In (7) and (8) the variables are the elements of the
vector quantities nu ¼ nu1; nu2; . . .ð Þ, nm ¼ nm1; nm2; . . .ð Þ and the
constants bu ¼ bu1; bu2; . . .ð Þ, bm ¼ bm1; bm2; . . .ð Þ, qu ¼ qu1; qu2; . . .ð Þ
and qm ¼ qm1; qm2; . . .ð Þ represent the diagonals of Bu; Bm; Q u and
Q m respectively. Test integrations show that the addition of
nuðx; y; tÞ and nmðx; y; tÞ in the coarse resolution set-up, resulting
from Eqs. (7) and (8), do not cause the model to have a system-
atic long term drift.

The high resolution ‘‘truth’’ has a grid spacing of
Dx ¼ Dy ¼ 7:5 km corresponding to 512 by 512 grid cells, a viscos-
ity of j ¼ 10 m2 s�1 and f u ¼ f m ¼ nu ¼ nm ¼ 0. The truth is inte-
grated for 104 days after discarding a spin up of 103 days.
104 days is chosen so as to provide estimates of the climatological
mean, variance and lag-covariance with sufficient accuracy. A grid
spacing of Dx ¼ Dy ¼ 30 km corresponding to 128 by 128 grid cells,
a viscosity of j ¼ 470:23 m2 s�1 integrated for the same time is
used to represent a low resolution ‘‘model’’ of the ‘‘truth’’. The vis-
cosities are chosen for stability to yield a Munk layer width Mw

along the western boundary of at least three grid cells,

Mw ¼ p j=bð Þ1=3
> 3Dx. Throughout this paper we refer to high

7.5 km resolution integrations as the truth and low 30 km res-
olution integrations as the model. The initial model without addi-
tional constant or stochastic forcing is referred to as the
unparameterised model and the optimised model with the addi-
tional constant and stochastic forcing is referred to as the parame-
terised model. To compare the model with the truth, linearly
interpolated values of the truth integration at the locations of the
low resolution model grid cell variables are used.

3. The optimisation algorithm

For the discretized u and m fields, dropping the subscript for
simplicity, the parameters f (representing a time-independent spa-
tially varying forcing), b and q (governing the respective timescale
and amplitude of the stochastic process), are estimated using an
iterative process. These vectors are initialised to zero,
Fig. 3. The autocorrelation of the sea surface height of each low resolution model and the
boundary, see Fig. 2. Point (a) is right in the centre of the most turbulent part of the dom
Berloff (2005), Fig. 4(a)). Point (b) is in a region dominated by wave activity, the autoc
(compare with Berloff (2005), Fig. 4(b)).
f0 ¼ 0; b0 ¼ 0 and q0 ¼ 0 where the superscript indicates an itera-
tion number n. For each iteration, the low resolution model is inte-
grated. After an initial spin up period, the model climatological
mean of u or m at each grid point, denoted mn

model, is estimated by

integrating over a sufficiently long time (in our case 104 days).
The model climatological mean is compared with the true cli-
matological mean vector mtruth and f is updated as follows

fnþ1 ¼ fn þ mtruth �mn
model

� 	
df ; ð9Þ

where df is a suitably small positive constant. A similar procedure is
followed for updating q

qnþ1 ¼ qn þ r2
truth � rn

model

� 	2

 �

dq; ð10Þ

where rn
model is the standard deviation of the low resolution

parameterised model u or m at each grid point measured at the
n’th iteration, rtruth is the standard deviation of the true system
and dq is again a suitably small positive constant. The minimum
value that q can obtain is clipped at zero, corresponding to no
stochastic forcing at the relevant grid point.

As mentioned in Section 1.3, we wish to set b such that the inte-
gral of the lag-covariance (or equivalently the integral of the
autocorrelation function), of the model and the truth are the same.
From data, estimates of the integral of the lag-covariance are not as
accurate as estimates of the lag-covariance at a particular lag
(Cooper and Haynes, 2015). Therefore we aim to choose a single
lag s and optimise b so that the model and the truth have the same
autocorrelation at this lag. The idea is that if the model and the
truth have the same autocorrelation at this lag, they also approxi-
mately have the same integral of the autocorrelation. The
autocorrelation of the stochastic term is an exponential decay. It
turns out that choosing a lag that is too small leads to an over-
estimate of the integrated lag-covariance because the initial decay
in the truth autocorrelation function is slower than exponential
(DelSole, 2000). On the other hand the uncertainty in the
autocorrelation as a percentage increases with lag, so a lag that
is too large leads to a large uncertainty in the decorrelation time.
By plotting the autocorrelation of a selection of the high resolution
variables against lag (as in Fig. 3) over exponentials with various
decay constants, we estimate that the two curves meeting at a
lag s ¼ 5 days gives a reasonable, but imperfect, exponential
approximation to the autocorrelation. This is similar to the value
that would be obtained by Berloff (2005), see their Fig. 4. Fig. 3
demonstrates that the autocorrelation varies across the domain,
so as an alternative to our choice of s ¼ 5 days, it might be more
reasonable to assume that the appropriate s to use is found when
the autocorrelation first reaches 0.6 or some other reasonable
value.
high resolution truth at 36� latitude, (a) 285 km and (b) 2685 km from the western
ain where the largest value of the mean eddy kinetic energy is found (compare with
orrelation function is more oscillatory with the oscillations taking longer to decay



