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ABSTRACT

Stochastic parameterization provides a methodology for representing model uncertainty in ensemble fore-

casts. Here the impact on forecast reliability over seasonal time scales of three existing stochastic parameter-

izations in the ocean component of a coupled model is studied. The relative impacts of these schemes upon the

oceanmean state and ensemble spread are analyzed. The oceanic variability induced by the atmospheric forcing

of the coupled system is, inmost regions, themajor source of ensemble spread. The largest impact on spread and

bias came from the stochastically perturbed parameterization tendency (SPPT) scheme, which has proven

particularly effective in the atmosphere. The key regions affected are eddy-active regions, namely, the western

boundary currents and the Southern Ocean where ensemble spread is increased. However, unlike its impact in

the atmosphere, SPPT in the ocean did not result in a significant decrease in forecast error on seasonal time

scales. While there are good grounds for implementing stochastic schemes in ocean models, the results suggest

that theywill have to bemore sophisticated. Some suggestions for next-generation stochastic schemes aremade.

1. Introduction

Seasonal forecasting with coupled atmosphere–

ocean–land surface models has become well estab-

lished at many numerical weather prediction (NWP)

and climate forecast centers during the last two de-

cades (MacLachlan et al. 2015; Molteni et al. 2011;

Saha et al. 2014). These coupled systems for seasonal

forecasting exploit predictability originating from

the ocean and the land surface. More specifically,

coupled models allow for predictions of seasonal-to-

interannual variations of the climate system such as

the El Niño–Southern Oscillation (ENSO) cycle,

which may in turn affect predictions of other long time-

scale variations. Coupled models are also increasingly

being used for medium-range weather predictions. For

example, the European Centre for Medium-Range

Weather Forecasts (ECMWF) recently introduced a

coupled atmosphere–ocean model into its operational

forecasts in November 2013 (Lang et al. 2015; Janssen

et al. 2013).

Forecast uncertainties need to be accounted for in

these prediction systems. For example, errors in the ob-

servations and an incomplete observing system lead to

inaccuracies in the initial conditions of forecasts. Because

of the chaotic nature of the atmosphere and the earth

system, these initial errors tend to grow quickly, reducing

the predictive skill of forecast models. Ensembles of

model simulations are used to account for initial condition

uncertainty. Each ensemble member is initialized with

slightly different initial conditions, generated using a

perturbation method [e.g., ensembles of data assimila-

tions, singular vectors; see, e.g., Molteni et al. (2011)]. The

ensemble as awhole then provides a probabilistic forecast.

In addition to the uncertainties in initial conditions,

forecast models themselves are inaccurate due to the
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numerical approximations used in the temporal and spatial

discretization or due to inaccurate representations of

subgrid-scale processes. In the past few decades, different

strategies have emerged to account for these model

uncertainties. Multimodel ensembles make use of the

diverse set of weather and climate models to sample the

uncertainty in the model formulation, on time scales of

weather (e.g.,Mylne et al. 2002; Park et al. 2008), seasonal

(Palmer et al. 2004;Weisheimer et al. 2009), decadal (e.g.,

Smith et al. 2013; Meehl et al. 2014), and climate (e.g.,

Tebaldi and Knutti 2007; Flato et al. 2013) predictions.

Perturbed parameter ensembles, on the other hand,

sample the uncertainty in the choice of specific, imper-

fectly constrained model parameters (e.g., Stainforth

et al. 2005). Furthermore, in multi-parameterization

ensembles the set of applied parameterization schemes

is modified for each ensemble member.

Finally, stochastic parameterizations are becoming an

alternative technique for representing model uncertainty,

especially for atmosphericNWP(e.g., Shutts 2005; Berner

et al. 2009; Palmer et al. 2009, and references therein). By

injecting stochastic perturbations into the system at the

subgrid scale, uncertainties in closure schemes are in-

corporated and unresolved subgrid-scale variability may

be taken into account. Some of the stochastic schemes

such as the stochastically perturbed parameterization

tendency (SPPT) scheme have been used successfully in

atmospheric forecast models (e.g., Palmer et al. 2009),

leading to improved forecast skill up to the seasonal time

scales (Weisheimer et al. 2014; Batté and Doblas-Reyes

2015). SPPT is a multiplicative stochastic scheme based

on existing deterministic parameterizations. The study of

Weisheimer et al. (2011) compared the multimodel, per-

turbed parameter and atmospheric stochastic physics

approach for monthly and seasonal forecasts showing the

potential for stochastic parameterizations to outperform

the multimodel ensemble.

Themotivation for stochastic parameterizations in the

atmosphere originates to some degree from the exis-

tence of power-law structures and the related rapid up-

scale error propagation [see Palmer (2012) for a detailed

discussion]. Since similar power-law structures, associ-

ated with mesoscale eddies, can also be found in the

ocean (LaCasce and Ohlmann 2003; LaCasce 2008),

similar arguments for the potential role of stochastic

parameterizations may therefore hold.

