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Abstract Oceanographic observations are limited by sampling rates, while ocean models are limited
by finite resolution and high viscosity and diffusion coefficients. Therefore, both data from observations
and ocean models lack information at small and fast scales. Methods are needed to either extract
information, extrapolate, or upscale existing oceanographic data sets, to account for or represent
unresolved physical processes. Here we use machine learning to leverage observations and model data
by predicting unresolved turbulent processes and subsurface flow fields. As a proof of concept, we train
convolutional neural networks on degraded data from a high-resolution quasi-geostrophic ocean model.
We demonstrate that convolutional neural networks successfully replicate the spatiotemporal variability
of the subgrid eddy momentum forcing, are capable of generalizing to a range of dynamical behaviors, and
can be forced to respect global momentum conservation. The training data of our convolutional neural
networks can be subsampled to 10–20% of the original size without a significant decrease in accuracy. We
also show that the subsurface flow field can be predicted using only information at the surface (e.g., using
only satellite altimetry data). Our results indicate that data-driven approaches can be exploited to predict
both subgrid and large-scale processes, while respecting physical principles, even when data are limited to
a particular region or external forcing. Our in-depth study presents evidence for the successful design of
ocean eddy parameterizations for implementation in coarse-resolution climate models.

Plain Language Summary Models of the ocean and ocean observations are imperfect. Due to
this imperfection, simulations of the ocean and our observations are not quite the same as the true ocean
currents. We, therefore, need ways to make our ocean data more realistic and complete and to make it
more similar to the actual ocean. Scientists have traditionally approached this problem in a pen-and-paper
style, considering physical theories and mechanisms. This study instead uses machine learning, which
focuses on data as opposed to equations on a black board. We successfully use a particular type of machine
learning algorithm, called a convolutional neural network, to make the most of current oceanographic data.
This type of neural network works well even if ocean data are limited to a particular area. Future work will
involve combining machine learning with physical theories of the ocean.

1. Introduction
Satellite observations have produced a wealth of information on the ocean circulation (Abernathey &
Marshall, 2013; Chelton et al., 2007; Greatbatch et al., 2010; Le Traon & Morrow, 2001; Morrow et al., 1994;
Scott & Wang, 2005). However, raw satellite altimetry data subsamples the ocean and does not measure sub-
surface quantities. Temporally, measurements at the same location are made twice every orbital cycle, while
the spatial sampling depends upon the distance between ground tracks. To improve the subsampling rates,
measurements from multiple satellites are combined (Le Traon et al., 1998) to produce an optimal estimate.

The process of combining measurements from multiple satellites includes spatiotemporal filtering, which
leads to a more smoothed view of the dynamical processes at the oceans surface, removing variability due to
mesoscale and submesoscale eddies. The filtering can also lead to spurious physical signals, as studied by
Arbic et al. (2013), which showed that filtering data can lead to exaggerated forward cascades of energy. The
new Surface Water and Ocean Topography mission will have a large swath of 120 km, providing unprece-
dented detail on the oceans surface. Despite the high spatial sampling rate, measurements may still be
limited by the temporal sampling rate of 11 days (Durand et al., 2010).
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Similar to satellite observations, Ocean General Circulation Models (OGCMs) are useful for studying ocean
dynamics. However, high-resolution models are computationally expensive, and the current resolution of
models is not high enough to fully resolve the first baroclinic deformation radius at midlatitudes (Hallberg,
2013). Also, due to their finite resolution, they require large viscosity and diffusion coefficients in order to
remain numerically stable (Jochum et al., 2008). The combination of finite resolution and artificially high
viscosity, diffuses momentum and smooths out features such as jets and mesoscale eddies (Hewitt et al.,
2016; Kjellsson & Zanna, 2017).

Therefore, both observations and models are missing the interactions of oceanic turbulence at small scales,
which play an important role in maintaining the large-scale circulation (Greatbatch, Zhai, Claus, et al.,
2010; Greatbatch, Zhai, Kohlmann, & Czeschel, 2010; Kang & Curchitser, 2015; Waterman & Jayne, 2010;
Waterman et al., 2011); with satellite observations only providing surface information. We thus consider the
general problem: given some smoothed view of the oceans surface, what information can be generated on
small-scale turbulent interactions and subsurface quantities? Illuminating unresolved quantities using seen
quantities would extend the reach of existing data sets and could potentially improve the representations of
unresolved eddies in OGCMs.

We tackle this problem with machine learning. Machine learning has grown in popularity in recent years and
has been applied to weather prediction (Esteves et al., 2018; McGovern et al., 2017), climate model parame-
ter sensitivity studies (Anderson & Lucas, 2018), chaotic dynamical systems forecasting (Pathak, Hunt, et al.,
2018; Pathak, Wikner, et al., 2018; Vlachas et al., 2018), and parameterizing unresolved atmospheric pro-
cesses (Brenowitz & Bretherton, 2018; Gentine et al., 2018; Jiang et al., 2018; O'Gorman & Dwyer, 2018).
The foundational principle of machine learning is extracting information from data. When used to improve
our understanding of the Earth system, these data-driven methods are an empirical bottom-up approach,
whereas the rationalist top-down approach considers physical principles and mechanisms. Here we take the
empirical route by exploiting recent developments in machine learning.

Using empirical methods to leverage ocean observations is not new. For example, using satellite altimetry
data, Keating et al. (2012) constructed a stochastic model to super-resolve the velocity field and predict the
velocity at depth. Similarly, Keating and Smith (2015) used a stochastic model to produce a super-resolved
sea surface temperature (SST) field, given a low-resolution observation of SST. With regard to machine learn-
ing, Chapman and Charantonis (2017) constructed a form of neural network known as a self-organizing
map to reconstruct subsurface velocities in the Southern Ocean using satellite altimetry data and Argo floats.
Other studies have used random forests to predict subsurface temperature anomalies (Su et al., 2018) and
Southern Ocean oxygen content (Giglio et al., 2018).

In the previous studies that leverage oceanic observations, there is an abundance of coarse-resolution data
(satellite altimetry) but limited data on the desired quantities (e.g., high-resolution SST or Argo subsurface
velocities); as is the case with OGCMs, where high-resolution data are less readily available due to the com-
putational cost. A similar challenge is when data are only available for particular regions, such as mooring
data (Hogg, 1992) or gliders (Davis et al., 2008; Rudnick et al., 2004). A machine learning algorithm trained
on region-limited data would have to adapt to new regions with different physics; this task is well suited to
deep neural networks, which are known for a strong ability to generalize (Goodfellow et al., 2016; Krizhevsky
et al., 2012; LeCun et al., 2015).

However, deep neural networks are typically considered a black box; that is, they lack simple interpre-
tations. It is therefore difficult to assess whether such data-driven methods respect physical principles
(e.g., conservation of energy or momentum). For example, neural networks have been used to develop
Reynolds-averaged turbulence models (Kutz, 2017; Tracey et al., 2015), where the studies of Ling, Jones,
and Templeton (2016) and Ling, Kurzawski, and Templeton (2016), in particular, show that a neural net-
work can respect Galilean invariance by utilizing the invariant tensors of Pope (1975). The studies of Ling,
Jones, and Templeton (2016) and Ling, Kurzawski, and Templeton (2016) are important in moving toward
data-driven approaches that respect the physical properties of the system.

In this paper we focus on a particular machine learning algorithm, namely, convolutional neural networks,
in order to leverage observations and coarse-resolution model data. Our aim is to test whether they can be
used to reveal information on unresolved turbulent processes and subsurface flow fields, and to determine
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if they are suited to situations where data are limited to a particular region. To move toward these aims, as
a proof of concept, we will address the following questions:

1. Can convolutional neural networks represent the spatiotemporal variability of the subgrid eddy momen-
tum forcing?

2. How sensitive are the neural networks to the physical processes occurring within each region, and how
well do they generalize to ocean models in different configurations?