Fig. 4. The mean squared (MS) difference between the parameterised model and high resolution truth climatological (a) mean, (b) variance and (c) 5 day lag covariance for
the zonal velocity u (solid), meridional velocity m (dashed) and sea surface height g (grey). Note the logarithmic y axis. The unparameterised model represents the first
iteration.
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It can be shown, see Appendix A, that for linear systems, �1=bi

is approximately linearly related to the lag covariance introduced
to the system, where bi is element i of b. Therefore the procedure
for updating b is given by

�1

bnþ1
i

¼ �1
bn

i

þ ci;truthðsÞ � cn
i;modelðsÞ


 �
db ð11Þ

for i ¼ 1 . . . d. Here ci;truthðsÞ and cn
i;modelðsÞ represent the lag s covari-

ance, independent at each grid point, for the respective truth and
n’th model iteration. db once again is a sufficiently small positive
constant. �1=bi is constrained to be always greater than 600 s.
Each element of b is therefore always negative and the stochastic
systems (7) and (8) are guaranteed to be stable.

The constants df ¼ 0:1 kg m�2 s�1; dq ¼ 0:1 kg2 m�4 s�3, and
db ¼ 5:0 m�2 s3, were found by trial and error to lead to conver-
gence. If they are too small, the algorithm is too slow to converge
and if they are too large this Euler type method is unstable. The
model’s initial condition at each iteration of the optimisation is
the final state taken from the end of the previous iteration. Using
this method it was found that it was only necessary to discard a
spin up of 500 days at the start of each iteration. When the differ-
ence between the truth and model climatological state at a grid
point becomes smaller than the uncertainty in the mean, variance
and 5 day lag covariance, further optimisation is not possible. The
integration length governs this uncertainty. Longer (and more
computationally expensive) integrations than the 104 days used
here is found to lead to faster convergence per iteration and the
optimisation converges to a more accurate state.

We do not make use of additional assumptions, such as diver-
gence free forcing and further investigations, beyond our current
scope, are necessary to understand the importance of various con-
servation laws. The integrations reported here did not exhibit any
obvious long term drifts.
4. Results

In our barotropic double gyre configuration, the parameters
control the sub-grid eddy momentum forcing. The optimisation
algorithm finds a slightly improved set of parameters at each itera-
tion. With the first point corresponding to the unparameterised
model, the mean squared differences between the high resolution
and parameterised climatological mean, variance and 5 day lag
covariance are plotted with a logarithmic y axis in Fig. 4. Using this
metric, the difference between the parameterised and true
climatology has been substantially reduced when compared with
the unparameterised low resolution system. After 150 iterations
the mean u; m and g fields are continuing to improve; however
the variance of all three fields seems to have reached a plateau.
The 5 day lag covariance of the u and m fields are still improving
while for g it seems to have also plateaued. The minimal improve-
ment in g, which has no sub-grid forcing applied to its governing
equation, is examined in more detail in Section 4.2.

4.1. The climatological mean

After 150 iterations, Fig. 5 shows that the climatological mean
state of the low resolution parameterised model (panels (d)–(f))
is significantly closer to the high resolution mean (panels (g)–(i))
when compared with the low resolution model without parame-
terisation (panels (a)–(c)). The large values of u; m and g near the
western boundary are correctly reproduced and the magnitude
and shape of the zonal barotropic jet has been improved. Taking
a single longitude of the climatological mean sea surface height
285 km from the western boundary, Fig. 6 demonstrates that the
parameterised model adequately mimics the truth. For example
at 40� latitude, 285 km from the western boundary, g is 51.3,
�53.9 and �57.8 cm for the unparameterised, parameterised and
truth integrations respectively. Note the change in sign. The rela-
tively small difference between the high resolution and parame-
terised integrations, spread unevenly over the whole domain,
stem from the fact that the system is chaotic. Estimation of the cli-
matological mean of a chaotic system is subject to some error, pro-
portional to 1=

