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ARTICLE INFO ABSTRACT

Keywords: A recent class of ocean eddy parameterizations proposed by Porta Mana and Zanna (2014) and Anstey and Zanna
Eddy parameterization (2017) modeled the large-scale flow as a non-Newtonian fluid whose subgridscale eddy stress is a nonlinear
Deformation function of the deformation. This idea, while largely new to ocean modeling, has a history in turbulence
;ﬁzl::s-gale modeling dating at least back to Rivlin (1957). The new class of parameterizations results in equations that

resemble the Lagrangian-averaged Navier-Stokes-a model (LANS-a, e.g., Holm et al., 1998a). In this note we
employ basic tensor mathematics to highlight the similarities between these turbulence models using compo-
nent-free notation. We extend the Anstey and Zanna (2017) parameterization, which was originally presented in
2D, to 3D, and derive variants of this closure that arise when the full non-Newtonian stress tensor is used. Despite
the mathematical similarities between the non-Newtonian and LANS-a models which might provide insight into
numerical implementation, the input and dissipation of kinetic energy between these two turbulent models

Non-Newtonian fluid

differ.

1. Introduction

The problem of parameterizing ocean mesoscale eddies has received
considerable attention in recent years. Many sophisticated closures
have been developed which seek to move beyond the paradigm of
purely downgradient tracer transport, and which appeal to the expected
turbulent cascades of the large-scale flow. Both observations (Stammer,
1997; Wang et al., 2010; Callies and Ferrari, 2013; Rocha et al., 2016)
and modeling studies (Klein et al., 2008; Capet et al., 2008; Sasaki and
Klein, 2012; Rocha et al., 2016) indicate that large-scale ocean turbu-
lence is quasi-geostrophic, featuring an upscale cascade of kinetic en-
ergy (Scott and Wang, 2005; Scott and Arbic, 2007) and a forward
(downscale) cascade of potential enstrophy. The upscale energy cascade
has frequently been a focus of recent parameterization methods because
it implies an energy flux away from dissipative scales, thereby con-
flicting with the need to dissipate resolved kinetic energy to maintain
numerical stability. This dissipation implies that the upscale cascade
may be attenuated or arrested unphysically, and the resulting energy
loss may be complicit in causing the large-scale circulation in global
models to be weak compared to observations (e.g. Kjellsson and
Zanna, 2017).

There is considerable debate about the optimal way to approach the

problem of compensating for the unphysical energy loss at large scales,
and it is unclear whether using scale- and flow-aware dissipation (e.g.
Bachman et al., 2017; Pearson et al., 2017) is sufficient in this regard.
Viscous dissipation in these models is both unavoidable and necessary,
and mimicking the upscale energy cascade by re-injecting the dissipated
energy at larger spatial scales is warranted. Deterministic and stochastic
approaches (e.g. Frederiksen and Davies, 1997; Berloff, 2005; Duan and
Nadiga, 2007; Kitsios et al., 2013; Grooms and Majda, 2013;
Porta Mana and Zanna, 2014; Jansen and Held, 2014; Jansen et al.,
2015; Zanna et al., 2017) have shown promise in modeling certain
dynamics characteristic of upscale energy transfer, such as upgradient
momentum fluxes and energy backscatter. A more recent class of eddy
closures (e.g. Porta Mana and Zanna, 2014; Anstey and Zanna, 2017;
Zanna et al., 2017), which are based on the idea that turbulent stresses
may be modeled by assuming a non-Newtonian stress-strain relation
(e.g Ericksen, 1956; Rivlin, 1957; Crow, 1968; Lumley, 1970;
Meneveau and Katz, 2000), may also be capable of modeling these
dynamics.

Another branch of literature pertaining to the Lagrangian-averaged
Navier-Stokes-alpha (LANS-a) model also addresses the issue of cor-
recting the large-scale energy. LANS-a has proven to be a skillful tur-
bulence model in both engineering- (Chen et al., 1998, 1999; Holm
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et al., 2005) and geophysical-scale flows (Holm and Nadiga, 2003;
Hecht et al., 2008a, 2008b; Petersen et al., 2008). The latter experi-
ments showed a remarkable energization of the eddy and mean kinetic
energy fields equivalent to doubling the model resolution
(Petersen et al., 2008), thereby achieving a similar large-scale energy
amplification similar to the newer closures mentioned above. For geo-
physical flows, this energization occurs because LANS-a effectively
shifts the kinetic energy injection scale to lower wavenumbers, helping
to spur the onset of baroclinic instability (Holm and Wingate, 2005). As
such, this aspect of LANS-a is especially exciting for eddy-permitting
ocean modeling.