3. Is it possible to physically constrain neural networks to respect global momentum conservation?
4. Using only information at the surface, can neural networks predict the subsurface flow fields?

By using data from an idealized high-resolution ocean model, we show that convolutional neural networks
can represent both the spatial and temporal variability of the eddy momentum forcing. The region the neu-
ral network is trained on and therefore the dynamical processes occurring within that region significantly
impact the performance of the neural network. In particular, training on the most turbulent region pro-
duces the best overall performing neural network. The neural networks successfully generalize to models
with different viscosity coefficients and external wind forcings. Initially, momentum is not conserved glob-
ally, but the neural networks can be constrained to respect momentum conservation without a significant
reduction in accuracy. A neural network can accurately predict the subsurface flow field when there is a
strong barotropic component to the flow.

The paper is organized as follows. The quasi-geostrophic ocean model, the degrading of model data, and
convolutional neural network are introduced in section 2. Performance diagnostics of the neural networks,
in terms of nonlocal predictions and generalizing to different model configurations, are presented in section
3. We explore methods of physically constraining the neural networks in section 4. Section 5 presents a neu-
ral network trained to predict subsurface flow fields using only information at the surface. We summarize
and discuss our results in section 6.

2. Data and Methods
2.1. Quasi-Geostrophic Ocean Model
We use the PEQUOD model which solves the three-dimensional baroclinic quasi-geostrophic (QG) poten-
tial vorticity equation, with constant wind forcing on a beta plane (e.g., Berloff, 2005). The model has a
bounded-square domain with a flat bottom.

The configuration of this model leads to two large-scale circulation gyres separated latitudinally by a strong
meandering zonal jet. The model is configured to represent an idealized version of current systems such as
the Gulf Stream in the North Atlantic or the Kuroshio Extension in the North Pacific; both these current
systems exhibit vigorous eddies interacting with a strong mean flow. The time mean stream function, which
illustrates the double-gyre flow structure, can be seen in Figure 1a of Mana and Zanna (2014).

The potential vorticity q is given by

q = ∇2q + 𝛽𝑦 + 𝜕

𝜕z

(
𝑓 2

0

N2
𝜕𝜓

𝜕z

)
, (1)

where f = f0 + 𝛽y is the planetary vorticity, f0 is the Coriolis parameter, 𝛽 = df∕dy is the Rossby
parameter, ∇ = (𝜕∕𝜕x, 𝜕∕𝜕y) is the horizontal gradient operator, N = (− g

𝜌

d𝜌
dz
)

1
2 is the Brunt-Väisälä fre-

quency, g is gravity, 𝜌 is density, and 𝜓 is the stream function for the nondivergent horizontal velocity
u = (− 𝜕𝜓∕𝜕y, 𝜕𝜓∕𝜕x).

The model has three layers (m = 1 upper, m = 2 middle, and m = 3 upper), with thicknesses Hm of 250,
750, and 3,000 m, respectively. For each layer, the following prognostic equation is solved

𝜕q
𝜕t

+ (u · ∇)q =  +  , (2)

where  = 𝜈∇4𝜓 − r∇2𝜓𝛿m,3 is the dissipation, and  = (∇ × 𝜏)z𝛿m,1∕𝜌0H1 is the applied wind stress curl
forcing, where 𝛿i,j is the Kronecker delta function. The horizontal resolution of the model is 7.5 km, such that
the model is eddy resolving. The first term in the dissipation is a fourth-order term equivalent to Laplacian
viscosity, with viscosity coefficient 𝜈. The second dissipation term parameterizes the presence of an Ekman
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Figure 1. Panel (a) illustrates the upper-layer filtered-stream function 𝜓̄ of the quasi-geostrophic model, including the three regions in which we train the
neural networks: region 1 (white dashed) is on the western boundary, region 2 (black solid) is on the eastern boundary, and region 3 (gray dash dotted) is
centered on the southern gyre. Panel (b) shows a close-up of the filtered-stream function 𝜓̄ within training region 1 while panel (c) illustrates how training
region 1 is split into sixteen 40 × 40 grid point subregions—the size of the input and output arrays of the neural network is 40 × 40 grid points. The input
variable of each neural network is the filtered-stream function 𝜓̄ , and the output variable is either the zonal component S̃x or meridional component S̃𝑦 of the
subfilter eddy momentum forcing. The architecture of the convolutional neural network, with an example input 𝜓̄ and output S̃x , is illustrated underneath
panels (a)–(c).

layer with bottom drag coefficient r (and therefore only acts on the bottom m = 3 layer). The wind stress
forcing applied to the upper m = 1 layer is given explicitly by

 (x, 𝑦) =

{
−𝜏0

0.92𝜋
L𝜌0H1

sin( 𝜋𝑦
g(x)

) 𝑦 ≤ g(x),
𝜏0

2𝜋
0.9L𝜌0H1

sin( 𝜋[2𝑦−g(x)]
L−g(x)

) 𝑦 > g(x),
(3)

where g(x) = L∕2 + 0.2(x − L∕2), L = 3, 840 km is the domain length, and 𝜌0 is the reference density.
After the model has been integrated from rest to a statistically steady state, we save 10 years of model output
at daily resolution of the turbulent double-gyre circulation. For further details on the QG model, see Mana
and Zanna (2014) and Zanna et al. (2017), and for a list of the model parameters, see Table 1. We use the
data generated by the ocean model to train various neural networks, but only after degrading the data, to
make it similar to observations or low-resolution model.

2.2. Degrading High-Resolution Data
We degrade the fields from the high-resolution QG model using a spatial 2-D low-pass filter, in order to
produce data that are similar to satellite altimetry or a model with a large numerical dissipation. From
the filtering of the model data, we can then calculate the forcing from unresolved small-scale turbulent
processes.

At every time slice in the data, we take a high-resolution variable a at a particular layer and apply a
two-dimensional spatial Gaussian filter. We denote filtered variables as ā, and subfilter variables as the devi-
ation from the filtered variable a′ = a−ā. The value of a function a(x, y), after the Gaussian low-pass filtering
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Table 1
Details on the Following: The Quasi-Geostrophic Ocean Model Parameters, the Data Sets Used
to Train the Neural Networks, the Architecture Parameters, and the Optimization Parameters

Quasi-Geostrophic Model Parameters
Domain size (grid points) 512 × 512
Domain length (L) 3,840 km
Resolution (𝛥x) 7.5 km
Viscosity (𝜈) 75 m2/s
Rossby deformation radii (LRo) 40, 23 km
Velocity scale (

√
EKE) 0.21 m/s

Planetary vorticity (f0) 10−4 s−1

Rossby parameter (𝛽) 2 × 10−11 m−1/s
Gravity (g) 9.8 m/s2

Reduced gravity (g′ ) 0.034, 0.018 m/s2

Bottom drag coefficient (r) 4 × 10−8 s−1

Wind stress amplitude (𝜏0) 0.8 N/m2

Reference density (𝜌0) 103 kg/m3

Neural Network Data Details

Data source Quasi-geostrophic ocean model
Input variable (feature) Filtered-stream function 𝜓̄
Output variables (targets) Subfilter momentum forcing Sx , Sy

Training region 1 Western boundary
Training region 2 Eastern boundary
Training region 3 Southern gyre
Number of training samples 5,800 (years 1–9)
Number of validation samples 5,600 (year 10)
Standardization method Zero mean, unit variance

Neural Network Architecture

Input size 40 × 40
Number of convolution layers 3
Number of filters for each convolution layer 16, 16*8, 8*8
Size of filter for each convolution layer 8 × 8, 4 × 4, 4 × 4
Filter stride for each convolution layer 2, 1, 1
Activation function for each convolution layer SELU, SELU, SELU
Max pooling kernel size 2
Output layer activation function None/Linear
Output size 40 × 40

Neural Network Training Parameters

Loss function Mean-square error
Optimizer Adam
Learning rate 0.001
Momentum 0.9
Batch size 16
Training epochs 200
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operation G ⋆ a at a point (x0, y0), is given by

ā(x0, 𝑦0) = G ⋆ a = ∫ ∫ a(x, 𝑦)G(x0, 𝑦0, x, 𝑦)dxd𝑦

= 1
2𝜋𝜎2 ∫ ∫ a(x, 𝑦)e−((x−x0)2+(𝑦−𝑦0)2)∕2𝜎2 dxd𝑦,

(4)

where 𝜎 = 30 km is the standard deviation of the Gaussian filter, which determines the length scale at
which information (below that length scale) is removed. Therefore, the filter acts to remove information on
dynamical processes at spatial scales smaller that 30 km.

