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Abstract
Projections of future sterodynamic sea level change from global climate models are associ-
ated with different sources of uncertainty. From a scientific, societal and policy-making 
perspective, it is relevant to both understand and reduce uncertainty in projections of cli-
mate change. Here, we review recent findings which describe, and shed light on, climate 
model uncertainty focusing particularly on two types of model uncertainty that contribute 
to the currently large spread in dynamical sea level patterns (i.e., regional sea level relative 
to the global mean). These uncertainties are: (1) intermodel uncertainty due to differences 
in models’ responses in a warming climate and (2) internal model variability due to an 
individual model’s own climate variability. On timescales longer than about 50 years from 
now, anthropogenic sterodynamic (dynamic plus global mean) sea level trends from mid-
dle- and high-end forcing scenarios will be larger than internal model variability. By 2100, 
these anthropogenic trends will also be larger than intermodel uncertainty when global 
mean thermosteric sea level rise and/or melting contributions from land ice are consid-
ered along with dynamic sea level changes. Furthermore, we discuss projections of future 
coastal sea level from the perspective of global climate models as well as from downscaled 
efforts based on regional climate models. Much knowledge and understanding has been 
achieved in the last decade from intermodel experiments and studies of sea level process-
based model; here, the prospects for improving coastal sea level and reducing sea level 
uncertainty are discussed.

Keywords  Sea level · Climate projections · Regional sea level · Uncertainty · Trends · 
Trend detection · Time of emergence · Climate model

1  Introduction

Global mean sea level (GMSL) will continue to rise over the next centuries as a con-
sequence of increases in global mean temperature caused by anthropogenic climate 
forcing. About 70% of global coastlines are projected to experience a relative sea level 
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change within 20% of global mean sea level rise by the end of this century (Church 
et  al. 2013). Proper appraisal of uncertainty in projections of global and dynamic sea 
level is essential for risk assessment in policy responses and results in more effective 
risk management as part of adaptation and mitigation efforts (IPCC 2014: Summary for 
Policymakers).

Sea level projections are typically made using coupled climate models (e.g., Yin 2012; 
Church et al. 2013), statistical (e.g., Perrette et al. 2013) and semiempirical methods (e.g., 
Moore et al. 2013). While statistical and semiempirical methods can both provide an esti-
mate of sea level change along with some measure of uncertainty, ensembles of coupled 
climate models directly provide both an estimate of intermodel uncertainty—which is the 
sensitivity of dynamical sea level projections to model structure, parameterizations and 
numerics—and an estimate of the uncertainty due to natural variability over different time-
scales. In these multi-model projections, uncertainty arises from different sources, with 
their relative significance varying as a function of lead time and spatiotemporal averaging 
scales (Hawkins and Sutton 2009; Northrop and Chandler 2014). Models under discussion 
in this review are largely models contributing to phase 5 of CMIP (Coupled Model Inter-
comparison Project, hereafter CMIP5; Taylor et al. 2009).

Climate models also provide valuable process-based information, such as low-fre-
quency climate variability and anthropogenically forced trends on timescales up to centu-
ries, which can be used for detecting the emergence of anthropogenic sterodynamic (often 
referred to as “regional” or “local”) sea level trends. These trends are detected when their 
signal emerges above the “background noise”, that is, above the range of variability which 
is externally forced by natural processes (e.g., solar and volcanic) and variability internal 
(unforced) to the climate system (e.g., known climate modes of variability). Such detection 
efforts can be used to assess how quickly sea level changes outside the range of natural 
variability will impact a specific coastal region. Thus, detection of anthropogenic sea level 
trends is crucial not only to better understand physical processes by climate scientists but 
also to the public sector and local governments to inform urban planning and elaboration of 
effective climate change adaptation and mitigation strategies. However, it is important that 
climate models can accurately estimate both internal variability and regional responses to 
anthropogenic forcings in order for such detection methods to yield results with confidence.

This review focuses on recent advances into understanding the spread in model projec-
tions of local, sterodynamic sea level change related to ocean processes, i.e., ocean heat 
uptake, mass, heat and freshwater redistribution. The ways in which this has been achieved, 
as well as the problems and answers which have been found so far, inform on how well 
we can directly estimate or infer future sea level changes at the coast and regionally in the 
open ocean and how much confidence we are able to place on them. Though sea level rise 
due to mass loss from the Greenland and Antarctic ice sheets is expected to increase (e.g., 
Church et al. 2013), the respective sea level fingerprints are still obscured by the decadal 
to multidecadal sea level variability observed in satellite altimetry. Richter et al. (2017b) 
showed that the internal decadal to multidecadal (modeled) contribution of glaciers mass 
change to sea level variability is small compared to ocean variability. Little is known, how-
ever, about the internal variability of the Greenland and Antarctic ice sheets.

As we employ various specific terms regarding sea level, variability and uncertainty, a 
terminology list is found in the following subsection. These terms will be linked to those 
found in Gregory et al. 2019, where possible. In Sect. 2, we cover relevant literature on the 
sources of climate model uncertainty for projected local, sterodynamic sea level trends and 
on model representation of internal climate variability of sea level in comparison with sat-
ellite altimetry and tide gauge observations. Some focus is specific to understanding model 
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internal climate variability, a partially irreducible source of uncertainty in trend detection 
given that it is a natural feature of the climate system.

Research into trend detection for anthropogenic sterodynamic sea level change is pre-
sented in Sect. 3. As an application of the uncertainties explored in Sect. 2, here we sum-
marize model studies that assess the effect of internal variability and intermodel spread on 
the detection of future sterodynamic sea level trends. These studies provide a timeframe 
proxy for anthropogenic sea level trends that are expected to emerge from natural variabil-
ity in the observational record. A subset of these results that are applied specifically at the 
coasts is also presented.

In Sect. 4, we examine research which covers the coastal aspect of sea level projections, 
including recent downscaling efforts based on regional models of considerably higher spa-
tial grid resolution than global climate models, and what still needs to be accomplished or 
improved in coastal sea level projections. Sources of uncertainty that are specific to mod-
eled coastal sea level projections are explored. Finally, Sect. 5 contains some brief con-
cluding remarks.

1.1 � Terminology

•	 Dynamic sea level—the spatially and time-dependent sea level referenced to the geoid 
and provides geostrophic surface currents, chosen such that its global mean is zero; 
dynamic sea level here does not contain any other sea level signal (e.g., no global mean 
thermosteric sea level, no land ice melt, no land motion, no inverse barometer effects). 
This is term N13 ocean dynamic sea level change in Gregory et  al. 2019, minus the 
inverse barometer (IB) correction, and is the same as the “zos” variable reported for 
CMIP5 models.