An interesting property of the LANS-a model is that its governing
equations (Foias et al., 2001) are actually variants of the equations for
an incompressible, homogeneous fluid of second grade (Dunn and
Fosdick, 1974; Dunn and Rajagopal, 1995), whose stress-strain relation
was recently examined in detail by Anstey and Zanna (2017, hereafter
AZ) as a candidate turbulence closure for large-scale ocean models. It
can be shown that if the AZ closure is extended to include the
“memory” term neglected in their analysis, one recovers a set of gov-
erning equations which exhibit similarities to those used in LANS-a. For
the ocean modeler, the mathematical similarity between AZ and LANS-
a is obscured by the vastly different notation used in their respective
analyses, and the fact that the literature dealing with non-Newtonian
fluids is often outside the scope of oceanographic research. That the
governing equations of these models have similarities is significant, for
one might expect that key advantages of one model, such as the bar-
oclinic energization by LANS-a mentioned above, would thus be con-
ferred by AZ as well; while the eddy geometry from AZ, based on (e.g.
Waterman and Lilly, 2015), can be translated to the LANS-a model.

The purpose of this paper is to show the similarities and dis-
crepancies between the LANS-a model, AZ, and second-grade fluid
equations using tensor notation as in AZ. The connection between
LANS-a and second-grade fluids has been mentioned in previous lit-
erature (e.g. Foias et al., 2001; Marsden and Shkoller, 2001, among
others) but to the authors’ knowledge was never derived explicitly.
Here, by starting from the stress tensor for a second-grade fluid, we
derive and explicitly show how the connection arises between the
LANS-a model, the Rivlin—Ericksen stress and the AZ closure, while also
providing a synthesis of previous ideas. To allow a thorough compar-
ison of the different turbulence models, we will extend the original AZ
formulation to 3D and show the equations that would result if one were
to follow their approach and break the second Rivlin—Ericksen stress
tensor into “memory” and “deformation” parts. For brevity the Coriolis
and external body forces are left out of these derivations, although they
can be added back in without affecting any part of the analysis.

2. A brief discussion of second-grade fluids and LANS-a

An extensive body of literature exists which discusses the mathe-
matics and physics of both non-Newtonian fluids and LANS-a, whose
scope deserves a far more thorough discussion than is possible here.’
Here only a few key elements in the development of both are men-
tioned.

Much of the nomenclature used in discussing non-Newtonian fluids
stems from continuum mechanics, and is intended to extend to general
coordinate systems and moving frames of reference. Objects defined
below which may have familiar names in the oceanographic literature,
such as the strain rate tensor, S, or vorticity tensor, W, may instead be
formally referred to as the rate of deformation tensor and spin tensor,
respectively. Other functions of these tensors and their time derivatives
often appear. To keep this derivation accessible, here we will restrict

1 For an excellent retrospective on the theory of incompressible second-grade fluids,
the reader is encouraged to consult Dunn and Rajagopal (1995). Likewise, an interesting
exposition on the development of LANS-a from concept to turbulence closure can be
found in Holm et al. (2005).
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consideration to a Cartesian, Eulerian frame, with velocity vector
u = (u, v, w). The velocity gradient tensor is defined as

Uy Uy U
Va=|» v v |,
Wy Wy Wy 1
and its symmetric and antisymmetric parts as,
S = l(Vu + vu®) and W = l(Vu — vul)
2 2 ’ 2

where Vu refers to the transpose of (1). Additionally, we will assume
the fluid is Boussinesq, allowing us to replace variable density, p, with a
constant, po.