Using the low-pass filter defined in equation (4), we can now express the effects of the unresolved (subfilter)
variables onto the resolved (filtered) variables. Ignoring vertical effects and planetary vorticity, the horizontal
momentum equation is given by

𝜕u
𝜕t

+ (u · ∇)u = F + D, (5)

where F and D are the momentum forcing and dissipation, respectively. Applying a low-pass filter to
equation (5), and then adding (u · ∇)u to both sides of the equation, leads to

𝜕u
𝜕t

+ (u · ∇)u = F + D +
[
(u · ∇)u − (u · ∇)u

]
, (6)

𝜕u
𝜕t

+ (u · ∇)u = F + D + S, (7)

where S = (u · ∇)u − (u · ∇)u.
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Subfilter eddy momentum forcing.

(8)

The low-pass filtering operation results in an additional forcing term in equation (7) for the filtered momen-
tum; the additional momentum forcing S is given by equation (8), the divergence of a Reynolds stress. The
vector S = (Sx, Sy) represents the effects of the subfilter momentum field on the filtered momentum field,
that is, the interaction between small-scale eddies and the large-scale flow. As the subfilter eddy forcing S
depends on the subfilter variables, it requires a physical parameterization or closure.

2.3. Predictive Algorithm: Convolutional Neural Networks
Convolutional Neural Networks (CNNs) have proven successful in many areas of computer vision (Dong
et al., 2016; Krizhevsky et al., 2012; Simonyan & Zisserman, 2014), where the primary objective is to extract
information from an image, in order to perform a particular task. CNNs work by applying successive layers
of convolutions (a form of spatial filtering) to the input; the complexity of the extracted information increases
with the number of convolution layers. The powerful property of CNNs is that the filters of each convolution
are learned as part of the training process—they are not specified a priori. Therefore, CNNs learn to extract
the most useful information from the input variable, given training on a particular data set.

We chose to use CNNs, as opposed to a deep neural network of multiple fully connected layers, due to
their superior performance in computer vision tasks where the inputs have a two-dimensional structure
(Krizhevsky et al., 2012). We wanted a machine learning algorithm that could exploit the two dimensional
lateral structure of turbulent fluids. Spatial filtering of the equations of motion of turbulent fluids is not new
and is used in large eddy simulation (Moeng, 1984; Sagaut, 2006). Therefore, the learned filtering operations
of a CNN appeared to be a natural choice of data-driven algorithm to apply to geophysical flows.

The training process involves the minimization of an appropriately defined loss function, which measures
the difference between the output of the CNN, and the desired targets. If the optimization procedure was
successful, such that the loss function on previously unseen data converges, the CNN will have learned
to extract the most important information from the input. The CNN then uses the information to pre-
dict continuous values. The CNN constructs the final prediction through a linear regression layer, which
regresses the desired output onto the final feature maps (feature maps are the intermediate results of each
convolution layer).
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Here we use CNNs to represent the subfilter eddy momentum forcing. The input is the filtered-stream func-
tion 𝜓̄ of the upper vertical layer, which represents our resolved variable that the neural networks will extract
information from. The output variables are the zonal Sx and meridional Sy components of the subfilter
momentum forcing S, defined by equation (8). An example input and output is shown in Figure 1. Separate
CNNs are trained for each component of the subfilter momentum forcing Sx and Sy. We only consider data
from the upper layer of the model; this is because the flow is surface-intensified, and we are assuming that
our filtered quantities are similar to satellite altimetry data, which only provide information at the surface.

In addition to testing whether it is possible to train a neural network to predict Sx and Sy, from 𝜓̄ , we explore
how a neural network trained on one region performs on another previously unseen region, that is, how
important local versus nonlocal information is for different regions. We therefore construct three different
data sets from the QG model data, one for each region being studied. We choose regions which differ most in
their dynamical behavior, and are shown in Figure 1a: Region 1 is near the jet separation point of the western
boundary, where there is a strong, inertial zonal jet. Region 2 is near the eastern boundary downstream of
the jet extension, where the dynamics are more wave-like in nature. Region 3 is in the center of the southern
gyre, which is energetically less active than regions 1 and 2.

Data from the three regions are split temporally into training and validation data sets. The 10 years of daily
data (3,650 days) are split into the first ∼9 years (3,300 days) to train the neural networks, and the final
year (350 days) is set aside for validation. To reduce the computational cost and the number of parameters
of each CNN we split each region spatially from the initial 160 × 160 grid points, to sixteen 40 × 40 grid
point subregions, as depicted in Figure 1c. Reducing the input and output size of the neural network from
160× 160 to 40× 40 significantly decreases the number of trainable weights, and therefore the computational
cost (we attempted to make predictions for the full 160 × 160 of each training region, but this led to a neural
network with over 250,000,000 parameters, which was computationally impractical).

Making predictions for a 40 × 40 area instead of a 160 × 160 area also increases the amount of training
and validation data by a factor of 16, from 3,300 and 350 samples to 52,800 and 5,600, respectively, where
a sample is defined as a single input-output pair of the neural network. We therefore have 52,800 spatial
maps (size 40 × 40 grid points) of input-output pairs to train the neural networks, and 5,600 spatial maps
of input-output pairs set aside for validation.

We train CNNs to separately predict Sx and Sy, using data from three different regions of the model; this
gives a total of six neural networks. Each neural network is denoted by 𝑓i(𝜓̄ ,wR), where i = (x, y) refers
to the component of S being predicted, wR are the trained weights of the neural network, and R = 1, 2, 3
refers to the region on which the neural network has been trained. For example, the neural network trained
on region 2 to predict the meridional component Sy is denoted by 𝑓𝑦(𝜓̄ ,w2).

To distinguish predictions from the true values, we label neural network predictions as S̃x = 𝑓x(𝜓̄ ,wR),
and S̃𝑦 = 𝑓𝑦(𝜓̄ ,wR), while the true values of the subfilter momentum forcing remain as Sx, Sy. We use the
mean-square error as the loss function,

L =
∑

(Sx − S̃x)2, or
∑

(S𝑦 − S̃𝑦)2, (9)

which quantifies the difference between the neural network predictions and the truth, and where the sum-
mation is over all samples. The neural networks are trained (i.e., optimized) using a form of stochastic
gradient descent, namely, the Adam optimization algorithm (Kingma & Ba, 2014), which minimizes the
loss function L defined in equation (9). The training of each neural network 𝑓i(𝜓̄ ,wR), iteratively adjusts
the values of the weights wR, such that the loss function in equation (9) is minimized. Therefore, each neu-
ral network has a different set of weights wR; it is these weights which determine how each neural network
extracts information and makes predictions.

The architecture used for each 𝑓i(𝜓̄ ,wR) contains three convolution layers, a max pooling layer and a final
fully connected layer (Figure 1). The max pooling layer reduces the dimensionality of the previous layer,
by selecting the maximum value within a 2 × 2 grid point area—max pooling is effective when there is
significant correlation between points in the feature maps. To give the neural networks the ability to learn
nonlinear functions, activation functions are added between layers. Here we use the scaled exponential
linear unit (SELU; Klambauer et al., 2017). SELU activation functions scale the data toward zero mean and
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unit variance, removing the need for batch normalization—batch normalization enforces zero mean and
unit variance at each stage of the network but requires additional training.