ffiffiffiffiffiffiffiffiffi
tmax
p

where tmax is the integration length. Therefore
increasing tmax reduces this error. Constant forcing of the u and m
fields leads to optimisation of the g field because of approximate
geostrophic balance. Additional forcing of g by adding a spatially
dependent term, Fgðx; yÞ, to (5) introduces additional sources and
sinks of mass, but may also lead to small improvements because
neither geostrophic balance or the numerical scheme used is exact.

4.2. The climatological variance

Figs. 7 and 8 show that the low resolution unparameterised
model (panels (a)–(c)) has a much lower climatological variance
and 5 day lag covariance than the true high resolution model (pan-
els (g)–(i)). The optimisation has succeeded in increasing the vari-
ance and 5 day lag covariance of the low resolution parameterised
model to be much closer to that of the high resolution system for
the u and m fields (panels (d) and (e)). Both the variance and
5 day lag covariance in the g field is not so well reproduced (com-
pare panels (f) and (i)). The 5 day lag autocorrelation, Fig. 3,



Fig. 5. The climatological mean zonal velocity u (left), meridional velocity m (middle) and sea surface height g (right) for the low resolution (top), low resolution
parameterised at iteration 150 (middle), and high resolution model (bottom). j is the viscosity parameter.

44 F.C. Cooper, L. Zanna / Ocean Modelling 88 (2015) 38–53
indicates that the long persistence of the low resolution model,
relative to the high resolution model, has been reduced.
Decomposing the velocities into their mean and varying compo-
nents, u ¼ �uþ u0 and m ¼ �mþ m0, the eddy kinetic energy, defined
as 1

2 Dx Dy h q0ðu02 þ m02Þ, is proportional to the variance in the u
and m fields. Taking the climatological eddy kinetic energy at a sin-
gle longitude, 285 km from the western boundary, Fig. 9 demon-
strates that the parameterised model is again a good
representation of the truth. For example at 40� latitude, 285 km
from the western boundary, within a 30 km grid cell it is
0:60� 1014 J, 2:32� 1014 J and 2:34� 1014 J for the unparame-
terised, parameterised and truth integrations respectively.

g is well approximated by the two dimensional stream function,
w, defined by u ¼ �@w=@y or m ¼ @w=@x. w, and hence g, can there-
fore be approximated as a spatial integral over u or m. The noise
terms nu and nm are uncorrelated in space, so their integral over
the domain tends to be small. A large positive nu at one latitude
is likely to be cancelled out by negative values of nu at other lati-
tudes. Thus the contribution of nu and nm to the variability of g
turns out to be relatively small. To get the correct variability of
the g field a stochastic term would need to be added to the right
hand side of the equation for g, (5). Alternatively, including spatial
correlation (represented by the off diagonals of Q ), when integrat-
ing Eqs. (7) and (8) would increase the variance of the spatially
integrated nu and nm. Therefore the variance in g would also
increase. Either of these options requires more investigation and
are beyond our current scope.
4.3. The constant forcing parameters

The parameterisation terms added to the equations for u and m
found by the optimisation at iteration 150 are shown in Fig. 10. The
constant sub-grid momentum forcing term necessary to maintain
the recirculating gyre, Fu, applied to the equation for u (panel



Fig. 6. The climatological mean sea surface height g at a single longitude 285 km from the western boundary, see Fig. 2.
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(a)) is dominated by a large positive value, denoting forcing fluid
from west to east, in the north-west corner of the domain. There
are however patches of forcing with amplitude changing rapidly
over small length scales, close to that of the grid scale, in parts of
the turbulent region.

This may be due either to slow convergence of the optimisation
algorithm (perhaps the true forcing is smooth) or due to uncer-
tainty in the climatological mean stemming from the finite integra-
tion length. Perhaps the small scales in the forcing structure are
necessary as suggested in other studies (e.g. Kraichnan (1976),
Zidikheri and Frederiksen (2010), Mana and Zanna (2014) and
references therein). This was tested by smoothing the iteration
150 Fu and Fm fields using a nearest neighbour average for each grid
cell. In Fig. 4a at iteration 150 the MS difference between the
parameterised model and the truth for �u; �m and �g was
0.93 m2 s�2, 4.8 m2 s�2 and 16 m2 respectively. By comparison
the respective MS errors with the smoothed forcing applied was
3.0 m2 s�2, 20 m2 s�2 and 24 m2. The smoothing reduced the qual-
ity of the climatological mean and demonstrates that at least some
small-scale features are needed for an optimal solution.