Stochastic parameterizations have not only been in-

troduced into the atmospheric component of NWP and

seasonal forecast models (e.g., Buizza et al. 1999; Palmer

et al. 2009), but have more recently also been im-

plemented into the sea ice (Juricke et al. 2013; Juricke

and Jung 2014), ocean (e.g., Brankart 2013; Brankart

et al. 2015), land surface (MacLeod et al. 2016), and

air–sea coupling (e.g., Williams 2012; Beena and von

Storch 2009) components of global general circulation

models, to account for the uncertainty in subgrid pa-

rameterizations. Although the impact of ocean sto-

chastic parameterizations has been demonstrated in a

climatological context (e.g., Brankart 2013), as yet no

comparable stochastic parameterization in the ocean

has been implemented into operational coupled models.

Since some of the proposed stochastic schemes for ocean

subgrid-scale parameterizations (e.g., Porta Mana and

Zanna 2014) may not be straightforward to implement

in complex coupled global models, the purpose of this

study is to investigate the impact of simpler stochastic

schemes of similar complexity to those used in the at-

mosphere. These schemes aim at quantifying model

uncertainty based on existing parameterizations.

Three methods of stochastic parameterization are con-

sidered: a surface flux parameterization similar toWilliams

(2012), a stochastic perturbation of the equation of state

similar to Brankart (2013), and stochastic perturbations of

the parameterized tendencies of diffusion—mixing and

viscosity—which can be considered to be the application

to the ocean of the SPPT scheme used successfully in

atmospheric models (e.g., Palmer et al. 2009). The de-

tails of the model setup, the stochastic parameterization

schemes, and the methods of data analysis are given in

section 2. The results of several ensemble integrations

over a 10-yr period are presented in section 3 and our

conclusions are summarized and discussed in section 4.

2. Model configuration and experimental design

Integrations were performed using a variation of the

ECMWF seasonal forecast system [system 4; Molteni

et al. (2011)]. The ocean component consists of the

NEMO v3.0 global ocean primitive equation model

(Madec et al. 2008) discretized onto an approximately 18
ORCA tripolar grid (Madec and Imbard 1996) with 42

vertical levels. NEMO is coupled to the ECMWF at-

mospheric forecast model IFS Cy36r4, integrated at

T159 horizontal resolution (reduced from T255 in sys-

tem 4) with 91 vertical levels. Ocean reanalysis data,

used for initial conditions and verification, was provided

by the new ECMWF operational ocean reanalysis sys-

tem (ORAS4; Balmaseda et al. 2013). The ensemble of

five reanalyses is driven by sampling uncertainty in

winds and in deep ocean initial conditions, and sub-

sampling observation coverage. The ocean analyses are

then augmented by applying SST perturbations with an

associated subsurface temperature signal (Molteni et al.

2011), as stochastic SST perturbations are linearly de-

creased to a depth of 80m. The unperturbed ensemble

member ofORAS4 is used for verification. Atmospheric
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initial conditions are derived from the ERA-Interim

dataset (Dee et al. 2011), without initial or stochastic

perturbations applied.

To investigate the potential impact of spatially and

temporally correlated noise used for the stochastic

schemes, we followed the example of first implementa-

tions of SPPT in the atmosphere (see Buizza et al. 1999)

and introduced a simple, computationally efficient spa-

tial correlation method. The horizontal domain was di-

vided into a coarse, regular L 3 L latitude longitude

grid. In each of the cells of this coarse grid, a single

uniformly distributed random number was generated

at a given time interval I and applied uniformly to each

of the oceanmodel grid cells within the respectiveL3L

region. Different resolutions for L and time intervals I

were tested. The diagnostics in this paper focus on the

results with L 5 308 and with I 5 1 or I 5 30 days, as

these showed the largest, physically reasonable and

computationally stable response in terms of changes to

the generated oceanic ensemble spread. Reduced spa-

tial and time scales reduced the impact. Results of a

reduced 208 3 208 spatial correlation grid will be briefly

discussed as well.

A 10-member ensemble of experiments, initialized on

1November 1989 was integrated for 3months. The same

procedure was repeated over 9 more years to generate

an ensemble for each of the 10 years 1989–98, for a total

of 100 integrations. Our setup is designed to mimic, in a

computationally efficient way an operational seasonal

forecasting system (e.g., system 4 from ECMWF). We

define three regions for the purpose of summarizing the

time-dependent nature of the integrations: 1) the North

Atlantic subpolar region, 458–658N, 708W–08; 2) the

North Atlantic subtropics region, 108–458N, 708W–08;
and 3) the Southern Ocean, 358–658S, all longitudes.

Although we considered other regions, including the

tropical Pacific and whole globe averages, the above

regions were chosen in order to focus on the areas where

the largest biases in the mean and the largest ensemble

variance occur. These are also regions where the

schemes examined here have the largest impact. Results

of area averages over other regions support the findings

described here, or are inconclusive (i.e., cannot be dis-

tinguished from the noise). In this context, the criterion

to distinguish signal from noise is simply defined as ap-

proximately where the mean is greater than two stan-

dard deviations in the mean:

m.
2s
ffiffiffi

n
p (1)

[e.g., see section 2.5.9 in von Storch and Zwiers (1999)].