The specific architecture was constructed by adjusting all parameters and observing which configuration
most effectively minimizes the loss function on the validation data. See Table 1 for more details of the
architecture and training procedure. The total number of parameters of each neural network is 325,728.

We train and implement each neural network using Keras (Chollet, 2015), with the Tensorflow backend
(Abadi et al., 2016). Before training, all data sets are separately normalized to zero mean and unit variance.
Each CNN is trained for 200 epochs (1 epoch = 1 full pass of all the training data through the optimization
algorithm), taking approximately 10 CPU hours, after which there is negligible change in the loss function
of the validation data.

Once all six neural networks are trained, we make the predictions S̃x and S̃𝑦 using the filtered-stream func-
tion 𝜓̄ from the validation data set, that is, the final year of withheld data. We make predictions for the full
domain to determine how each neural network generalizes to unseen, dynamically distinct, regions. As the
input and output size of each neural network is 40 × 40 grid points, we tile together predictions for the full
domain of size 512 × 512; the tiling leads to errors at the boundaries of each tile, where discontinuities can
emerge. To reduce the tiling error, we make predictions using overlapping tiles and then average the results
at each grid point.

In order to make predictions of the subsurface flow field, using only information at the surface, we train a
new neural network. The new neural network has an identical architecture to those discussed previously
and is trained to predict the middle-layer stream function using the upper-layer stream function as the input;
this neural network is described in more detail in section 5.

3. Neural Network Generalization and Sensitivity
3.1. Nonlocal Predictions
The filtered-stream function represents, for example, observational measurements from satellite altimetry
or coarse-resolution model data. The subfilter eddy momentum forcing represents unresolved turbulent
processes. Our goal is to replicate the complex spatiotemporal variability of Sx and Sy using neural networks
𝑓i(𝜓̄ ,wR). However observational data such as moorings (Hogg, 1992) or gliders (Davis et al., 2008; Rudnick
et al., 2004), may only be available for a particular region; we therefore only train the neural networks using
data from specific regions of the full domain, as described in section 2.3. Our aims are to both successfully
train the neural networks and to study how they generalize to previously unseen regions.

We study the spatiotemporal variability of Sx and S̃x, by examining snapshots, the time mean, and the stan-
dard deviation, shown in Figure 2. Diagnostics are calculated over the full 512 × 512 domain, using the
final year of withheld data. Both the spatial and temporal variability of the true Sx are dominated by the jet
dynamics (Figures 2a, 2e, and 2i). In particular, strong meanders which extend eastward from the western
boundary are visible. The amplitude of the spatiotemporal variability of Sx (1.4 × 10−6 m/s2) is of similar
magnitude to the time mean (1.5 × 10−6 m/s2).

All neural networks trained on three different regions, shown in Figure 1a and described in section 2.3,
successfully reproduce the spatial patterns of the true Sx, as shown by snapshots of the predictions S̃x
(Figures 2b–2d). Their magnitudes however vary significantly. The predictions of 𝑓x(𝜓̄ ,w1), trained on data
from the western boundary, are almost identical to the true Sx and successfully reproduces the correct ampli-
tude and variability (Figures 2b, 2f, and 2j). The neural network 𝑓x(𝜓̄ ,w2), trained on data from the eastern
boundary, underestimates the magnitude of the true Sx by approximately 50%, despite reproducing the cor-
rect spatial patterns. The predictions of 𝑓x(𝜓̄ ,w3), trained on the southern gyre, underestimates the true Sx
by an order of magnitude (Figures 2d, 2h, and 2l).

As the variability of Sx is dominated by the jet, it is difficult to assess the accuracy of the neural network pre-
dictions S̃x in quiescent regions such as the eastern boundary or within the gyres. We therefore calculate the
Pearson correlation, a dimensionless quantity, between the true Sx and the predictions S̃x . The predictions
of 𝑓x(𝜓̄ ,w1) and 𝑓x(𝜓̄ ,w2) are highly correlated with the truth (r > 0.9) within the jet but tend toward zero
or negative correlation near the eastern boundary (Figures 2m and 2n). The predictions of 𝑓x(𝜓̄ ,w3) have a
more consistent positive correlation across the gyres and other more quiescent regions, (Figure 2o).
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Figure 2. Examining the nonlocal prediction ability. Comparisons of the true zonal component of the subfilter momentum forcing Sx , with the neural networks
trained using data from three different regions. The first three rows compare (a–d) snapshots, (e–h) time means, and (i–l) the standard deviation, respectively,
while the bottom row (m–o) shows the correlation between the true Sx and the predictions S̃x . The first column contains the diagnostics using the true zonal
subfilter momentum forcing Sx , while columns two, three, and four use predictions S̃x from the neural networks 𝑓x(𝜓̄ ,w1), 𝑓x(𝜓̄ ,w2), and 𝑓x(𝜓̄ ,w3),
respectively. All diagnostics were produced using the validation data.
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We observe similar results for the spatial and temporal variability of Sy, shown in Figure 3: the variability
within the jet dominates, with an amplitude (1 × 10−6 m/s2) similar to Sx. The meandering of the jet again
produces complex spatial patterns in Sy, which when averaged in time, produce a distinct sign change mov-
ing across the jet latitudinally. For the predictions S̃𝑦, the neural network trained on the western boundary,
𝑓𝑦(𝜓̄ ,w1), most effectively reproduces the true Sy. However, the time mean of 𝑓𝑦(𝜓̄ ,w1) (Figure 3f) has a
positive bias everywhere in the domain, whereas the time means of 𝑓𝑦(𝜓̄ ,w2) and 𝑓𝑦(𝜓̄ ,w3) (Figures 3g and
3h, respectively) do not.

The correlations between Sy and S̃𝑦 are similar to the zonal component: 𝑓𝑦(𝜓̄ ,w1) and 𝑓𝑦(𝜓̄ ,w2) are highly
correlated (r > 0.8) within the jet but not in the gyres. In contrast, 𝑓𝑦(𝜓̄ ,w3) has a consistently positive
correlation across the full domain, despite failing to reproduce the amplitude within the jet. In fact, the
correlation of 𝑓𝑦(𝜓̄ ,w3) within the jet (Figure 3o) is negative (r ≈ − 0.3). The negative correlation implies
that the dynamical processes occurring within region 3, the southern gyre, have an opposite effect to the
eddy momentum forcing occurring within region 1. The opposing effects of eddies could be an example of
regional variation in eddy forcing, as in Waterman and Jayne (2010), who found that whether eddies were
driving the large-scale flow or not, depended critically on along-stream position.

Across all neural networks, the correlation decreases at the eastern boundary, which is partly caused by
the subfilter momentum forcing being orders of magnitude lower than elsewhere in the domain. The low
magnitude of Sx and Sy is due to the wave-like behavior of the flow having a larger spatial scale. The larger
spatial scale at the eastern boundary leads to little variability at small scales, reducing the eddy momentum
forcing to almost zero and therefore causing the performance of neural networks to deteriorate.

Overall, we see that training neural networks on the western boundary is most successful when generalizing
to other areas of the domain (in terms of correlations and reproducing the variability). Training on the
eastern boundary produced good correlations in the western boundary, but underestimated the magnitude
of the eddy forcing by approximately 50%. Training on the southern gyre did not correlate well within the
western boundary and underestimated the truth by an order of magnitude.

Hence, to successfully reproduce the correct amplitude and variability across the domain, the training data
must contain a diverse range of scale interactions, which here corresponds to training on the most turbulent
region. However, training on the turbulent regions can lead to significant net biases in the predictions, as
seen in Figure 3f. How to correct for such biases will be discussed in section 4.