•	 Global mean thermosteric sea level—the increase in global mean sea level through 
thermal expansion of warming water (e.g., Domingues et al. 2008), where the global 
mean is being derived from ocean model density via a common calculation (Great-
batch 1994) in which a mean, time-independent salinity is used. In CMIP5 model out-
put alone, this is normally synonymous with global mean sea level. This is term N17 in 
Gregory et al. (2019).

•	 Sterodynamic sea level—in modeling studies often called “regional or local sea level,” 
it is the dynamic sea level plus global mean thermosteric sea level; the sterodynamic 
sea level (associated with changes in ocean density and circulation, see Gregory et al. 
2019) can be derived directly from coupled climate models and does not include any 
other sea level components which are not commonly calculated in CMIP5 models. This 
is term N20 in Gregory et al. (2019).

•	 Total sea level—the sterodynamic sea level, plus all other known components to sea 
level that contribute a substantial amount to the sterodynamic sea level changes rela-
tive to the adjacent coast, or the ocean floor, as presented in the AR5 report (Church 
et al. 2013; i.e., land ice melt, vertical land motion from glacial isostatic adjustment, 
land water storage and inverse barometer (IB) effects). It is the IB-corrected relative 
sea level change (see term N15, Gregory et al. 2019), the sea level measured relative 
to the sea floor, and therefore includes the contribution from vertical land motion, but 
includes also changes in the geoid and the change in total mass (volume) of the ocean. 
This is the only quantity in this paper that relies on data external to the typical CMIP5 
coupled climate models’ ocean component model.
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•	 Internal variability—dynamic sea level variability occurring within the pre-industrial 
control runs of individual models.

•	 Intermodel uncertainty—differences between models in dynamic sea level changes 
over a fixed time frame.

•	 Uncertainty—a general term used for the property of statistical uncertainty or error 
associated with changes (usually mean differences or trends) in dynamic, sterodynamic 
or total sea level over a specified time interval, but also used as a term for the range of 
values obtained when applying a set of different forcings in model experiments that 
may not span the range of possible forcing values due to unknown or unknowable fac-
tors. An example of the latter is scenario uncertainty (Yip et al. 2011; see Sect. 2).

•	 Time of emergence (ToE)/trend detection—the length of time over which a trend from 
linear least squares fitted to sterodynamic sea level will be statistically significant 
against the local, unforced, sea level variability (i.e., the internal variability) is the time 
of (signal) emergence; the process is also called trend detection. In order to identify the 
ToE for anthropogenic sterodynamic sea level change, one must estimate sterodynamic 
sea level variability from internal climate processes on a wide range of timescales (e.g., 
Becker et al. 2014; Carson et al. 2015; Little et al. 2015; Han et al. 2018; see Sect. 3 for 
uncertainty arising from internal variability).

•	 Regional—this adjective is used to draw specific attention to the fact that a spatially 
local property is being examined, as opposed to a global or global mean property.

2 � Climate Model Uncertainty in Future Sea Level Projections

Future projections of sterodynamic sea level are generally developed based on multi-model 
ensembles all using the same forcing protocol design (e.g., Eyring et  al. 2016). These 
global climate model simulations are averaged together to provide a mean estimate, called 
the ensemble mean, as this averages out random noise and transient dynamic features. The 
multi-model ensemble also provides an uncertainty estimate found from the spread of the 
ensemble members (Fig. 1). Note that the averaging, however, does not remove systematic 
errors that might be common to the ensemble of models.

The major sources of uncertainty related to changes in global mean thermosteric and 
dynamic process-based sea level projections include:

1.	 internal variability due to differences in the timing, spatial patterns and magnitudes of 
multidecadal climate variability (e.g., the interdecadal Pacific Oscillation, Di Lorenzo 
et al. 2008) within and among individual models (e.g., Hu and Deser 2013; Bordbar 
et al. 2015; Carson et al. 2015; Hu et al. 2017, Hu and Bates 2018); due to these differ-
ences, the ensemble average of different model results may not be able to fully remove 
the internal climate variability and its associated sea level variability (although it can 
be greatly reduced, see below);

2.	 intermodel uncertainty due to differences in responses among projections of different 
climate models under the same forcing scenario (e.g., Church et al. 2013; Melet and 
Meyssignac 2015; Gregory et al. 2016);

3.	 scenario uncertainty due to the future path of anthropogenic forcing (Moss et al. 2010; 
Yip et al. 2011); and

4.	 model–scenario uncertainty “due to the variation of model deviations from the ensemble 
mean across different scenarios” (Yip et al. 2011).
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These types of uncertainty apply to projections of both global mean thermosteric sea 
level change (e.g., Melet and Meyssignac 2015) and regional anomalies from the global 
mean, dynamic sea level (e.g., Yin 2012; Gregory et al. 2016). The model spread of global 
mean thermosteric sea level change is generally smaller than the model spread in dynamic 
sea level change by 2100 in most regions outside the tropics (Yin 2012; Church et  al. 
2013), by more than a factor of two in parts of the North Atlantic and Arctic regions. In 
the tropics, the ensemble spread of global mean thermosteric sea level change is of similar 
magnitude to the total spread in sterodynamic (global mean thermosteric + dynamic) sea 
level.

To allow for the partitioning of the relative contribution of the four types of uncertainty 
listed above, with respect to the total uncertainty in the projections, Yip et al. (2011) pro-
posed the use of a statistical procedure known as analysis of variance (ANOVA, e.g., Von 
Storch and Zwiers 2001).