An incompressible second-grade fluid is a particular class of non-
Newtonian Rivlin-Ericksen fluids of differential type (Rivlin and
Ericksen, 1955), which are materials in which only a very short part of
the deformation history has an influence on the stress. Mathematically,
this simply means that the stress in Rivlin—Ericksen fluids is treated as a
function of the velocity gradient and some number of its higher time
derivatives. For a second-grade fluid, the stress tensor is the sum of all
tensors which can be formed using up to two spatial derivatives of the
velocity field, and can be written (Criminale et al., 1958; Coleman and
Noll, 1960)

o = —pl + uA + A, + A% 3)

Here p is the thermodynamic pressure and y, a; and a, are material
moduli and are properties of the flow rheology, with y being the fa-
miliar dynamic viscosity. While cases where the moduli are treated as
functions of the strain rate have been considered (e.g. Criminale et al.,
1958), the rheology is generally assumed to be homogeneous so that the
viscosity and other stress moduli are treated as constants. A; and A, are
the first and second Rivlin-Ericksen tensors, which represent the
lowest-order approximations of the deformation history:

DA
A, =— + Vu'A; + AVu.
2 Dt 1 1 (5)
The operator
D/Dt =4, + u-V (6)

is the usual material derivative. The equations of motion for this system
state that the acceleration of the fluid is equal to the divergence of the
stress tensor,

Du = Ldivcr.
Dt

Po 7

Together with the additional thermodynamical constraints (Dunn and
Fosdick, 1974)

u=>0, a+a=0, o >0,

(8)

we will show that the momentum equations for second-grade fluids
take the general form

Dv +Vu'v = — LVP +vVu + &
Dt Po
v =1 -aV3)u
Y
Po 9

The Lagrangian derivative in (9), and in all subsequent expressions,
remains as defined in (6). Here we have introduced the kinematic
viscosity, v = u/p,, and a rescaled stress modulus, a, for brevity and
assume that they are both constant and positive. P is a modified pres-
sure whose exact form depends on whether one chooses to neglect
terms in the nonlinear stress A,, which is the scenario explored by AZ.
7 represents extra terms that also appear in the momentum equations
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when terms in A, are neglected, as will be shown in Sections 3.3 and
3.4. When no terms in A, are neglected .# = 0.

A unique feature of (9) is the appearance of a second velocity, v,
which is related to u by a Helmholtz operator. The interpretation of this
velocity is a crucial difference between second-grade fluids and LANS-a.
In the context of second-grade fluids it is appropriate to think of the
nonlinear stress A, as introducing several extra terms into the mo-
mentum equations that are dependent on the stress modulus a. In-
troducing v allows us to write these equations more succinctly but it is
not physically meaningful in and of itself. LANS-a considers the ad-
vecting velocity u to be a filtered version of v, where the notion of
filtering the velocity arises through the Lagrangian averaging procedure
(Hecht et al., 2008a). The filter itself is represented by the Helmholtz
operator relating u and v, and acts to suppress small-scale structures in
v (Foias et al., 2001). This inspires alternative names for u and v as the
smooth and rough velocity, respectively (e.g. Hecht et al., 2008a;
2008b; Petersen et al., 2008).

Excluding the viscous term, (9) is identical to the three-dimensional
form of the Camassa—Holm equation (Camassa and Holm, 1993), also
known as the Lagrangian-averaged Euler-a (LAE-a) equations (Holm
et al.,, 1998a, 1998b; Bhat et al., 2005). The LAE-a interpretation of
these equations has been arrived at from multiple angles, including
Hamiltonian systems (e.g. Holm et al., 1998a, 1998b), ensemble aver-
aging of the fluid energy (Marsden and Shkoller, 2003), and General-
ized Lagrangian-Mean (GLM) theory (Andrews and Mclntyre, 1978;
Holm, 1999, 2002; Bhat et al., 2005). The addition of viscosity to the
LAE-a equations relabels them as LANS-a and enables their inter-
pretation as a turbulence model. However, the mathematical form of
LANS-a remains distinct from (9) because its dissipation is treated as a
function of v instead of u. The stronger form of dissipation induced by
using v instead of u in a-models may be justified both on theoretical
grounds (e.g. Marsden and Shkoller, 2001) as well as by numerical
experiments (e.g. Chen et al., 1998, 1999).

Lastly, while LANS-a is similar to the second-grade fluid equations,
the parameter a takes a different physical meaning in the two models.
In the second-grade fluid model a is a property of the fluid, whereas in
LANS-a, and in Porta Mana and Zanna (2014), Anstey and
Zanna (2017) and Zanna et al. (2017) it is a property of the flow dy-
namics. The appearance of the modified material derivative and the
interpretation of a as a statistical correlation length (Grooms and
Zanna, 2017) can be understood in the context of the GLM framework
(e.g. Holm et al., 2005). Numerical implementations of the LANS-a
model have generally assumed the correlation length a to be constant.
While this assumption is not strictly necessary, using a variable a in-
troduces extra terms into the filtering operator relating u and v
(Petersen et al., 2008). Variations in @ may be important near bound-
aries (Holm et al., 2003), but these considerations have not been ex-
plored.