3.2. Generalizing to Different Reynolds Numbers
In section 3.1, we investigated how neural networks trained on different regions of the domain generalize
to other previously unseen regions. We now test how the neural networks generalize to different regimes, in
particular, different Reynolds number. In section 3.1, we found that the neural networks trained on region
1, the western boundary, successfully generalized to different regions; we therefore apply 𝑓x(𝜓̄ ,w1) to new
model data with different wind stress amplitudes and viscosity coefficients to test its performance. We use
models with higher and lower wind forcings, to test regimes which are both more and less turbulent than
the original model, which had a wind stress amplitude of 𝜏0 = 0.8 N/m2 and viscosity 𝜈 = 75 m2/s2.

We use the low-pass filter on the upper-layer stream function from each different model run, with the fol-
lowing: 𝜈 = 200 m2/s2 and 𝜏0 = 0.3, 0.6, and 0.9 N/m2, and then apply the already trained neural network
𝑓x(𝜓̄ ,w1) to generate predictions S̃x. The standard deviation of the true Sx, the standard deviation of the
𝑓x(𝜓̄ ,w1) predictions S̃x, and the correlation between them are shown in Figure 4.

The neural network 𝑓x(𝜓̄ ,w1) reproduces the variability within the jet almost exactly, across all runs, as
can be seen by comparing the standard deviations in the first and second columns, which represent the
standard deviation of the true Sx and predicted S̃x, respectively. The correlation within the jet remains high
(r > 0.9) in all runs, including the model with an increased wind forcing (𝜏0 = 0.9 N/m2) in Figure 4o.
The correlations weaken at the eastern boundary for the lowest wind forcing (𝜏0 = 0.3 N/m2), shown
in Figure 4f; this may be caused by an increase in the wave-like behavior at the eastern boundary, which
is not well captured by the neural networks. In general, the higher the Reynolds number, the better the
correlations, that is, more dark red areas of r > 0.8.

The mean biases of the predictions of the new models are similar in magnitude to the biases of the original
model configuration. These biases showed no relationship with the Reynolds number and are therefore not
discussed further.
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Figure 3. The same diagnostics as Figure 2, but for the meridional component of the subfilter momentum forcing: the true Sy and the predictions S̃𝑦 from the
neural networks 𝑓𝑦(𝜓̄ ,w1), 𝑓𝑦(𝜓̄ ,w2), and 𝑓𝑦(𝜓̄ ,w3).
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Figure 4. Examining the ability to generalize to new regimes: using the trained neural network 𝑓x(𝜓̄ ,w1), we make predictions for model runs of different
viscosities and wind forcings. From each model run, we use 1 year of the upper-layer filtered-stream function to generate predictions S̃x from 𝑓x(𝜓̄ ,w1) to see
how they compare to the true Sx . We study a run of higher viscosity (a–c) 𝜈 = 200 m2/s2, and runs with wind stress amplitude (d–f) 𝜏0 = 0.3, (g–h) 0.6, (g–i) 0.8,
and (j–l) 0.9 N/m−2. Note that 𝑓x(𝜓̄ ,w1) was trained on a run with 𝜈 = 75 m2/s2 and 𝜏0 = 0.8 N/m2, the standard deviation and correlation maps of which
are included again here in panels (j), (k), and (l).
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3.3. Sensitivity of Neural Networks to Undersampling
We have so far trained the neural networks with densely sampled data; that is, we have data at each grid
point for both the input and output variables. However, most observational data sets are spatially sparse, for
example, Argo floats (Roemmich et al., 2009). We therefore explore the impact of undersampling with a new
collection of neural networks trained on region 1 to predict Sx, but with the training data subsampled. At
each time slice of the training data, we randomly sample (without replacement) N points of the 40 × 40 input
variables, 𝜓̄ , and output variables Sx . Using these N randomly sampled values, we use a cubic interpolation
to reconstruct the full 40 × 40 grid point input and output (with a nearest neighbor interpolation for grid
points that fall outside the convex hull of the cubic interpolation).

These reconstructed time slices from subsampled data are used to train a new set of neural networks. We
vary the number of points N subsampled from >90% to <5% of the original 1,600 points of the input and
output variables. We have a neural network for each value of N, the subsampling rate. Using the neural
networks trained on undersampled data, we calculate the root-mean-square error (RMSE) on the final year
of validation data over the entire domain. The validation data are not subsampled, providing a stronger and
more accurate test of the neural network's performance.

The RMSE is shown as a function of percentage of points sampled (Figure 5c). We find that the RMSE
increases significantly only when the percentage of spatial points sampled drops below 10% (the error dou-
bles at a subsampling rate of 4.7%). Note that the RMSE is not a monotonic function of percentage of points
sampled due to the stochastic nature of the training procedure and the use of a nonlinear interpolation. The
spatial map of RMSE of the neural network trained with 18.75% subsampled data (Figure 5b) shows mini-
mal changes relative to the neural network trained on the original (unaltered) training data (Figure 5a). The
result further suggests that the use of sparse interpolated observations can be successfully used to accurately
train and predict the eddy momentum forcing as shown in sections 3.1 and 3.2.

We also tested an alternative method of undersampling, where the 40× 40 input and output grid of the neural
network is spaced out over the entire domain. In other words, we subsample the input and output variables
of the original 512 × 512 grid to a regularly spaced 40 × 40 grid. However, training a convolutional neural
network with this methodology did not work and led to severe overfitting (i.e., increasing validation loss
during training). The neural networks presented in section 2 learn to take first- and second-order derivatives
of the input stream function (see GitHub repository), which correspond to the velocities and velocity shears.
Both velocities and velocity shears are important features to provide for accurate predictions of the eddy
momentum forcing. By severely subsampling the input stream function, the local information relevant to
estimate velocities and velocity shears is lost.

Therefore, the success of training convolutional neural networks on observational data sets will likely
depend on the horizontal sampling rate of the product being considered. Our results suggest that high hori-
zontal resolution sampling is necessary to capture any small-scale gradients and avoid the sharp rise in error
in Figure 5. We anticipate that the use of (interpolated) data sets with horizontal resolution of 1◦ or less (e.g.,
Argo float, altimetry) is needed to train the neural networks and predict the eddy momentum forcing.

4. Physically Constrained Neural Networks
We proceed to examine the net input of momentum from the neural network predictions S̃x and S̃𝑦,
which should vanish. If neural networks are used to leverage the use of observational data sets and
coarse-resolution models, then spurious sources of momentum would violate physical conservation laws.
We therefore need to constrain the neural networks to respect the physical properties of the system. Here
we diagnose the momentum biases of the neural networks 𝑓i(𝜓̄ ,wR), and then explore different methods of
imposing conservation of momentum globally.

4.1. Momentum Biases
Each subregion (including those used to train the neural networks) may have a nonzero spatially inte-
grated momentum tendency. However, globally, the true subfilter momentum forcing S should redistribute
momentum and not act as a source or sink, that is, ∫∫ Sdxd𝑦 = 0. We therefore need the neural networks
to not introduce spurious sources of momentum, to respect the physical properties of the system. By train-
ing each neural network on a subregion, we expect to have imperfect momentum conservation, which will
depend upon the particular dynamical processes within each region. For example, if eddies within a par-
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Figure 5. Determining how undersampling of the training data impacts neural network error. Panel (a) shows the
root-mean-square error (RMSE) of the neural network 𝑓x(𝜓̄ ,w1) trained with dense (unaltered) training data, while
panel (b) shows the RMSE of the neural network trained with subsampled (18.75%) data. Panel (c) shows the RMSE as
a function of the percentage of spatial points sampled at each time slice of the training data. Note that the RMSE is
calculated over the full domain during the validation period (the final year of data).

ticular region are driving the mean flow, then we would expect a positive source of momentum locally—a
neural network trained on such a region would likely generalize the (local) input of momentum to the rest
of the domain. A net source or sink of momentum will manifest as a nonzero bias after spatial averaging.