Using this approach and the same subset of CMIP5 models as in the IPCC AR5 (Church 
et  al. 2013), Little et  al. 2015 found that the total uncertainty in RCP4.5 projections of 
sterodynamic sea level rise by 2090 was composed of 40–70% due to intermodel uncer-
tainty; 30–40% due to scenario uncertainty; and a smaller fraction (< 5%) due to internal 
variability and model–scenario uncertainty. All of these relative contributions vary locally 
due to the magnitude of both forced (anthropogenic or natural) and unforced (control-run) 
variability. At regional scales and on the relatively shorter timescales of 10–50 years, the 

Fig. 1   From AR5, Chapter 13, Fig. 13.16. Projections of future sterodynamic (dynamic plus global mean 
thermosteric) sea level change resulting from the RCP4.5 scenario forcings, as a difference of the 2081–
2100 mean minus the 1986–2005 mean sea level. The RCP4.5 scenario is a prescribed “middle” scenario 
for climate projection model experiments that includes some anthropogenic climate forcing mitigation 
through 2100 (Moss et  al. 2010). a The ensemble mean sea level change from 21 ensemble members, 
in meters (m). b) The spread in sea level among ensemble members, calculated as the RMS (root mean 
square) deviation around the ensemble mean [in (a)], in m. Note that, because we only show results from 
RCP4.5, the ensemble spread does not contain any deviations due to differing forcing scenarios
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largest uncertainties in future projections of sterodynamic sea level arise from intermodel 
differences and internal variability (Lyu et  al. 2014, 2015; Richter and Marzeion 2014; 
Carson et  al. 2015; Little et  al. 2015; Han et  al. 2018). Therefore, we will focus on the 
sources and causes of these two model-derived uncertainties for the rest of this section.

2.1 � Sources of Intermodel Uncertainty

Several techniques have been employed in order to assess the causes of uncertainty in 
ocean-only sea level projections from global climate models, i.e., sterodynamic sea level. 
Bouttes and Gregory (2014) applied surface flux changes from different models to a single 
coupled climate model and found that heat flux and wind changes dominate both the pat-
terns of sterodynamic sea level change and their intermodel spread. The CMIP6-endorsed 
FAFMIP project (Flux-Anomaly-Forced Model Intercomparison Project) is being carried 
out to quantify the drivers of dynamic sea level variability in models and the key ocean 
processes responsible for the large spread in projections (Gregory et  al. 2016). Initial 
results based on a small number of CMIP5 model simulations show that heat flux pertur-
bations are largely responsible for the modeled sterodynamic sea level changes over most 
of the ocean, except in the Southern Ocean, where wind forcing has a comparable contri-
bution in driving the strong sea level gradient across the Antarctic Circumpolar Current 
(Gregory et al. 2016).

Based on an eddy-permitting ocean model, Saenko et al. (2015) also found that surface 
heat forcing is a dominant process in driving dynamic sea level changes under the RCP4.5 
scenario. In this eddy-permitting experiment, both wind and heat surface forcing contrib-
uted to the large belt of sea level changes along the Southern Ocean, as in FAFMIP, but 
wind forcing drove larger sea level changes in the North Pacific and Atlantic compared to 
FAFMIP. Using a different approach from FAFMIP, Huber and Zanna (2017) tested the 
magnitudes of uncertainties from air–sea fluxes versus ocean model parameterizations and 
found that the uncertainties from air–sea fluxes were larger than those from ocean param-
eterizations, especially for the Atlantic Meridional Overturning Circulation (AMOC) and 
Atlantic Ocean heat content. In a similar vein to FAFMIP, Garuba and Klinger (2018) and 
Zanna et  al. (2018) explored individual surface flux perturbations on ocean-only mod-
els, finding that heat, freshwater and wind flux perturbations all have various, and large, 
regional responses in ocean heat uptake, and therefore sterodynamic sea level. In addition, 
Melet and Meyssignac (2015) find that the majority of the model spread in global mean 
thermosteric sea level in coupled simulations is due to differences in ocean heat uptake effi-
ciency, and the overall effective climate feedback parameter of models. Combining results 
from ocean-only simulations together with coupled models can shed light on processes 
responsible for intermodel spread in ocean heat uptake and associated sterodynamic sea 
level change (Kuhlbrodt and Gregory 2012; Marshall and Zanna 2014; Saenko et al. 2018).

To quantify uncertainty introduced by internal variability, most studies used multi-
model ensembles (Yin et al. 2010; Little et al. 2015) or sea level projections from a sin-
gle model, where each realization was forced by the identical scenario, but run with per-
turbed initial conditions. By taking this approach, Bordbar et al. (2015) demonstrated that 
the sterodynamic sea level projections by 2100 were strongly dependent on ocean initial 
conditions. In the same way, Hu et al. (2017), who analyzed a large ensemble from a single 
model, found that perturbations on initial ocean conditions led to larger changes in sterody-
namic sea level rise than initial atmospheric perturbations. To improve our understanding 
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and estimation of the internal variability uncertainty on sea level projections, studies ana-
lyzing both atmospheric and oceanic initial conditions effects are required.

Although the text above does not summarize all possible mechanisms responsible for 
uncertainty in ocean-only sea level changes from process-based models, it lists the major 
sources of uncertainty causing spread in dynamic sea level projections.

2.2 � Quantifying Internal Climate Variability

The internal variability of dynamic sea level is the main source of interannual and decadal 
variability of sterodynamic sea level, which could overwhelm any early anthropogenic sig-
nals of sterodynamic sea level change (Meyssignac et al. 2012; Zhang and Church 2012). 
It is also possible, but not clearly detected, that land ice volume low-frequency (multi-
decadal) variability might also be able to drive some sterodynamic sea level variability 
(Chylek et  al. 2004; Bjørk et  al. 2012). Therefore, climate model simulations have been 
evaluated against historical observations with the goal of evaluating model performance in 
simulating internal sea level variability.

To what extent the climate models can simulate realistic internal sea level variability is 
an open question (e.g., Bordbar et al. 2015; Hu et al. 2017). Even when a model reproduces 
dynamic sea level of similar magnitude to the real ocean, the internal variability in model 
simulations is not in phase and future projections differ in spatial patterns for regional var-
iability on the timescales of 10–40  years and in spatial patterns of regional trends over 
80–100 years (Richter and Marzeion 2014; Carson et  al. 2015; Little et  al. 2015). Inter-
nal variability, combined with model errors and cross-model differences, therefore yields a 
complex picture of uncertainties that apply to projected sea level changes.

Comparisons of modeled and observed sea level variability over multidecadal peri-
ods are possible using tide gauge data (e.g., Becker et al. 2016; Meyssignac et al. 2017). 
The extraction of the dynamic sea level signal from tide gauges is complicated by the fact 
that they constitute point measurements that can be contaminated by land motion (Emery 
and Aubrey 1991; Santamaría-Gómez et al. 2014), and tide gauges also measure all other 
sources of local, relative sea level, such as land ice melt, groundwater retention and vertical 
land motion. Tide gauge variability on decadal timescales—i.e., not secular trends—is usu-
ally associated with dynamic sea level variability (e.g., in the North Atlantic: Calafat et al. 
2012; Richter et al. 2012; Ezer et al. 2013; Dangendorf et al. 2014a), or in certain cases 
with global mean thermosteric sea level (e.g., large volcanic eruptions, Church et al. 2011) 
or large transient water mass changes (Fasullo et al. 2013).