The constant forcing of the m field, Fm (Fig. 10, panel (d)), is very
strong (northwards) for a single grid box alongside the western
boundary. For example at 40� latitude Fm ¼ 1:25 Pa. It reaches a
maximum of 1.32 Pa at 36:6� latitude which compares with a
maximum, over the remainder of the domain, of 0.62 Pa at a point
in the red (colour saturated) region close to, but not always along-
side, the western boundary. In the main body of the domain there
are alternate bands of northward and southward forcing approxi-
mately aligned with the western boundary. A possible explanation
for the two strongest bands closest to the western boundary is that
they extend the meridional flow patterns, and hence the flow
boundary separation point, northwards. In the low resolution
model without parameterisation these flow patterns stop half
way along the domain, compare with Fig. 5 panel (b). Fig. 5 also
shows some differences between the low resolution parameterised
and the high resolution models far from the western boundary
(compare panels (e) and (h)). Perhaps these differences are due
to a finite integration time giving a climatological mean that is
not perfectly resolved. The shape of these differences reflects the
linear Rossby waves present in this region and the optimisation
algorithm may be trying to correct for these differences but
inadvertently magnifying them. On the other hand, the forcing
elsewhere may lead to a correction far from the western boundary
that the optimisation is in turn trying to correct. Longer integra-
tions or more iterations may resolve this issue.

Now that the values of Fu and Fm have been found, it is interesting
to consider which physical processes set the pattern of the forcing.
In the barotropic double gyre experiment, we expect the non-linear
(Reynolds stresses) and viscous terms to dictate the mean sub-grid
eddy forcing. Examination of these terms in the truth and low res-
olution experiment indicate that forcing of the form

Fu � c1r2uT and Fm � c1r2mT; ð12Þ

might be a reasonable approximation. Here c1 is a constant, the over
bar indicates the time mean and the subscript T indicates that data
from the truth integration is used. We choose c1 ¼ 4� 109 kg s�1 in
order to approximately match the amplitude of the optimised forc-
ing shown in Fig. 10. In the present model configuration Fu and Fm

then correspond to the time mean of an additional eddy viscosity
that corrects the mean flow. Forcing the model with these terms,
leads to the separation point of the jet being further north and
encouraging changes to the structure of the eastwards jet.
However the strength and pattern is significantly different from
the high resolution truth suggesting that if this form of forcing plays
a role, non-linear feedbacks are important. These results in
combination with the stochastic forcing mentioned at the end of
Section 4.4, are presented in Fig. 11. Performing identical integra-
tions without the stochastic forcing altered the variances but did
not have a large impact upon the mean response.

4.4. The stochastic forcing parameters

The variance qu of the noise in the stochastic system governing
nu is relatively large at a few grid points in the north-west corner of
the domain and along the northern and southern boundaries
(Fig. 10, panel (b)). There is also noise in the vicinity of the high
resolution eddy activity, but there are regions in the centre of the
domain and all along the western boundary where variance of nu

is zero. qm on the other hand (Fig. 10, panel (e)) is large close to
the northern part of the western boundary, small or zero along
the northern and southern boundaries, small in the region of eddy



Fig. 7. The climatological standard deviation of the zonal velocity u (left), meridional velocity m (middle) and sea surface height g (right) for the low resolution (top), low
resolution parameterised at iteration 150 (middle), and high resolution model (bottom). j is the viscosity parameter.
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activity and large in the region of linear wave activity. Also there is
an oval region at the centre of eddy activity where qm is zero.

A measure of the effective forcing of the stochastic term is given
by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�qu=bu

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�qm=bm

p
with units of Pascals and the division

denotes the element wise division of each element of q by the
corresponding element of b. The square root is also taken element
wise. Thus in addition to qu and qm, the time scale of nu and nm

determined by bu and bm needs to be taken into account. Panels
(c) and (f) of Fig. 10 show that the largest stochastic forcing is
located in the region of high resolution eddy activity. In this region,
the amplitude of the stochastic term is small, but the time scale, of
around 10–12 days, is relatively long when compared with the
time scale in the rest of the domain, � 5 h. In Berloff (2005)
stochastic forcing was applied using a first and second order
auto-regressive process. For various experiments their first order
process was given a spatially uniform time scale between 3.3 and
30 days.
To further try to disentangle the overlapping effects of the four
additional forcing terms Fu; Fm; nu and nm, a set of experiments was
performed where a subset of these terms was set to zero and the
optimisation was performed again. These experiments, the results
of which are summarised in Table 1, show that using the full set of
four terms leads to the most optimal climatological means and
variances. With this experimental configuration the constant forc-
ing terms Fu and Fm are largely responsible for correcting the cli-
matological mean and the stochastic terms, nu and nm, are mainly
responsible for correcting the climatological variance and 5 day
lag covariance. In addition, it is crucial that both the amplitude
and time scale of the stochastic term is allowed to vary spatially.