3. Derivation of governing equations for memory and deformation
terms in second-grade fluids

3.1. Preliminaries

We will first establish the basic tensor algebra rules needed to derive
the different formulations of these models starting from the stress
tensor (3) and equation of motion (7). These rules will initially be
written using Einstein summation notation for clarity before reverting
to the more succinct component-free form later. Subscripts i and j will
be reserved to define components within the Einstein notation, and are
not to be confused with subscripts indicating spatial (x, y, 2) and tem-
poral (t) partial derivatives appearing elsewhere. Here the use of the
term tensor refers only to objects of second-order, not the more general
definition that includes scalars, vectors, and higher-order objects.

In tensor algebra a vector, y, can both left- and right-multiply a
tensor, A, according to the rules

58

Ocean Modelling 126 (2018) 56-62

Ay = Ayy; 7A = 1hy, (10)
where henceforth the first subscript will indicate the row index and the
second subscript the column index. Tensor-vector multiplication will
always be indicated here with a dot. Multiplication of two tensors, A

and T, follows the matrix multiplication rules from linear algebra,

AT = A,-kl"kj, (11)

and will not feature a dot. Another operation, the double contraction,
takes two second-order tensors as arguments and returns a scalar,

AT = AT (12)
Lastly, the divergence operates along each row (i.e. the sum is taken
across columns) of a tensor according to the rule

divA = 9;Ay;. (13)
Note that the notation in (13) differs from that used in AZ, who used
V - A to indicate the divergence of a tensor. There is no consensus in the
mechanics and cosmology literature regarding the use of either “div”
(e.g. Gurtin et al., 2010) or “nabla” (e.g. Dill, 2006; Gonzalez and
Stuart, 2008) notation to denote the divergence of a second-order
tensor, or whether this operation acts along the rows (e.g. Gonzalez and
Stuart, 2008; Gurtin et al., 2010) or columns (e.g. Dill, 2006). Here we
use the “div” notation for the divergence because it is unambiguous; the
nabla notation for such operations will not be used here to prevent
confusion.

The rules above can be used to write the following useful identities,

div(AT) =A-(divI) + (I'-V)-AT 14
divVu =V?u (15)
divvul =0 (16)
divS =divw = lVzu

2 a7
where the relation (16) 1is established by noting that

divvu’ = V(u, + v, + w;) = 0 by incompressibility. We also note that
the dot product notations on the right side of (14) formally follow the
rules established in (10), with the nabla operator V = (d,, 9, J;) acting
as a vector in this context.

Finally, we distinguish the vector and tensor norms, which are, re-
spectively,

7l = ( E yf)m

3.2. Decomposition of the nonlinear stress tensor

1/2
Al = [ZAé) :
ij

(18)

Our starting point is the stress tensor for a second-grade fluid, (3),
which after substituting (4), (5), and (8) can be written

DS
o = —pl+2uS + 2a1[E + SVu + VuTS] — 4 §?

19

= —pl+2uS + 2a1[& + SW —WS],

Dt (20)
where (22) follows from (19) by use of (2) to write Vua = S + W and
Vu’ =S — W. By (7) the fluid acceleration is equal to the divergence of
o, which after substituting (17) is

dive = — Vp + uV?u + 2qdiv| =— + (SW — WS) [.
NS

Deformation
Memory

(21)

Here we can now identify the familiar thermodynamic pressure
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gradient and harmonic viscosity terms, as well as div (SW — WS) as the
candidate eddy closure studied in AZ. We will first complete the deri-
vation for the AZ parameterization (deformation) and its com-
plementary (memory) part separately, before returning to the full ex-
pression in the square brackets.