Meyssignac et al. (2017) compared 27 historical tide gauge records (> 70 years) with an 
ensemble mean of 12 CMIP5 models. They showed that the simulated sea level in CMIP5 
models is generally in close agreement with multidecadal variability from the tide gauge 
record during 1900–2015. They pointed out, however, that the interannual variability in 
models may overestimate or underestimate tide gauge variability, depending on the region. 
These differences are due to a variety of effects that models do not represent well, including 
river runoff, extreme ENSO events and ocean variability in shallow seas (Meyssignac et al. 
2017). Becker et  al. (2016) also found mismatches in variability between climate model 
ocean and tide gauges. Their analysis employed the methods developed by Lennartz and 
Bunde (2009) and was based on the property of sea level fluctuations to exhibit long-term 
correlations modeled as outcomes of stochastic power-law processes (Agnew 1992; Beretta 
et al. 2005; Barbosa et al. 2006, 2008; Hughes and Williams 2010; Bos et al. 2013; Becker 
et al. 2014; Dangendorf et al. 2014b). By comparing scaling properties in sea level changes 
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simulated in 36 CMIP5 models to those in 23 historical tide gauge records (> 100 years), 
Becker et al. (2016) found that the majority of models overestimates the scaling of sea level 
fluctuations, particularly in the North Atlantic. Consequently, the models may underesti-
mate a portion of sea level rise due to external forcing, in particular the anthropogenic foot-
print in the twentieth-century projections. This is likely, in part, due to not including vol-
canic forcing in the control runs of some models, which lead to lower estimates of ocean 
heat content uptake for these models (Gregory et al. 2013).

There are also studies comparing internal sea level variability in climate model simula-
tions to historical datasets using satellite altimeter observations and other sea level prod-
ucts, including ocean reanalyses and sea level reconstructions that are available for longer 
time periods than altimetry data. Climate models generally reproduce large-scale features 
of the interannual and decadal sea level variability patterns, despite considerable inter-
model spread. Monselesan et al. (2015) showed that the climate models can also simulate 
the spatially coherent features that interannual sea level variability is predominantly in the 
tropics, and on longer timescales, the sea level variance moves to higher latitudes. How-
ever, compared to available observations, most climate models underestimate the magni-
tude of internal sea level variability in the Pacific on both interannual and decadal time-
scales (Landerer et al. 2014; Lyu et al. 2016; Peyser and Yin 2017).

3 � Sterodynamic Trend Signal Detection

3.1 � Trend Detection in Future Model Projections

The time of emergence (or ToE, in trend detection) is the length of time needed to be able 
to detect significant secular trends in sterodynamic sea level against the background cli-
mate variability. If reliable model estimates of sea level variability can be made, then the 
statistical significance and ToE of sterodynamic sea level trends can also be estimated. The 
significance estimate provides confidence both in the estimated sea level trends and in the 
estimated ToE, thereby delivering a possible time frame of detectable sea level changes for 
the purposes of, e.g., civil engineering project planning, among other sociopolitical uses. 
In this section, we review the current state of estimating the time frame for projected stero-
dynamic sea level trend detection (time of signal emergence). Note that all statistical sig-
nificance tests are for trends over a specified time period that emerge from the background 
internal climate variability of the model.

A common method of estimating an individual model’s internal climate variability, 
which examines the model’s control runs and calculates the variability of arising from con-
trol simulation data on a variety of timescales, is used in many of the studies discussed 
here. This yields an important question: Is sterodynamic sea level variability expected to 
remain of the same magnitude or substantially change when under additional, changing, cli-
mate forcing conditions? The IPCC AR5 report found changes in the ensemble interannual 
variability of detrended data between the intervals 1951–2005 and 2081–2100 to be mostly 
below 10% for the RCP4.5 scenario, outside of the high-latitude Arctic region (Church 
et al. 2013). This includes both positive and negative changes in the intensity of interannual 
variability, though there are large positive changes in Arctic variability (Fig. 13.15, Church 
et al. 2013). Hu and Bates (2018) report that decadal variability changes, as compared to 
future changes in interannual variability in the AR5, are more consistently positive in sign, 
and larger in magnitude, over more of the ocean, and more so for RCP8.5 than for RCP4.5. 
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In contrast to the AR5 report, Hu and Bates (2018) use a single model with a larger ensem-
ble of projections. Further modeling studies to explore the commonality of these variability 
changes between different models, forcings and resolutions will prove useful.

Hu and Deser (2013) used a large ensemble of projected sea level runs from a single 
model, under the same forcing but with different initial conditions, and estimated that the 
95% uncertainty on sea level trends (2000–2060) was greater than the magnitude of stero-
dynamic trends in the Southern Ocean and Arctic and nearly equal to the trend magnitude 
in parts of the equatorial Pacific and high latitudes in the Pacific and Atlantic. Thus, trends 
in these regions were not statistically significant. However, for the rest of the ocean, stero-
dynamic sea level trends were statistically significant over this time frame.

Using multi-model ensembles from the CMIP5 project, three studies explored regional 
trend signal detection using differing methodologies and different sets of the models (Lyu 
et  al. 2014; Richter and Marzeion 2014; Carson et  al. 2015). A common aspect of their 
methodologies is that the test of trends (of varying time frames) against the internal climate 
variability, from control runs, is performed on a per-model basis, with a central estimate 
for the ensemble presented. Lyu et al. (2014) and Richter and Marzeion (2014) consider 
the spread in control-run-based trends between models in some way (see the details in each 
study below), although Carson et al. (2015) only show results for the central estimate of 
the ensemble’s control-run internal variability. Also, sea level variability due to volcanic 
forcing is not considered, as internal variability is estimated from control runs. All results 
generally converge on a range of values between ~ 40 and 60 years for the length of a future 
sea level record needed to resolve a trend in sterodynamic (dynamic plus global mean ther-
mosteric) sea level larger than the underlying internal variability for ocean processes alone.