In situations where an optimisation cannot practically be per-
formed, an approximation to the optimal forcing may be useful.
Comparing Figs. 10b with 10c and 10e with 10f, indicates that
the form of qu and qm is quite complex and is often relatively large
in regions where the effective forcing (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�qi=bi

p
) is small. We might



Fig. 8. The climatological 5 day lag covariance of the zonal velocity u (left), meridional velocity m (middle) and sea surface height g (right) for the low resolution (top), low
resolution parameterised at iteration 150 (middle), and high resolution model (bottom). j is the viscosity parameter.
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therefore expect that the effective forcing is largely set by the time
scale parameters bu and bm. A simple approximate relation at each
grid point is

bui ¼
c2

1
2 q0 u02iT � u02iM

��� ��� and bmi ¼
c2

1
2 q0 m02iT � m02iM

��� ��� ð13Þ

where c2 is an undetermined constant, the subscripts M and T indi-
cate data from the respective model and truth integrations, the over
line indicates the time mean and the prime indicates the time vary-
ing part from the standard Reynolds decomposition, u ¼ �uþ u0 and

m ¼ �mþ m0. As a test, we choose that q1=2
ui ¼ q1=2

mi ¼ 0:004 Pa s�1/2 in
the region defined by the western and northern boundaries and
2100 km east and 2940 km south of these boundaries, qu ¼ qm ¼ 0
elsewhere, bu and bm are given by (13) with c2 ¼ 2� 10�4 Pa s�1

and Fu and Fm are given by (12). The climatological statistics of
the system integrated with these parameters are shown in Fig. 11.
Comparing the plots in Fig. 7 with 11d–f, indicates that the variance
of this test system has been improved relative to the low resolution
model without parameterisation. It provides some evidence that the
time scale of the sub grid forcing is important, rather than a particu-
lar spatial form of the amplitude. Unfortunately the 5 day lag
covariance of the test system is poor, compare Fig. 8 with 11g–i.

Equations similar to (12) and (13), may yield a quick indication of
where forcing might be applied in a parameterisation strategy.
However Fig. 11 demonstrates that using Eqs. (12) and (13) to
parameterise the sub-grid scale flow is much less accurate than per-
forming an optimisation. Also with the spurious lag covariance
shown in Fig. 11, we would expect additional error in its response
to forcing.
4.5. The response to a change in the wind

Arguably, the most desirable property of a climate model, or a
seasonal forecast model, is an accurate response to changes in
the applied forcing. As mentioned in Section 1.3 and Fig. 1, the



Fig. 9. The climatological eddy kinetic energy within each 30 km grid cell at a single longitude 285 km from the western boundary, see Fig. 2.

Fig. 10. Iteration 150 of the optimised values for the zonal u (top) and meridional m (bottom) velocity forcing parameters f (left) and stochastic parameters q (middle) and
ð�q=bÞ1=2 (right) where the division and square root is taken separately for each vector element. The quantity ð�q=bÞ1=2 has Pascals as its units and is a measure of the
strength of the stochastic forcing.
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fluctuation–dissipation theorem suggests that a possible conse-
quence of optimising the timescales in the model is to improve
the response to forcing. Statistics related to the timescales, namely
the variance and 5 day lag covariance, have been somewhat
improved. In this section we describe the impact upon the model’s
forced response.