3.3. Deformation (AZ parameterization)

This part of the derivation will consider the stress tensor

o = —pl + 2uS + 2, [SW — WS], (22)

where the term in square brackets is the 3D version of the AZ para-
meterization and a; here is equivalent to « in their notation. Employing
the identity (14) to expand the divergences of each product,

- —lgw2 V).
div(SW) —ZSVu+(W V)-S 23)

; = lW.-v2u — (5.V).
div(WS) = -W-V2u - (S-V)W, 24)

and in the context of the full momentum equations we then obtain, after
using the identities in (2) and replacing a;/p with a as per (9),

Du 1 ..
— = —dive
Dt py (25)
= — LVp +vV2u + a[(Vu-V)-Vu — (Vul-V)-vu’ + vu’-V2u].
Po
(26)
Adding the identity
1
V T, — _V 2
wu =2 [l ©7)

to both sides of (26) and moving vu’-aV?u to the left side, this be-
comes

Du

+vu'v = — iV(p _ bk Hul\z) +vV2u
Dt Iel 2
o
+ a[(Vu-V)-Vu — (Vul-V)-vuT]. (28)

The derivation of the deformation part is completed by making use of
the identities

_1 2
(Va-V)-Vu = 2V [|Vul| 29
S:H
(Vul-v)-vul' = @ =S: H(u),
S: H®v) (30)
where H is the Hessian matrix,
o%(-
H(y = 2O
dxlaxj (31)

Substituting (29) and (30) into (28), the momentum equations can now
be written as

Du

1 2o o
+VuT-V=——V( — = lalP - fVuz)—ocS
D P p > [[alf Po2 [Vl

:H(u) + vV2u. (32)

We note the overall similarity between (32) and the LANS-a mo-
mentum equations with harmonic dissipation, given by (e.g.,
Hecht et al., 2008a)

Dv

1
— +Vulv = - —V(p - % [l — pO% ||Vu||2) + vV,

Dt Po (33)

where D/Dt remains defined as in (6). The differences between (32) and
(33) reside in: 1) the extra double contraction term, aS: H(u), on the
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right side of (32), 2) the fact that the viscous terms depend on different
velocities, and 3) the different velocity being advected, u in (32) and v
in (33). The double contraction term appears because we have split the
deformation and memory parts, and is absent when both parts are
combined (Section 4). It will be shown in Section 3.4 that the material
derivative of v stems from including the “memory” part, and so is
missing when only deformation is considered. As mentioned in
Section 2, the correct dissipation operator for LANS-a is dependent on
v, not u, which is due to the interpretation of that model as a La-
grangian-averaged representation of the turbulent fluid (e.g.
Marsden and Shkoller, 2001).

Here we appeal to the LANS-a literature, key aspects of which are
summarized succinctly in Hecht et al. (2008a), to interpret the ap-
pearance of terms in (33) which differ from the traditional primitive
equations. One of the fundamental features of LANS-a is that it satisfies
Kelvin’s circulation theorem (Holm et al., 1998a) while conserving
energy and a form of potential vorticity (Holm, 1999), which requires
that the line element of the flow on which the circulation is defined is
advected along with the momentum. This constraint is ultimately re-
sponsible for appearance of the extra nonlinear term on the left side of
(33). The terms involving u inside the modified pressure represent the
kinetic energy of the flow (Foias et al., 2001).

The differences between (32) and the standard primitive equations
distinguish the parts of (32) that comprise the AZ turbulence closure.
Despite the similarity of (32) to LANS-a, however, we must be cautious
about extending the above physical interpretations to the AZ mo-
mentum equations. For example, the appearance of the double con-
traction term in (32) is a result of splitting the nonlinear stress in (3),
and is not a part of the LANS-a framework. It is also unlikely that the
Kelvin’s circulation theorem is satisfied by AZ, due both to the presence
of the double contraction term and the different velocities being ad-
vected and diffused. Some of these discrepancies are solved by con-
sidering the full nonlinear stress, not just the deformation part, which
will be shown in Section 4.

The analysis of AZ focuses on the parts of SW — WS that affect the
vorticity of the resolved flow, ignoring those parts which fall inside the
gradient operator. Eq. (32) shows that of the terms contributed by their
closure, only the nonlinear term, vu’-v, and double contraction term
affect the vorticity. The analysis from Anstey and Zanna (2017) pro-
vides insight as to how these terms redistribute resolved energy locally,
conserve energy in the domain-integrated sense, act as an enstrophy
sink when vorticity gradients are sharpening, and are able to also
strengthen vorticity gradients to maintain jets, at least for the 2D case.
How each of these actions is controlled by the nonlinear and double-
contraction terms individually has thus far not been explored, and is
beyond the scope of this paper. The insight gained through such a study
may be useful when considering the dynamical behavior and geometric
interpretation (e.g. Waterman and Lilly, 2015) of the nonlinear term in
a-models.