Lyu et al. (2014) also compared a more complete sea level projection signal containing 
land ice, water impoundment and glacial isostatic adjustment (GIA) to model control-run 
estimated internal variability. They estimated internal variability threshold to be two times 
the standard deviation of 200-year, annual detrended control-run time series in each grid 
box. For the sterodynamic sea level projection that includes both regional dynamic and 
global mean thermosteric sea level rise, sea level rise is detected from the noise of internal 
variability over half of the ocean by the 2040s; by 2080, most of the ocean outside of the 
Southern Ocean shows a significant trend (Fig. 3). When including all other known compo-
nents contributing to future sterodynamic sea level change, i.e., “total sea level” as defined 
above, this time frame is much shorter, with significant trends found over half of the ocean 
by 2020, relative to the reference period 1986–2005. Only regions where at least 84% of 
the models in the ensemble exhibit signal emergence by 2080 are shown, as a measure of 
ensemble uncertainty (Fig. 3, right panels).

Richter and Marzeion (2014) estimated internal variability by computing overlapping 
trends from control-run data (per grid box) on a sequence of window lengths, from 10- 
to 100-year windows. Then, the sequence of trends from the RCP4.5 scenario, including 
both dynamic and global mean thermosteric sea level, was computed, and the time point 
at which the 95% anthropogenically forced trend uncertainty no longer intersects with the 
95% uncertainty of the internal variability trends (and afterward for all future time points) 
is found to be the time of emergence at that location. They find that most of the ocean 
(again, outside of the Southern Ocean, and some high-latitude regions) shows significant 
sea level trends by 2040 or 2050, depending on the time frame over which the forced trend 
is estimated (cf. their Fig. 4). In a follow-up study, Richter et al. (2017b) showed that the 
addition of the glacier contribution increases the signal-to-noise ratio of sterodynamic sea 
level changes, thus leading to an earlier emergence by 10–20 years away from the sources 
of ice mass loss.
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Carson et  al. (2015) uses a very similar approach to Richter and Marzeion (2014) 
for estimating internal model variability: overlapping trends calculated for specific time 
frames. While the paper’s focus is not on time of emergence, it was found that sea level 
trends are larger than two times the internal variability estimate over most regions of the 
ocean, for RCP4.5’s dynamic plus global mean thermosteric sea level (their Fig. 3). This 
is in good agreement with the results from the other studies discussed above, though here 
looking at the ensemble mean trend and not individual trends from a single run.

When considering the same data as in these previous studies but restricting the analysis 
to coastal-only grid boxes, most coastal regions should expect statistically significant sea 
level trends by the mid-twenty-first century (Table 1). This statistical significance is higher 
in the lower and mid-latitudes, due to the presence of higher multidecadal variability at 
high latitudes in models. Although using somewhat different methodologies, with differ-
ing models and aims, these four papers (Hu and Deser 2013; Lyu et al. 2014; Richter and 
Marzeion 2014; Carson et al. 2015) generally agree that dynamic plus global mean ther-
mosteric sea level trends over large portions of the ocean will have emerged from the back-
ground climate variability present in the models by the mid-twenty-first century.

Common to the studies that only examine sterodynamic sea level in climate models is 
that the trend and its emergence from the noise are certainly underestimated, as land ice 
melt is expected to contribute an ever increasing amount to sea level over the next few cen-
turies. Glacial isostatic adjustment (GIA) and land water storage change are also expected 
to lower sea level trends in some locales, but increase them in others (Church et al. 2013, 
Slangen et al. 2014a). Studies that include additional components of sea level change, such 
as land ice, groundwater storage changes and vertical land motion contributions (Lyu et al. 
2014; Richter et  al. 2017b), give an earlier emergence time. Accelerations in sea level 
changes (changes in the local or global rate of change of sea level) would also be a sign 
of a change in the climate likely due to anthropogenic forcing, much like trend detection. 
Haigh et al. (2014), in a study that artificially extended tide gauges using the scaling from 
an ensemble of model projections and added random noise to represent variability, found 
that accelerations in local sea level should be detectable within the next two decades. The 
results from Haigh et al. (2014) mirror the finding in Lyu et al. (2014) when including the 
additional non-ocean model sea level components (total sea level) and are also reflected in 
Dieng et al. (2017), who find that an already detectable acceleration in GMSL (as opposed 
to local) is driven largely by Greenland mass loss. Nevertheless, several questions remain 
unanswered: How much real variability exists, and will exist, in these additional non-ocean 
sea level components and thus how much would such variability modify the noise part of 
the signal-to-noise ratio and the emergence of anthropogenic trends.

The estimated ToE is less certain in some areas compared to others, with the regions 
of low overall ensemble spread having a better estimate than regions of higher ensemble 
spread. Better ToE estimates are likely in much of the tropical Atlantic, the eastern side 
of large ocean basins, and possibly in the tropical ocean regions in general, since decadal 
variability is generally lower in these regions in climate models than mid- and high-lat-
itude regions (see Fig. 1b and also Carson et al. 2015, their Figs. 3b and 4b). Moreover, 
the coarse resolution of models does not allow capturing of the oceanic mesoscale turbu-
lence, a manifestation of intrinsic ocean fluctuation, i.e., it emerges without any atmos-
pheric interaction (Sérazin et al. 2016; Zanna et al. 2018; Llovel et al. 2018; Llovel et al. 
2018). At similar interdecadal timescales, the trend detection results cited here for regions 
of high intrinsic variability also may not provide accurate estimates of time of emergence. 
These regions happen to also coincide with the regions of larger ensemble spread, so the 
same regions listed above probably have better ToE estimates relative to this unmeasured 
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internal variability as well, compared to the mid- and high-latitude and western boundary 
current regions.

3.2 � Trends in Historical Data and Model Simulations

As outlined in the previous section, detection of an anthropogenically forced local trend 
can only be expected by the mid-twenty-first century due to the low signal-to-noise ratio on 
regional scales. In order to compare the ability of model simulations to accurately capture 
trends, and to explore the issues surrounding trend estimation in observed data, we discuss 
the results of different studies on the trend estimates over historical periods from observed 
data and model simulations. Richter et al. (2017b) showed that extensive spatial smoothing 
is necessary to detect a forced signal in steric and dynamic sea level change on regional 
scales within historical observations, depending on the time period. On global scales, vari-
ous studies found an anthropogenically forced signal in mean thermosteric sea level change 
(Marcos and Amores 2014; Slangen et  al. 2014b), in the glacier mass balance contribu-
tion (Marzeion et al. 2014) and in global sea level rise (Dangendorf et al. 2015; Slangen 
et al. 2016). These studies distinguish between internal and forced signals by comparing 
unforced control simulations to simulations with selected forcings (Marcos and Amores 
2014; Slangen et al. 2014b, 2016; Marzeion et al. 2014), or by using statistical methods 
(Becker et al. 2014; Dangendorf et al. 2015) to compare the results of either approach with 
observations to detect an externally forced signal.