Fig. 11. Statistics of a low resolution integration with Fu ¼ c1r2 �uT; Fm ¼ c1r2�mT, see the end of Section 4.3. In addition q1=2
u ¼ q1=2

m ¼ 0:004 Pa s�1/2 in the region of high
variance and bu and bm are given by (13), see the end of Section 4.4. Statistics of u (left), m (middle) and g (right) including the mean (top), standard deviation (middle) and
5 day lag covariance (bottom) are plotted. To enable comparison, the colour axis for each plot is the same as that used in Figs. 5 (for the mean), 7 (for the standard deviation)
and 8 (for the lag covariance).
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To test how the climatological mean of a particular config-
uration responds to forcing, it is useful to apply several magnitudes
of forcing to check for linearity of the response, and to perform
multiple independent integrations with different initial conditions
to check for the uncertainty in the response. Therefore for five val-
ues of the wind forcing amplitude a0 ¼ 0:10; 0:11; 0:12; 0:13 and
0.14 Pa, an integration of ten (N ¼ 10) ensemble members with
random initial conditions was performed. Fig. 12 shows the ensem-
ble mean climatological mean response of each system to a small
change to the forcing. Uncertainty in the response, quantified as
the ensemble standard deviation of the climatological mean
multiplied by 2=
ffiffiffiffi
N
p

, peaked at around 10–15 percent in regions
of large response. Given the variance in the ensemble members,
non-linearity of the response as a function of forcing amplitude
was undetectable.

Fig. 12 shows that the response to forcing of the high resolution
u field (panel (g)) is dominated by the gyre in the north-west cor-
ner of the domain (cf. Fig. 5, panel (g)). The low resolution u field
without parameterisation (panel (a)) has a strong response close
to the centre of the western boundary. The parameterised system
successfully reduces this response to an amplitude more similar
to the high resolution system but it fails to introduce the response



Table 1
A summary of integrations performed using different combinations of parameterisation terms. The left column indicates the terms included and optimised for in Eqs. (3) and (4).
Terms not included in the optimisation are equal to zero. The other two columns indicate the quality of the parameterised model climatological mean and variance as
optimisation progresses.

Forcing terms used Climatological mean Climatological variance

Fu The mean u field converges relatively quickly, the m and g
fields converge relatively slowly

No improvement in the amplitude or shape of the variance

Fm The mean m field converges relatively quickly, the u and g
fields converge relatively quickly and then plateau at a
relatively poor value of the mean squared error

No improvement in the amplitude or shape of the variance.

Fu; Fm The mean u; m and g fields converge relatively quickly No improvement in the amplitude or shape of the variance
Fu; nu The mean u field converges relatively quickly, the m and g

fields converge relatively slowly
The variance in u converges relatively quickly, and m plateaus at
a relatively poor value of the mean squared error. The 5 day lag
covariance in u and m converges. No convergence in g

Fm; nm The mean u; m and g fields converge relatively quickly. The variance in m converges relatively quickly, and u plateaus at
a relatively poor value of the mean squared error. The 5 day lag
covariance in u converges and m converges relatively slowly. No
convergence in g

nu; nm No improvement in the amplitude or shape of the mean The u and m variance fields converge relatively quickly. No
convergence in g

dnui ¼
ffiffiffiffiffiffiffi
qui
p

dwui dnm i ¼
ffiffiffiffiffiffiffi
qm i
p

dwm i with
various configurations of Fu and Fm

The mean is optimised depending upon the inclusion of Fu

and Fm as above
No improvement in the amplitude or shape of the variance

Fu; Fm; nu; nm (full parameter set) Fastest convergence and most accurate Fastest convergence and most accurate. No convergence in g
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to the north-west corner. It is plausible that the location of the cir-
culation in the low resolution unparameterised model is simply
further north in the high resolution model, and since our parame-
terisation is local it is not able to reproduce such a non-local
change. The response in the m field is located all along the western
boundary in the high resolution system (Fig. 12, panel (h)),
whereas the response in the low resolution system without
parameterisation (panel (b)) stops half way and has a higher fre-
quency pattern in the eastwards direction close to the centre of
the domain. The low resolution system with parameterisation
reproduces the pattern of the high resolution response in m quite
well (compare panels (e) and (h)) although the amplitude is lower.
However in the north, once again the response is not captured. A
similar story applies to the g field (panels (c), (f) and (i)). The mean
squared difference between the low resolution parameterised and
high resolution u; m and g fields is 0.606, 0.500 and 0.650 times the
mean squared difference between the low resolution unparame-
terised and high resolution fields respectively. Values below one
indicate that for each field, according to this measure, the parame-
terisation has improved the response.