3.4. Memory

The memory part of the stress tensor refers to the material deriva-
tive term that was neglected in AZ. Here we will complete the deriva-
tion as if this part was the candidate turbulence closure, using the stress
tensor

DS
g = —pl+2uS + 20q| —|.
Ll 1[ Dr ] (34)

Taking the divergence of the memory term results in

DS 1 DV?u
div— == + (Vul'-V)-S

Dt 2 Dt ( ) (35)

2
= l[DV Y 4 (VulV)-Vu + (VuT~V)-VuT].
2 (36)
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The term on the far right also appeared for the deformation part and
obeys the identity (30), while the middle term can be expressed as

(Vul-V)-Vu = v(nsn2 . ||Vu|\2).
2 37)

Substituting (36) and these identities into (25) gives the momentum

equations

Dv _ _1

a
= — —V|p-p,al|SI? + p,— Vu2)+ocS:Hu + vV2u,
o =~ 5V (p A IS e g Ival w

(38)
DV3u

where we see that subtracting the o term in (36) to the left side of
(25) has led to an evolution equation for v rather than u. The memory
part of the nonlinear stress is thus associated with the material advec-
tion of v.

All terms in the memory part that lie inside the gradient operator do
not affect the vorticity of the resolved flow, though they provide non-
local contributions to the resolved energy. Identifying these issues may
be important in parameterization design (e.g. Anstey and Zanna, 2017),
as well as in understanding dynamics which contribute to the upscale
cascade of kinetic ene.g. (e.g. Kjellsson and Zanna, 2017). Interestingly,
upon observing that the modified pressure terms in the deformation
part (32) and LANS-a (33) are identical, we can now identify the
memory part as being responsible for the difference between the
modified pressure of the combined model (39) and LANS-a. Like in the
deformation part, the double-contraction term aS: H(u) appears as an
extra forcing term on the right hand side, although with the opposite
sign as in (32). The dissipation term, which is not associated with the
nonlinear terms in the stress tensor (22), remains the same as for the
deformation part.

4. Combined memory and deformation

We now return to the full expression (21) and show the model
which results when both memory and deformation parts are combined.
This amounts to adding the square bracketed terms in (26) and (36)
together, and with identities (29), (30), and (37) the momentum
equations become
Dv

1
— +Vulv= ——V(p - % [[alP — pya HSIIZ) + vV2u.

Dt Po 39)

The momentum equations for a second-grade Rivlin—Ericksen fluid
(or “combined AZ” model) thus contain several key elements of the
LANS-a model, including the material advection of v and the extra
nonlinear term, Vu’-v. Comparison against the LANS-a equations,
reprinted here from (33),

Dv

— + vulv

1 o a )
= —=V|p—- = lul? —p,= [[Vu|? | + vV?v
Dt p (p > ([l Po> IVal|

0

(40)

shows that the key differences between these models lie in the gradient
operator and dissipative terms on the right side. In the LANS-a model, if
one assumes homogeneous, isotropic Lagrangian fluctuations then

a
'[P = 3 [Vul?

L
2 (41)
is interpreted as the (Eulerian) eddy kinetic energy (Holm, 1999). The
presence of ||S|| instead of %HVuH in (39) thus implies a different defi-
nition of the eddy kinetic energy between LANS-a and “combined AZ”.

Furthermore, for the particular choice of tensor norm in (18) we have

IVul? = ISP + [[W]Z, (42)

implying that when |W| = ||S|| the eddy kinetic energy of LANS-a is
greater than that of the “combined AZ” model. The inverse of this
statement also holds. We note that, because these terms lie inside the
gradient operator in (39) and (40), they do not affect the vorticity or
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enstrophy themselves, so it is difficult to hypothesize about how the
magnitude of |W|| would tend to compare between the models. It is
possible that the stronger dissipation term in LANS-a would tend to
dissipate enstrophy more aggressively than “combined AZ”, resulting in
smaller ||W|| and less eddy kinetic energy. Further investigation of these
ideas would benefit from a numerical implementation of AZ or its
combined form, for which work is ongoing.