At a single point in space, the time series of the predictions S̃x and S̃𝑦 show that the neural networks trained
on regions 1 and 2 track the true Sx and Sy closely (Figures 6a and 6b), reproducing a significant proportion
(>80%) of the variance. However, if at each time step we spatially average the neural network predictions S̃x
and S̃𝑦 (Figures 6c and 6d, respectively) over the full domain, we observe significant nonzero biases.

Consider the zonal component of the eddy momentum forcing in Figure 6c: 𝑓x(𝜓̄ ,w1) has a net positive
bias, implying a global positive increase of zonal momentum at all times, while both 𝑓x(𝜓̄ ,w2) and 𝑓x(𝜓̄ ,w3)
have negative biases, indicating a net decrease in zonal momentum. We can estimate the magnitude of the
resulting change in zonal velocity from these net biases, over a period of a year, by assuming Δu =< S̃x > Δt,
where <> denotes the spatial average over the full domain. For 𝑓x(𝜓̄ ,w1), 𝑓x(𝜓̄ ,w2), and 𝑓x(𝜓̄ ,w3), we
obtain values of< S̃x >= 0.03, 0.02, and 0.0008 (10−6 m/s2), respectively; this leads to zonal velocity changes
of 𝛥u = 0.95, 0.63, and 0.025 (m/s). These changes are of similar magnitude to the time mean zonal flow,
which peaks at approximately 0.9 m/s within the jet core.

BOLTON AND ZANNA 389



Journal of Advances in Modeling Earth Systems 10.1029/2018MS001472

There are also significant biases in the predictions of the meridional component S̃𝑦, shown in Figure 6d. The
positive bias of 𝑓𝑦(𝜓̄ ,w1) is visible in the time mean S̃𝑦 shown in Figure 3f. We can again estimate the change
in meridional velocities by assuming Δv =< S̃𝑦 > Δt. Using values of < S̃𝑦 >= 0.02,−0.01, and 0.002 (10−6

m/s2) for𝑓𝑦(𝜓̄ ,w1), 𝑓𝑦(𝜓̄ ,w2), and𝑓𝑦(𝜓̄ ,w3), respectively, leads to the following changes:𝛥v = 0.63, −0.31,
and 0.06 (m/s). Some of these changes are the same magnitude as the time mean meridional flow.

4.2. Toward Momentum-Conserving Neural Networks
The predictions of neural networks 𝑓x(𝜓̄ ,w1) and 𝑓𝑦(𝜓̄ ,w1), described in section 3.1, correctly reproduce
the correct amplitude and variability of the true eddy momentum forcing Sx and Sy, as seen in Figures 2 and
3. However, training on region 1 also produced some of the largest nonzero biases in S̃x and S̃𝑦 after spatial
averaging at each time step. We therefore test whether we can reduce the biases when training on region 1,
while preserving the accuracy of predictions from the neural network. We try three approaches (A, B, and
C) to reduce the biases identified in Figures 6c and 6d.

(A) Architecture alteration: Train neural networks on region 1, but with the final fully connected layer mod-
ified such that the spatial mean is removed from the final output. The neural networks will therefore be
trained to reproduce the subfilter momentum forcing, but with momentum conservation intrinsically
embedded, that is, same training data, but altered architecture. The motivation behind this approach is
that if the local source of momentum within the 40 × 40 output grid is zero, then this may reduce the
global net source of momentum.

(B) Preprocessing of input: Train on region 1 with the original architecture described in Table 1 but with
the spatial mean removed from each 40 × 40 training snapshot of Sx . In other words, remove the local
bias from each training snapshot. If the local source of momentum of each 40× 40 sample is zero within
the training data, then training on such data may reduce local biases when making future predictions
on unseen data. However, this does not guarantee that subsequent predictions will have zero local bias.
This approach tries to increase the probability of learning local momentum conservation.

(C) Postprocessing of output: Train on region 1 and enforce global momentum conservation after the predic-
tions have been made, that is, no changes to training data or architecture, but with additional processing
of the full-domain predictions S̃x and S̃𝑦.

The associated neural networks of each approach are labeled as 𝑓i(𝜓̄ ,wA
1 ), 𝑓i(𝜓̄ ,wB

1 ), and 𝑓i(𝜓̄ ,wC
1 ),

respectively, where i = (x, y) denotes either the zonal Sx or meridional Sy component being predicted.

All neural networks are optimized using the same training parameters given in Table 1. Approach A, which
alters the architecture, and approach B, which alters the training data, are enforcing momentum conser-
vation not just globally, but within the 40 × 40 subregion being predicted. This local conservation is useful
for enforcing global conservation. However, local conservation may not be desirable if there is convergence
of eddy momentum fluxes in a particular region, which can impact the large-scale flow; for example, if
eddies are fluxing momentum into the jet at a particular along-stream position, enforcing local conserva-
tion in a neural network may lead to missing these effects. Therefore, caution must be taken with restricting
architectures in this way.

We now explore the performance of the newly constrained neural networks and the net momentum input
relative to that of the original neural networks trained on region 1: 𝑓x(𝜓̄ ,w1) and 𝑓𝑦(𝜓̄ ,w1). The spatial
averages of neural networks based on approaches A, B, and C are shown in Figure 7, with the same scale
axes as in Figure 6.

Approach B has significant biases of approximately −0.01 and −0.015 (10−6 m/s2) in the zonal and merid-
ional components, respectively; the optimization procedure aims to reproduce the variability in the training
data, and not spatial means; therefore, preprocessing the training data does not remove the biases. Com-
pared to the original neural networks trained on region 1, the biases of approaches A and C are 3 to 5 orders
of magnitude lower, in both the zonal and meridional components. The postprocessing approach is exactly
zero by construction, while the altered architecture approach A is not exactly zero due to the overlapping
tiling procedure. The biases of 𝑓x(𝜓̄ ,wA

1 ) and 𝑓𝑦(𝜓̄ ,wA
1 ) are approximately −0.002 and −0.0005 (10−6 m/s2)

which, over the course of a year, would lead to velocity changes of 𝛥u = −0.06 and 𝛥v = −0.01 (m/s),
respectively—now an order of magnitude smaller than the time mean flow.

The correlation maps of all momentum-conserving approaches (not shown) change little from the original
correlation maps of 𝑓x(𝜓̄ ,w1), and 𝑓𝑦(𝜓̄ ,w1), shown in Figures 2m and 3m, respectively. All approaches
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Figure 6. Panels (a) and (b) show time series of the zonal and meridional components of the subfilter momentum forcing, respectively, at a single point near
the middle of the domain. Panels (c) and (d) also show time series of the zonal and meridional components of the subfilter momentum forcing, but this time
spatially averaged over the entire domain.

reproduce the correct spatial patterns of the true Sy and Sy (e.g., Figure 7 for standard deviations). However,
approaches A and B underestimate the amplitude of Sx and Sy by approximately 20–30%, whereas there is a
little difference between approach C and the truth (<10%).

In summary, approach C of postprocessing successfully enforces momentum conservation, without sacrific-
ing accuracy in the predictions of the eddy momentum forcing. Approach B, altering the training data, was
not efficacious at reducing the net biases. The physically constrained architecture of approach A successfully
reduced the net bias, but at the expense of 20–30% accuracy. Though further altering of the architecture (e.g.,
increasing number of convolution layers and filters) or training procedure (decreasing the learning rate,
with increased number of training epochs) could reduce this drop in accuracy by countering the restriction
placed on the architecture.