5. Discussion

We have successfully optimised a high dimensional spatially
varying linear stochastic parameterisation scheme for barotropic
sub-grid eddy turbulence. By finding the mean sub-grid eddy forc-
ing term, our method is successful at reproducing the climatologi-
cal mean of a high resolution idealised shallow water ocean gyre
using low resolution integrations. By finding the spatially varying
amplitude and timescale of a local stochastic sub-grid forcing term,
our method is also successful at reproducing the climatological
variance and 5-day lag-covariance of the velocity variables. The
response to forcing of the low resolution parameterised test sys-
tem was significantly closer to the true high resolution response
(estimated using the mean squared difference) than the default
system without parameterisation. Only data from one integration
of the high resolution system was used for optimisation, so by sub-
stituting sufficient measurements, or reanalysis data, representing
the real world, this method is potentially useful in climate change
experiments. The time evolution of both the low and high res-
olution test systems is chaotic.

The key to our method is optimisation. In a system with many
parameters it is impossible to explore the entire space defined by
them and a direction to optimise in must be assumed. This is
normally found using a tangent linear approach. We make the sim-
pler assumption that the direction to optimise in is given by the
difference between low and high resolution climatological states.
When measurements or a high resolution integration is available,
optimisation allows us to avoid complications such as having to
fit the sub-grid model as in Achatz and Branstator (1999), or spec-
tral representations of the flow as in Frederiksen and Kepert
(2006). We also avoid making assumptions present in less empiri-
cal theories that are either difficult to implement in reality (e.g.
Kraichnan (1959), Mana and Zanna (2014)), or do not apply in
practical cases. The result is a simple and accurate method that
can be applied without modification to state of the art ocean
models.

The measurements that we require are not too demanding. We
require for example the velocity measured at a single point in
space at a specified time. We do not require the tendencies that
are used in Frederiksen and Kepert (2006), Achatz and Branstator
(1999) and Achatz et al. (2013). We require sufficient measure-
ments to be able to estimate the climatological mean, variance
and lag-covariance in a region over some period of time.

In pioneering work, using a tangent linear model and its adjoint,
Ferreira et al. (2005) optimise the eddy stresses of a 4� � 4� res-
olution global ocean model to obtain a model with an accurate cli-
matological mean temperature as defined by observations (Levitus
and Boyer, 1994). As is the case with all sufficiently coarse res-
olution ocean models, their global model was integrated with a vis-
cosity sufficient to damp away all of the chaotic eddies. In the
absence of a time varying forcing all time differentials are equal
to zero and their system is not chaotic. This enables the use of an
adjoint method to optimise the climatology. By contrast, the low
resolution model we use in this study is chaotic. Unfortunately,
for climate problems, adjoint methods like that applied by
Ferreira et al. (2005) cannot easily cope with chaotic systems
(see e.g. Lea et al. (2000) and Eyink et al. (2004)). It is therefore dif-
ficult to extend them to higher resolution models which are chao-
tic due to having lower viscosity.

Our simple approach requires many iterations (150 in our test
case) of a low resolution model integration. Ferreira et al. (2005)
use 120 iterations of their forward and adjoint model. Given the
different model configurations, number of degrees of freedom
and optimisation tools, it remains difficult to assess which method
is computationally cheaper. We applied a basic Euler method at
each iteration step so it may be possible to reduce the number of
iterations by using a higher order approach. Additionally the



Fig. 12. The response to a small change to the wind forcing, in the zonal velocity u (left), meridional velocity m (middle) and sea surface height g (right) for the low resolution
(top), low resolution parameterised at iteration 150 (middle), and high resolution model (bottom). j is the viscosity parameter. The quantities shown are the ensemble mean
climatological mean from the a0 ¼ 0:13 Pa minus the ensemble mean climatological mean from the a0 ¼ 0:11 Pa integrations.
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direction that we push our parameterisation vectors is not optimal,
therefore it may also be possible to reduce the number of iterations
by more accurately estimating this direction using a modified
adjoint method (Wang et al., 2014), or by starting the optimisation
with parameters defined by a fit to the high resolution statistics as
in Achatz and Branstator (1999) and Frederiksen and Kepert
(2006), rather than the low resolution climatology.

Since our shallow water ocean gyre test system exhibits a high
degree of geostrophic balance and is well approximated by the
equivalent single layer quasi-geostrophic system, one may expect
that optimisation of a single prognostic variable, u; m or g, would
be sufficient. However this was found not to be the case. The vari-
ability of the sea surface height was not forced, or well reproduced
in the low resolution model. Thus there is scope for improvement
by including a stochastic term in its governing equation. The
fluctuation–dissipation theorem guarantees that the response to
a forcing is related to the underlying variability, so this may also
improve the response of the parameterised model. When estimat-
ing the forced response, we neglected any change in the sub-grid
parameters as a result of the forcing. So the low resolution parame-
terised response estimate can potentially be improved by including
these changes as estimated using the fluctuation–dissipation theo-
rem (Achatz et al., 2013). A complementary approach is to include
optimisation of the correlation between grid points of the stochas-
tic variables.