There are some difficulties attached to comparing model simulations of historical sea 
level changes to the available historical observations. Satellite altimetry covers much of 
the ocean for the time after 1993, but this is still a short time frame for low-frequency 
sea level variability on some regional scales (e.g., Bilbao et  al. 2015). Tide gauges can 
have much longer time series, and while there are sometimes issues of gaps and instrument 
changes, the largest source of errors comes from unmeasured vertical land motion (Doug-
las 1991; Wöppelmann and Marcos 2016). The papers in this section generally attempt to 
account for vertical land motion by making corrections to the tide gauge data; this informa-
tion can be found in the individual citations. Other sources of sea level rise not normally 
accounted for in climate models, such as land ice mass loss, are measured by tide gauges 
and altimetry, and studies cited below draw some conclusions regarding how well model 
data compare with observations when including or not including offline estimates of land 
ice contributions.

Comparisons between satellite altimetry and model simulations for the altimetry era 
have been examined to explore the quality of model hindcasts and projections in producing 
realistic trends (Gregory et al. 2001; Meyssignac et al. 2012, 2017; Landerer et al. 2014; 
Bilbao et al. 2015; Monselesan et al. 2015; Richter et al. 2017a; Watson 2018). These stud-
ies have shown that CMIP5 models tend to simulate well recent global mean sea level 
rise, i.e., trends, particularly during the satellite altimetry era. However, before the satel-
lite era, the discrepancies are larger, due to not including other components of local sea 
level change such as changes in land ice and water impoundment (Meyssignac et al. 2017). 
While Meyssignac et al. (2017) found that model trends over the same 20-year period gen-
erally have weaker trends than in satellite altimetry data, they note that other contributing 
factors to sterodynamic sea level, such as land ice, are not present in CMIP5 coupled cli-
mate models. When taking the land ice contribution into account (Meyssignac et al. 2017; 
Richter et al. 2017a), observed trends in the northern North Atlantic over 1993–2012 are 
reproduced to varying degrees, depending on the climate model.
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Marcos and Amores (2014) provided an analysis based on empirical orthogonal func-
tion (EOF; Preisendorfer 1988) that maximizes the signal-to-noise ratio, estimated the 
forced sea level response in historical CMIP5 simulations and found that natural variability 
enhanced the basin-mean anthropogenic thermosteric sea level rise in the North Atlantic 
over the period 1970–2005 while the opposite was true in the Western Pacific Ocean (Mar-
cos and Amores 2014, their Fig. 2). A more widely used approach for detecting an anthro-
pogenically forced trend in sterodynamic sea level is through calculation of a multi-model 

Fig. 2   From Little et al. (2015), Fig. 4. Sterodynamic sea level change variance in cm2 by 2040 (left col-
umn) and by 2090 (right column) for the following uncertainty components: a, b scenario uncertainty 
(RCPs 2.6, 4.5, 6.0, 8.5); c, d intermodel uncertainty (16 models, with various numbers of realizations); e, 
f internal climate variability uncertainty; and g, h fractional variance of the intermodel uncertainty (from c, 
d) divided by the total uncertainty
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ensemble mean over the period of interest. Given a model ensemble large enough (e.g., 
16 models in Little et  al. (2015), see Sect.  2), this approach assumes that internal vari-
ability is strongly reduced by averaging when computing an ensemble mean, which then 
largely displays the anthropogenic response, in addition to other external natural forcings, 
like volcanic aerosol and solar forcings. This pattern, together with modeled internal vari-
ability (from control simulations), is compared to the observed pattern of sterodynamic 
sea level change. Using this approach, Richter et al. (2017a) concluded that the observed 
dynamic sea level rise over the period 1993–2012 in the North Atlantic subpolar gyre is 
consistent with internal variability and therefore not anthropogenically forced. Similarly, 
Meyssignac et  al. (2012) found the unusual sea level rise pattern in the tropical Pacific 
over the period 1993–2009 to be not anthropogenically forced. However, these conclusions 
strongly depend on the model’s ability to reproduce and simulate the geographical pattern 
and strength of naturally forced variability realistically. For the tropical Pacific Ocean, this 
has been challenged. While the modeled spatiotemporal patterns are consistent with obser-
vations, their magnitudes may be underestimated (Bilbao et al. 2015).

In the Indian Ocean, Han et al. (2018) analyzed sea level trends using a set of reanalysis 
products for winds and sea level, as well as large ensembles from climate models. From 
1958 to 2005, sea level rose in the eastern Indian Ocean (after removing the global mean 
sea level, and including coastal regions) but fell in the western basin, with the largest drop 

Fig. 3   From Lyu et al. (2014), Fig. 2. Time of emergence (multi-model ensemble median) of regional sea 
level change signal under RCP8.5 relative to 1986–2005, by year, for: a dynamic sea level, b dynamic plus 
global mean thermosteric sea level and c all contributing components to regional sea level (total sea level). 
Gray color means that no signal has yet emerged by 2080 or no agreement among models. The 16–84% 
uncertainty ranges for the same sea level change projection estimates are shown in the right panels. The 
ranges are only shown where at least 84% of the models in the ensemble exhibit signal emergence before 
2080
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Fig. 4   Mean fields (cm; average over 1986–2005) and future change projections under RCP8.5 (cm; dif-
ference between averages of 1986–2005 and 2080–2099) for dynamic sea level around Australia, based 
on CMIP5 multi-model mean (left panels) and 1/10° ocean model dynamical downscaling (right panels). 
Redrawn from Zhang et al. (2016, 2017)

Table 1   Sea level rise by 2050 in 
the RCP4.5 scenario

Percentage of the coastline where sea level trends statistically emerge 
from the background natural sea level variability by 2050, based on 
estimates from multi-model CMIP5 climate model control runs (only 
constant climate forcings are applied). The first column is for the 
whole global coastline, as a percentage of coastline length, the sec-
ond column is for the coastline between 58°S and 58°N, to mask out 
Antarctica and high-latitude Northern Hemisphere regions of lower 
population density. These regions contain more model uncertainty and 
natural, low-frequency variability. Data are provided by the authors as 
used in the listed references