5. Predicting Subsurface Flow
We have shown that neural networks, by using the filtered-stream function as the input variable, can pro-
vide information on unresolved turbulent processes, namely, the subfilter momentum forcing. We have
assumed that the filtered-stream function represents some limited set of observations or data from a
coarse-resolution ocean model. However, coarse-resolution ocean models still produce data for below the
surface, whereas satellite observations do not. Here we address the issue of inferring subsurface informa-
tion solely from surface fields. Our approach is conceptually similar to Chapman and Charantonis (2017),
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which used a form of neural network called a self-organizing map to reconstruct subsurface velocities in
the Southern Ocean, using satellite altimetry and Argo float data. Using the QG model data described in
section 2.1, we test whether a neural network can predict the middle-layer stream function, using only the
surface-filtered-stream function.

We train a new neural network 𝜓̃2 = 𝑓 (𝜓̄1,W) (which has the same architecture as before, but with a differ-
ent output and weights) to minimize the mean-square-error loss function L ∝ (𝜓2 − 𝜓̃2)2, where 𝜓̄1 is the
filtered-stream function of the upper layer, 𝜓2 is the true stream function of the middle layer, and 𝜓̃2 is the
neural network predictions. Again, to assess the ability to generalize to unseen regions, we only train the
neural network on the western boundary (training region 1). Diagnostics of the true 𝜓2 and predictions 𝜓̃2,
including the correlation between them, are shown in Figures 8a–8e. The neural network accurately repro-
duces the middle-layer time mean and standard deviation of the stream function within the jet region. The
neural network accurately reproduces the correct amplitude of the true 𝜓2 within the jet, but underesti-
mates the amplitude by ≈50% within the gyres. Independent of the amplitude, the predictions 𝜓2 are highly
correlated (r > 0.8) almost everywhere in the domain with the true 𝜓2.

The decrease in accuracy in the gyres is likely due to only training within the western boundary, where the
stream functions of the upper- and middle layers are more tightly coupled due to the strong barotropic nature
of the flow. Within the gyres, the barotropic component is not as dominant—this could cause the neural
networks to underestimate the amplitude away from the jet. Alternatively, the adjustment time scales of the
upper and middle layers are not the same, which perhaps requires more training data in order to capture
interactions over longer time scales.

We take the approach one step further, by predicting the bottom-layer stream function, using the same neural
network and its weights 𝑓 (𝜓̄1,W), but now using the predictions of the middle-layer stream function as the
input, that is, 𝜓̃3 = 𝑓 ( ̄̃𝜓2,W). We test whether a neural network trained to predict the middle-layer stream
function can provide any information on the bottom-layer stream function (without retraining), by inputting
the middle-layer stream function as an input. Mathematically, this is written as 𝜓̃3 = 𝑓 (𝑓 (𝜓̄1,W),W).

Diagnostics of the true (𝜓3) and predicted (𝜓̃3) bottom-layer stream function are shown in Figures 8f–8j.
Despite a moderate correlation of r ≈ 0.5 across the domain, the predictions fail to reproduce the correct time
mean, which has a circulation in the opposite direction to the truth. This is due to the neural network being
trained to predict the middle-layer flow, which on average is more aligned with the upper layer. Therefore,
when the neural network is given the middle-layer stream function as an input, it predicts the bottom-layer
flow as on average being in the same direction, which is not the case. The neural network also has not been
trained to predict the effects of the additional bottom drag, decreasing the accuracy further—more data could
improve this issue, as the longer time scales associated with bottom drag may be absent from the training
data set.

An alternative approach would be to train a new neural network to map directly from the surface flow to
the bottom-layer flow, that is, 𝜓̃3 = 𝑓 (𝜓̄1,W). Having separate neural networks for the middle and bottom
layers, you could then reconstruct the flow at all depths using just information at the surface (although an
additional neural network does increase computational costs). Independent of the abyssal flow however, we
have shown that neural networks can provide information on the flow at intermediate depths.

6. Conclusions and Discussion
6.1. Summary
In this study, we have demonstrated as a proof of concept that machine learning algorithms can provide
information on unresolved turbulent processes, when given a smoothed view of the dynamics (i.e., the
filtered-stream function). We degrade data from a high-resolution eddy-resolving QG model using a spatial
low-pass filter and train convolutional neural networks to predict the relationship between turbulent pro-
cesses and their effect on the large-scale flow, that is, the eddy momentum forcing. Our results show that
convolutional neural networks can successfully represent both the spatial and temporal variability of the
eddy momentum forcing.

We determine how neural networks trained on one area of the domain, perform in other previously unseen
areas (Figures 2 and 3), representing when observational data are limited to only particular regions, for
example, mooring data (Hogg, 1992) or gliders (Davis et al., 2008; Rudnick et al., 2004). Training on a sub-
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Figure 7. The standard deviation and spatial-average time series of the predictions S̃x and S̃𝑦 of the momentum conversing approaches A, B, and C. Panels (a),
(b), and (c) show the standard deviation of S̃x from 𝑓x(𝜓̄ ,wA

1 ), 𝑓x(𝜓̄ ,wB
1 ), and 𝑓x(𝜓̄ ,wC

1 ), respectively, while panels (e), (f), and (g) show the standard deviation
of S̃𝑦 from 𝑓𝑦(𝜓̄ ,wA

1 ), 𝑓𝑦(𝜓̄ ,w
B
1 ), and 𝑓𝑦(𝜓̄ ,wC

1 ), respectively. The spatial averages of these predictions S̃x and S̃𝑦 are shown in panels (d) and (h).

region tests the sensitivity of the neural network performance to the underlying physical processes. We find
that the region on which the neural network is trained significantly impacts the accuracy, as well as the mean
bias, which impacts momentum conservation. In particular, training on the least energetically active region,
the southern gyre, leads to the lowest accuracy; these neural networks could not reproduce the variability in
more energetic regions, such as within the meandering jet. However, training on the western boundary leads
to the best generalization, in terms of reproducing the correct amplitude of the eddy momentum forcing in
the rest of the domain.

The variation in performance between regions implies that training on the most turbulent region leads to
the best performing neural networks for eddy momentum forcing prediction. It is possible that data from
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the most turbulent regions exhibits the highest variance or contains a more diverse range of scale inter-
actions. However, two regions may be as turbulent or energetically active as each other, but the nature of
the eddy-mean flow interactions within them may differ. For example, Waterman and Jayne (2010) showed
that in an idealized model the effect of eddies on the mean flow depended critically on along-stream posi-
tion: up-stream eddies are generated by an unstable jet, while downstream the eddies drive the time mean
circulation. Therefore, training neural networks on different along-stream positions may lead to different
dynamical processes being learned, despite both regions being energetically active. Here we have shown
how the performance varies between regions of differing energetic activity, but how the specific effects
of eddies—for example, driving the mean flow, versus eddies extracting momentum and energy from the
jet—impacts the neural network performance remains to be determined.

Without further training, we show that a neural network trained on one QG model configuration general-
izes exceedingly well to QG models with different viscosity coefficients and wind forcings (Figure 4). The
neural network within the jet reproduces the correct spatiotemporal variability (<10% error) in all con-
figurations, and the correlation between the predicted S̃x and the true Sx within the gyres increases with
the Reynolds number of the model configuration. While the neural networks do not conserve momentum
globally (Figure 6c and 6d), we show that momentum conservation can be enforced without a significant
reduction in accuracy (Figure 7), through either a physically constrained architecture or postprocessing of
the predictions.

We also show that a new neural network can be trained to predict the middle-layer stream function, using
only the upper-layer stream function as the input, that is, predicting the flow at depth using information
at the surface (Figure 8). The highest accuracy occurs where the barotropic component of the flow is most
dominant, which coincides with a strong zonal mean flow. However, when using the stream function to
predict the bottom-layer stream function, the neural network captures some of the variability, but fails to
replicate the time mean of the true bottom-layer stream function𝜓3 (Figure 8), primarily due to the presence
of bottom drag.