For objective measures of the quality of any model of a physical
system, measurements of the system to be represented are abso-
lutely necessary. In our case and in those of Berloff (2005),
Achatz and Branstator (1999), Achatz et al. (2013), Frederiksen
and Kepert (2006) and Zidikheri and Frederiksen (2009), the mea-
surements are represented by values taken from a higher res-
olution integration. In this paper, in addition to assessing the



Fig. A.13. The lag covariance ds added to a linear model by a linear stochastic term with a timescale p measured in units of time. Eq. (A.4) with a ¼ �1; g ¼ �1 and s ¼ 1.
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quality of our parameterisation, the high resolution integration is
used as an optimisation target. For a more realistic ocean model,
interpolated measurements of the real ocean, or reanalysis data,
would be used instead and the high resolution integration is there-
fore not required. For example Ferreira et al. (2005) use 1994 world
ocean atlas data and more up to date reanalysis is available for sec-
tors of the ocean, e.g. Mazloff et al. (2010). We have not developed
a fully self-consistent theory of ocean turbulence so it is impossible
for us to derive the values of our high dimensional parameter-
isation vector in advance. In regions where we have no measure-
ments (or theory), assumptions must be made. For example we
may assume that the parameters are all zero and the default model
is the best, or that parameters are the same as in a similar region of
ocean, or even that the parameters are given by experiments with a
high resolution regional model. Another approach is to assume
some given form of the forcing. As an example we considered the
hypothesis that the constant forcing is given by the viscous terms
in the model, (multiplied by an unknown constant). In our model
setup, a simple relation between the eddy kinetic energy difference
and the timescales of the stochastic forcing, was tested. Our results
suggest that the impact of the stochastic forcing is mainly deter-
mined by the spatial pattern of these timescales rather than the
spatial pattern of the amplitude of the variance. Using our optimi-
sation method, the numerical values of the parameters change if
the model parameters (density, resolution etc.) or boundary condi-
tions (e.g. location of continents) change. The solution to this prob-
lem, for those who wish to make use of a particular model in a
situation for which the appropriate parameters have not been
found, is to apply the optimisation algorithm detailed here to find
a new set of optimal parameters.

Our scheme is very simple but makes use of six parameters and
two variables for each model grid cell. Although this large number
of parameters is not a practical disadvantage, it is not particularly
elegant. Through understanding of the ocean system (Gent et al.,
1990), or turbulence in general (Holm et al., 1999), it may be pos-
sible to find a scheme of similar quality using fewer parameters.
Since we have been able to estimate the mean sub-grid eddy forc-
ing and have the amplitude and timescale of a variable forcing
term (in our case stochastic), our approach may help with insights
into a more developed theory. One advantage of our method is that
it does not conflict with other parameterisations. If necessary it can
be used in conjunction with the parameterisation schemes already
present in complex ocean models both at coarse or eddy-permit-
ting resolution.
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Appendix A. Influence of a stochastic parameterisation upon a
linear system

Assume that a single element one dimensional model, x, is
represented by a linear stochastic system of the form

dx ¼ axdt þ
ffiffiffi
b
p

dw ðA:1Þ

where w represents Gaussian white noise with zero mean and unit
variance and a and b are constants. We wish to add an additional
term r to the right hand side as a parameterisation giving

dx0 ¼ ax0dt þ
ffiffiffi
b
p

dwþ r dt ðA:2Þ

where r is given by

dr ¼ cr dt þ
ffiffiffi
g
p

dw0:

w0 is also a white noise term with the same properties as w and c
and g are constants.

Using the fact that for a d dimensional linear system
CðsÞ ¼ exp Bsð ÞCð0Þ where CðsÞ is the systems lag s covariance
matrix, B is a constant matrix and we use the matrix exponential,
it can be shown that the lag s variance difference, ds, between (A.1)
and (A.2) is given by

ds ¼ cg exp asð Þ � ag exp csð Þ
2a3c þ 2ac3 ; c < 0: ðA:3Þ

Substituting the variable p ¼ �1=c into (A.3) gives

ds ¼ gp2 exp asð Þ þ ap exp �s=pð Þð Þ
2a3p2 � 2a

; p > 0 ðA:4Þ

Then over some region of pþ dp, for s > 0; ds is approximately
proportional to p, so changing p in an iterative step (11) will lead to
a reasonable change in the lag covariance, see Fig. A.13.
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