References % of total 
coastline

% of coastline 
between ± 58°

Lyu et al. (2014) 80.3 82.6
Richter and Marzeion (2014) 91.4 99.2
Carson et al. (2015) 97.2 100
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occurring over the Seychelles. Using the twentieth-century simulations from the 100-mem-
ber ensemble of the Max-Planck Institute of Meteorology model and 40-member ensem-
ble of the National Center for Atmospheric Research (NCAR) Community Earth System 
Model version 1 (CESM1), Han et al. (2018) found that the observed maximum sea level 
fall over the Seychelles results largely from natural internal variability, with anthropo-
genic forcing contributing 19% ± 2.4%. For decadal sea level anomalies, the uncertain-
ties of external forcing are comparable to the signals, with a standard deviation ratio of 
externally forced/observed decadal sea level anomalies being 18% ± 17% over Seychelles 
and 17% ± 11% near the Indonesian Throughflow regions. Even for the ensemble means 
of large-ensemble members, externally forced sea level trend patterns in that region dif-
fer largely (even being opposite in sign in some areas) between the two models, which 
suggests a strong model dependence of external forcing effects on sterodynamic sea level 
trends.

It should also be noted that trend detection in historical data using models suffers the 
same kind of intermodel uncertainty that could plague trend detection in future projections 
(discussed at the end of the previous section). Thus, while regions of large interdecadal 
variability like the North Pacific or the high-latitude North Atlantic (Zanna et  al. 2019) 
would be additionally difficult regions for trend detection (due to larger internal variabil-
ity and intermodel spread there), “quieter” regions like southern parts of the Atlantic and 
Pacific basins might yield a detectable sea level signal sooner. Marcos et al. (2017) also 
provide a review regarding the estimation and separation of internal variability and anthro-
pogenically forced signals in sea level.

4 � Connecting Open‑Ocean Projections to Coastal Regions

The state-of-the-art global climate models provide important information about how the 
large-scale ocean circulation and sterodynamic sea level could change in the future. Since 
the local relative sea level change at the coast is what the coastal communities essentially 
care about, it is important to link large-scale ocean changes to coastal sea level and iden-
tify the contributing to similarities or differences between coastal and open-ocean changes, 
and how drivers of this relationship might change in the future. In some specific regions, 
there have been well-established dynamical connections between changes in coastal sea 
level and large-scale ocean circulation. In other many regions, decoupling between shallow 
and deep water sea level variations, observed by satellite altimetry, is evident on timescales 
shorter than several months (Hughes and Williams 2010). Rates of sea level change at the 
coast can differ significantly from the open ocean nearby for several reasons, particularly 
through (1) coastal topography acting as barriers to the propagation of open-ocean signals, 
(2) open-ocean changes just being local and (3) local processes such as the coastal winds, 
currents, atmospheric pressures and river runoff playing important roles (White et al. 2005; 
Deng et al. 2011; Vinogradov and Ponte 2011; Bingham and Hughes 2012; Williams and 
Hughes 2013; see also Durand et al. 2019 in this volume).

The connections between large-scale ocean circulation and coastal sea level in the west-
ern boundary regions have been explored in a number of studies. Particularly along the 
eastern coast of North America, coastal sea level variations and changes across a range 
of timescales are significantly modulated by ocean dynamics (Ezer et  al. 2013; Yin and 
Goddard 2013; Fraser et al. 2019). For example, a robust feature from climate model pro-
jections is a rapid dynamical sea level rising near the northeastern coast of North America 
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associated with a weakening of meridional overturning circulation in the Atlantic (Yin 
et  al. 2009). McCarthy et  al. (2015) proposed that an index defined as coastal sea level 
differences between north and south of Cape Hatteras is a good indicator for ocean circula-
tion changes, which drive phase changes in the Atlantic decadal climate variability through 
ocean heat transport. Calafat et al. (2018) showed that changes in the amplitude of sea level 
annual cycle along the Gulf of Mexico and the United States Southeast coasts are primarily 
induced by incident Rossby waves from the open ocean that generate boundary waves.

The open-ocean signals usually do not exert impacts on the coastal sea level in a direct 
and uniform way. Sasaki et al. (2014) identified that westward propagating Rossby waves 
along the Kuroshio Extension have different impacts on coastal sea level around Japan. 
While the resulting sea level changes are largest along the southeastern coast due to merid-
ional shifts of the Kuroshio Path, the excited coastal waves propagate southwestward and 
also induce a large signal in the western coast of Japan but leave the northeastern coast as 
the shadow zone. Recently Minobe et al. (2017) proposed a theory based on Johnson and 
Marshall (2002) to explain western boundary sea level changes by considering both incom-
ing Rossby waves from ocean interior, which bring mass input to the western boundary 
layer and mass redistribution along the western boundary in the form of equatorward wave 
propagation. Their theoretical framework can explain the main features of western bound-
ary dynamical sea level future changes from climate model projections, e.g., the lower sea 
level near the coast of Japan and Argentina relative to the nearby open ocean, and coastal 
sea level rise of similar magnitude to the open ocean along the US East Coast (see Fig. 1a). 
Including a continental slope yields a similar situation, but the magnitude of the impact of 
open-ocean sea level rise on the coasts is sensitive to model resolution and friction (Wise 
et al. 2018), indicating the importance of topography on coastal sea level anomalies. Long 
continental slopes at high latitudes such as along the Mid-Atlantic Bight also strongly sup-
press the influence of open-ocean mesoscale eddies (Hughes et al. 2018).