Analysis of (39) with regard to certain properties central to LANS-a,
such as satisfying Kelvin’s circulation theorem and conservation of a
form of potential vorticity (Holm, 1999), is beyond the scope of this
paper. As it pertains to ocean eddy parameterization, it is unclear where
the differences in the pressure and dissipation terms play a significant
role in the dynamics in comparison with the modified advection terms
on the left. However, recent work has shown that horizontal pressure
gradients can play a significant role in upscale energy transfer
(Kjellsson and Zanna, 2017), implying that subtle differences in the
pressure may still be capable of imprinting on the large-scale flow.
These topics are certainly worthy of future study.

5. Conclusion

In this article we have presented a derivation of the momentum
equations for second-grade fluids of differential type using vector-
tensor notation. A recently proposed mesoscale eddy closure by
Anstey and Zanna (2017, AZ) can be obtained as part of this derivation.
The results here extend that closure to 3D and include both the original
“deformation” part as well as a “memory” term which was neglected in
their analysis. We have presented versions of the momentum equations
that result if one part or the other is neglected, which is meant to aid in
their dynamical interpretation and to guide modelers who may wish to
implement them separately.

An intriguing similarity exists between the second-grade fluid
equations and the LANS-a turbulence model. This similarity has long
been appreciated (e.g. Foias et al., 2001), but to this point remains
relatively unexploited in terms of gaining physical insight about geo-
physical turbulence. In the context of the AZ closure, the connection
with LANS-a establishes a link between different branches of develop-
ments in ocean eddy parameterizations and associated desirable prop-
erties of eddy-mean flow interaction. In particular, the dynamical be-
havior studied in AZ with regard to their closure can be identified with
specific terms in the LANS-a model.

It is worth emphasizing that the AZ (and extended versions) and
LANS-a turbulence models discussed here constitute a significant de-
parture from the prevailing paradigm in large-scale ocean modelling,
which is to rely on parameterizing individual processes rather than the
entire turbulent continuum. An especially relevant example of such a
process-based parameterization is that of Gent and McWilliams
(Gent and McWilliams, 1990, hereafter GM) for mesoscale baroclinic
instability. Despite the success of GM and its ubiquitous presence in
large-scale ocean models, it has several notable shortcomings. For ex-
ample, GM acts as a global sink of available potential energy, but it has
no intrinsic mechanism to transfer this potential energy to the kinetic
energy of the resolved flow. There are also open questions regarding
how to handle this parameterization in the transition from non-eddying
to eddy-permitting flow, where proposed solutions include either spe-
cifying a transport coefficient which is either explicitly resolution-de-
pendent (e.g. Hallberg, 2013) or scale- or flow-aware (e.g. Bachman
et al., 2017; Porta Mana and Zanna, 2014). In essence, GM faces an
issue of redundancy when the scale where potential-to-kinetic energy
transfer becomes significant (the deformation radius) becomes re-
solved. The hierarchy of a-models avoids this problem by shifting this
energy transfer scale to lower wavenumbers (Holm and Wingate, 2005),
effectively creating an artificial “deformation radius” that is always
resolved. The consequences of this scale shifting with regard to the
global oceanic flow, ventilation, and climate have not been well-ex-
plored, and a side-by-side comparison between models using GM, AZ
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and LANS-a has not yet been published.

The mathematical similarities between the different models shown
here suggest a few possible avenues toward further research. The ana-
lysis performed in AZ yielded interesting new insights regarding the
deformation terms in these models, so it seems natural that a similar
analysis could be performed for the memory term. Such analyses might
be helpful in establishing constraints to improve the numerical stability
of these models, which was a significant challenge in previous studies of
LANS-a (M. Hecht, personal communication). To date, neither the AZ
scheme or its memory counterpart have been successfully implemented
in a prognostic primitive equation ocean model, for which work is
currently ongoing. Finally, some interesting theoretical questions linger
about the differences between these models and their physical inter-
pretation, such as the relationship between S, Vu, and the eddy (and
total) kinetic energy. Other extensions of the a-model hierarchy, such as
the modified Leray-a model (e.g. Ilyin et al., 2006; Lunasin et al., 2007,
2008) which switches the role of u and v in the extra nonlinear term
vu”-v, may also warrant exploration within the scope of ocean mod-
eling. It is the authors’ hope that the derivation presented here provokes
further research into these nontraditional approaches to the ocean
closure problem, such as LANS-a model and those proposed by
Porta Mana and Zanna (2014) or AZ.
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