6.2. Implications for Leveraging Observations
Our work has implications for inference from sparse observations. While previous studies have used
machine learning to leverage observational data sets (Chapman & Charantonis, 2017; Giglio et al., 2018;
Su et al., 2018), the present work demonstrates that convolutional neural networks in particular are an
excellent tool for such tasks. Neural networks should be further tested and exploited in the future for data
inference due to

• their resilience, such that accurate predictions for the full domain can be generated by training on a
subregion;

• their generalization to different external forcings, without any further training such that predictions
outside the regime trained on can be successful; and

• their ability to be successfully trained with undersampled data (Figure 5).

Collectively, these results suggest that sparse interpolated observational data sets can be leveraged by such
data-driven techniques. For example, satellite altimetry data can be used to predict the subsurface flow; or
data from moorings deployed in Drake Passage as part of the Diapycnal and Isopycnal Mixing Experiment
in the Southern Ocean can be used to infer eddy momentum or heat flux divergences in other parts of the
Southern Ocean. In addition, data sets from Argo floats (Chapman & Sallée, 2017), mooring data, ADCPs,
and SSH from altimetry, could be combined to reconstruct physically and biogeochemically important quan-
tities such as energy reservoirs, or air-sea fluxes, interior transport and/or storage of heat, and carbon and
oxygen in the ocean (Giglio et al., 2018; Su et al., 2018).

6.3. Implications for Parameterizations
Although we have motivated our study through the leverage of observations and coarse-resolution model
data, our results have implications for eddy parameterizations of momentum and more generally for subgrid
parametrizations. As discussed previously, machine learning has been used to parameterize unresolved pro-
cesses in the atmosphere (Brenowitz & Bretherton, 2018; Gentine et al., 2018; Jiang et al., 2018; O'Gorman
& Dwyer, 2018).

We have shown that neural networks can successfully represent the spatiotemporal variability of the eddy
momentum forcing, implying potential for data-driven oceanic turbulence closures in the future, as sug-
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Figure 8. Predicting the middle- and bottom-layer stream functions 𝜓2 and 𝜓3 using the upper-layer filtered-stream function 𝜓̄1. We first train a new neural
network to predict 𝜓2 from 𝜓̄1, that is, 𝜓2 = 𝑓 (𝜓̄1,W); diagnostics of the true 𝜓2 and the predictions 𝜓̃2 are shown in the top-half of the figure (a–e). We then
take the same neural network that was trained to predict 𝜓2 from 𝜓̄1, and now predict the bottom layer stream function 𝜓3 using the predicted middle-layer
stream function as the input, that is, 𝜓3 = 𝑓 ( ̄̃𝜓2,W); the diagnostics of the true 𝜓3 and the predictions 𝜓̃3 are shown in the bottom-half of the figure (f–j).
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gested by Zanna et al. (2018). The generalization ability of the neural networks shows that only a limited
amount of observations or high-resolution model data may be needed to successfully represent subgrid-scale
processes. While the CNNs are successful at representing relationship between the eddy momentum forcing
and their effect on the resolved flow, the low-resolution climate models might have biases that are too severe
(e.g., weak transport and velocity shears) to lead to a successful representation of the eddy momentum forc-
ing from CNNs as trained here. Nonetheless, our results also show that they perform very well for different
amplitudes of forcing and dissipation. Therefore, until the CNNs are implemented into a coarse-resolution
ocean model, their success in improving numerical simulations is speculative but deserves to be investigated.

Whether neural networks are being used to leverage observations, or more importantly to construct a
data-driven eddy parameterization, caution must be taken to ensure that the laws of physics are respected.
More work into physically constrained machine learning algorithms is crucial, and successful applications
of data-driven techniques should incorporate physical knowledge. Indeed, the neural network turbulence
model of Ling, Kurzawski, and Templeton 2016 out-performed more simple linear models only when
Galilean invariant stress tensors from Pope (1975) were used, which are also a key ingredient of the eddy
parameterization proposed by Anstey and Zanna (2017). As previously discussed, we successfully enforce
global momentum conservation in the present work, such that future implementations of data-driven
parameterizations, despite being semiempirical, can be altered to respect physical principles. Specifically,
physical constraints can be incorporated into the architecture of the predictive algorithms.

One potential disadvantage of convolutional neural networks may be the computational cost of the matrix
operations of each convolution layer to make a prediction given an input. The total time complexity (ignoring
any fully connected layers) of a CNN (He & Sun, 2015) is given by (∑d

l nl−1 · s2
l · nl · m2

l ), where d is the
total number of convolution layers, l is the index of a convolution layer, nl is the number of filters, sl is
the filter size, and ml is the size of the output feature map. The time complexity is larger than that of a
traditional eddy closure (e.g., a simple Laplacian dissipation of momentum which only involves a few matrix
additions and subtractions). One way to reduce the time complexity is to instead use depth-wise separable
convolution layers (e.g., Howard et al., 2017), which treat the input channels of a convolution layer more
independently. This reduces the number of parameters and hence computational cost. An alternative way
of reducing time complexity is to simply reduce the sizes of the input and outputs; that is, make predictions
for a region smaller than 40 × 40 grid points. The amount of information available to make predictions is
therefore reduced. The computational cost is an area which needs addressing if CNNs are to be routinely
implemented in models in the future. However, unlike other parameterizations, the training of the neural
networks is only done once.

6.4. Future Work
Our study is a step toward using convolutional neural networks to extend the reach of currently available
observational or model data. Our proof-of-concept study was conducted in an idealized QG model. The next
stage involves training neural networks on actual observational data sets (as described in section 6.2) or on
more realistic model data (e.g., a 1/40th◦ global model which resolves the mesoscale and submesoscale eddy
fields, such as in Rocha et al., 2016).

We used 9 years of data to train the neural networks and 1 year for validation. Gentine et al. (2018) showed,
with regard to parameterizing convection with neural networks, that the training data set could be reduced
in size from 12 to 3 months, with little change in the overall mean-square error. The sensitivity our neu-
ral networks to reductions in the amount of training data needs to be systematically explored. We have
only determined the impact of spatial undersampling on the neural networks. Further work is needed to
determine the impact of using a few number of time slices (e.g., using 3 years of training data as opposed
to 9 years).

Training on the western boundary produces the best performance. However, the high skill within the jet does
not fully translate to high skill in all parts of the gyres. The best correlations in the gyres occur instead when
training on the southern gyre, and not the western or eastern boundaries (Figure 2 and 3). This implies that
there may be an optimal combination of the predictions of the neural networks trained on different regions,
in order to produce the best overall generalization and potentially include nonlocal effects.For example,
each neural network has a weight ai, and the optimal predictions for the full domain is a combination of all
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neural networks

S̃OPT
x =

N∑
i

ai𝑓x(𝜓̄ ,wi), (10)

where the summation is over all regions, and S̃OPT
x is the corresponding optimal prediction (with an anal-

ogous S̃OPT
𝑦

for the meridional component). Combining predictions from multiple neural networks in this
manner could be a useful way of capturing the distinct eddy-mean flow interactions observed by Waterman
and Jayne (2010). Alternatively, if the computational resources are available, you could train a single neural
network on data from all three regions, in the hope that it remembers the physical processes occurring in
each region. The risk with this approach is that one loses specialization, and the skill reduces as the single
neural network simply averages the effects of the three regions together. We will attempt to implement the
neural networks (as trained here, or as a combination of neural networks) into a coarse-resolution version
of the QG model to test their performance as a subgrid-scale parametrization.

Although this study is a proof of concept, the merging of data-driven methods with physical knowledge
has the potential to change the way the physics of the ocean are studied, including the designs of future
parameterizations. The combination of physical theory and machine learning could prove more effective
than either component in isolation.
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Erratum
The figure captions for Figures 5, 6, 7, and 8 were erroneously transposed as the result of a typesetting error.
The error has been corrected, and this may be considered the authoritative version of record.
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