In light of the close relations of coastal sea level to large-scale ocean circulation and 
nearby boundary currents, the uncertainties for coastal sea level projection arise from 
not only the poor representation of coastal processes in current coarse-resolution climate 
models (generally ~ 1° for the ocean model component) but also from model deficiencies 
and biases in simulating ocean dynamics in the ocean interior and surrounding regions. 
To reduce these uncertainties and to provide sea level information closer to the coastline 
than climate models can, there have been some efforts using high-resolution ocean mod-
els to downscale ocean changes from climate model projections, either regionally or glob-
ally. For example, Liu et al. (2016) used a regional ocean model with an eddy-permitting 
horizontal resolution of 0.25° to downscale future projections from three CMIP5 models 
in the western North Pacific region. Recently, a near-global eddy-resolving (0.1°) ocean 
model was used to downscale both historical changes and future projections of the ocean 
state throughout 1979–2101, driven by atmospheric forcing fields from reanalysis and the 
ensemble average of 17 CMIP5 models (Zhang et al. 2016, 2017). It has been shown that 
ocean models with refined spatial resolution better represent the strong western bound-
ary currents and associated large sea level gradient (Fig. 4a, b). Penduff et al. (2010) have 
also shown that increasing the ocean model horizontal resolution would improve the sea 
level simulations in terms of mean sea level and also the magnitudes and spatial patterns of 
interannual sea level anomalies. For the future projections, dynamical downscaling models 
show a narrow band of large sea level changes off the coast as a result of future changes in 
western boundary currents, e.g., up to 30 cm around the East Australian Current (Zhang 
et  al. 2017), which are rather smoother, weaker (~ 10  cm) and further offshore located 
in CMIP5 models (Fig.  4c, d). Differences between high-resolution and low-resolution 
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projections are relatively smaller along the coastline than offshore. Zhang et  al. (2017) 
reported that the downscaled dynamic sea level changes around the Australian coastline 
are generally larger by 1–3 cm than for the CMIP5 ensemble. Given the substantial com-
putational resources required, these dynamical downscaling products represent valuable 
resources to assess the uncertainties of coastal sea level projection from coarse-resolution 
models. Also, further downscaling toward the coast with a nested coastal model would be 
useful to better resolve fine-scale details in local topography and land–sea interfaces as 
well as to consider the interaction with tides, waves, storm surges and other dynamical 
processes near the coast.

Vertical land motions, either geological or due to human-induced activities, add addi-
tional uncertainties for coastal sea level projections that can be comparable or even larger 
than climate-induced sea level change over the same period (e.g., Wöppelmann and Marcos 
2016). For example, Ballu et al. (2011) estimated that from 1997 to 2009 the relative sea 
level rise rate (total sea level rise) around the Torres Islands in the Southwest Pacific was 
12 mm/year, of which 9.4 mm/year was due to island subsidence. Raucoules et al. (2013) 
reported that the difference between altimetry data and tide gauge record near Manila city 
implies a land subsidence of ~ 10 mm/year over the altimetry era (since 1993) mainly due 
to intensive groundwater pumping. In addition to these smaller-scale uncertainties, there 
are also large-scale uncertainties in sterodynamic sea level rise due to uncertainty in pro-
jections of land ice melt and glacial isostatic adjustment (e.g., Church et al. 2013; Slan-
gen et al. 2014a). All these sources of uncertainties added together affect our capability to 
deliver reliable sea level projections near the coast, which would be essential for coastal 
community adaptation and mitigation planning.

5 � Concluding Remarks

Intermodel uncertainty is the dominant climate model uncertainty in ensemble projections 
of multidecadal to centennial sterodynamic sea level change, for the ocean-only compo-
nents of dynamic sea level plus global mean thermosteric sea level (Little et  al. 2015). 
Scenario uncertainty is large, but it is due to a range of forcings applied to models, and 
not a function of the models themselves. Other contributions to sea level projections are 
calculated “offline,” i.e., not within the models themselves (Church et  al. 2013). Inter-
model comparison studies (e.g., Gregory et al. 2016) and model data comparisons (with 
tide gauges and altimetry products) provide a better understanding of the origins of climate 
model differences and inform improvements for the next generation of climate models. 
Such improvement will yield more confidence in sterodynamic sea level projections. But, 
with changes in model resolution (in addition to other possible changes to climate models) 
in the upcoming Coupled Model Intercomparison Project, phase 6 (CMIP6) models, there 
may be new difficulties to overcome, such as uncertainty due to intrinsic ocean variability 
(Sérazin et  al. 2016), and interaction with better resolved coastal shelves (Durand et  al. 
2019).

The time of emergence for anthropogenic signals in sea level can be estimated by apply-
ing internal model variability to trend estimates of sea level projections. Detection of sea 
level trends on a global scale is easier than at regional scales due to its higher signal-to-
noise ratio. There have been mixed and disputed results in detecting regional forced sea 
level trends (secular and not part of the background variability), although detection of the 
global trend is virtually certain, along with a likely acceleration (e.g., Church et al. 2013; 



1648	 Surveys in Geophysics (2019) 40:1631–1653

1 3

Cazenave et al. 2018). At local scales, only some long-term individual tide gauges are avail-
able, but they are affected by, among others, decadal variability and vertical land motion 
contaminating the signal, making them trickier to use. In addition, continuous worldwide 
coverage of sterodynamic sea level has only been possible since the advent of continuous 
satellite altimetry in late 1992. Even though this altimetry record is now 26  years long, 
there are still not enough data to corroborate some of the longer multidecadal sea level 
signals suspected in certain regions, nor to unambiguously resolve the anthropogenic sig-
nal-to-internal variability noise ratio completely, although progress continues to be made 
(Fasullo and Nerem 2018; Hamlington et  al. 2019). Maintaining the tide gauge network 
and calibrating the costal altimetry product would be also essential to provide high-quality 
coastal sea level observations (Cipollini et al. 2017).

On the modeling side, reliable detection of trends moving forward depends on how well 
models produce natural (i.e., non-anthropogenic) variability that matches real-world sea 
level variability, on long timescales. For the previous generation of models, as presented 
in the AR5 report (Church et al. 2013), the results converge to the vast majority of ocean 
coastlines experiencing statistically significant anthropogenic sea level rise by mid-twenty-
first century, not including contributions from land ice and water impoundment (Lyu et al. 
2014; Richter and Marzeion 2014; Carson et  al. 2015). These trends are expected to be 
detectable sooner and be significantly larger when these components are included (Lyu 
et al. 2014). It is also useful to note that the intermodel uncertainty from climate model 
ensembles is not generally the largest local uncertainty for coastal sea level projections, 
when compared to sea level components not included in climate models, such as land ice 
mass loss, GIA, and groundwater storage changes (Carson et al. 2016). In addition, these 
uncertainties have interdependencies, and Le Bars (2018) uses models to explore the cor-
relations and dependencies between sea level components in projections.

The dynamics of how large-scale changes in ocean dynamics in a warming scenario will 
impact coastal regions are still being studied, with substantial progress having been made 
over the last 10 years. However, further work to understand links between open-ocean sea 
level rise and coastal risks is required. Improved theoretical frameworks along with sus-
tained observations from the coast to the open-ocean and higher-resolution modeling will 
help to improve our understanding of regional and coastal sea level changes, to better char-
acterize and reduce sources of uncertainty and, ultimately, to better inform policy and deci-
sion making.
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