Here m is the ensemble mean difference between a

stochastically perturbed and a control ensemble in-

tegration, s is the standard deviation of the differences

of all start dates, and n 5 10 is the number of in-

dependent samples, assuming that the model state is

independent from one year to the next. Equation (1) is

similar to the 95% confidence two tailed t test. We chose

this test statistic because it is simple and to avoid giving

the impression of accurate confidence intervals. The t

test is not robust against the sampling assumption that

every realization occurs independently of all other re-

alizations [e.g., see section 6.6.1 in von Storch and

Zwiers (1999)] and is not appropriate for variances. The

choice of a 2s threshold is somewhat arbitrary and

provides a rough guide. [See Fig. 3 for an impression of

the spread indicated by (1).]

a. Stochastic surface flux (SSF)

Stochastic perturbations of the air–sea fluxes were

applied to the seasonal forecast model based upon

the method described in Williams (2012) who per-

formed experiments with a lower-resolution coupled

atmosphere–ocean GCM. Their ocean model (OPA 8.2;

Madec et al. 1998) was integrated using the ORCA2

grid, which has approximately a 28 horizontal resolu-
tion, with 31 vertical levels. Their atmospheric model

(ECHAM 4.6; Roeckner et al. 1996) was integrated

using a T30 spectral grid with 19 vertical levels. In

Williams (2012), the air–sea freshwater flux DS and

nonsolar heat flux DT, were perturbed separately in

two separate experiments, given the following pertur-

bation scheme:

DT/ (11 r
T
)DT, and DS/ (11 r

S
)DS , (2)

with rT and rS being random numbers uniformly distrib-

uted between 60.5 and generated at 3-h intervals on the

ORCA2 grid scale. For this paper, in addition to moving

to a higher resolution, the interval over which random

numbers were chosen was increased to I 5 1 day and

applied using the L3 L grid defined above withL5 308.
Also, both fluxes were perturbed simultaneously but with

different sequences of random numbers.

b. Stochastic equation of state (SES)

The method of stochastic parameterization of the

nonlinear equation of state, which relates the density to

the temperature, salinity, and pressure, is based upon the

method described in Brankart (2013). To simulate the

uncertainty related to area-averaged temperature and

salinity fields used as input for the equation of state, a

first-order autoregressive process perturbs both state

variables by an amount proportional to their gradients.

The autoregressive process was implemented with a
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decay time scale of 12 days, however, integrations did not

complete. We found that a decay time of 7.5 days was

necessary to keep themodel stable. Further investigation,

beyond our current scope, is necessary to establish the

precise reason for this instability. Ultimately the density

at each grid point is perturbed independently of neigh-

boring grid cells as described by Brankart (2013). In

Brankart (2013) integrations were performed using

NEMO with the same ORCA2 grid as that used by

Williams (2012). Their system, however, was forced using

climatological atmospheric data without interannual

variations (Large and Yeager 2009) rather than the at-

mosphere from a coupled model.

c. Stochastically perturbed parameterization
tendency

We introduce a SPPT scheme for the ocean similar to

that implemented in atmospheric models for ensemble

weather forecasts. The subgrid-scale-parameterized

tendencies (used to crudely mimic turbulent diffusion,

mixing, convection, and viscosity) applied to the zonal

velocity u, meridional velocity y, salinity S, and tem-

perature T, are multiplied by (11 rX) as in (2), with

different random sequences rX for u, y, S, and T, that is,

X 2 fu, y, S, Tg. For example, the deterministic prog-

nostic equation for T given by

›T

›t
52= � (TU1TU

GM
)1D

T
1F

T
(3)

takes the following form when SPPT is implemented

›T

›t
52= � (TU1TU

GM
)1 (11 r

T
)D

T
1F

T
, (4)

where U5 (u, y, w) is the 3D Eulerian velocity, UGM is

the eddy-induced velocity from the Gent–McWilliams

parameterization scheme (Gent and McWilliams 1990),

DT represents the parameterized diffusion and mixing

tendencies, and FT is the air–sea flux.

Summarized in the respectiveDX andX 2 fu, y, S, Tg,
terms for the momentum and tracer equations are pa-

rameterized terms using vertical eddy viscosity and diffu-

sivity coefficients calculated by a turbulent kinetic energy

(TKE) closure scheme aswell as a double-diffusionmixing

scheme. Lateral diffusion and viscosity are also included in

DX using horizontally varying coefficients for tracers

[following Held and Larichev (1996) and Treguier et al.

(1997)] as well as a three-dimensional spatially varying

viscosity coefficient for the momentum equations. See

Madec et al. (2008) for the specification of these schemes.

For the results discussed in section 3 the spatial field of the

randomnumbers rX was generated at either I5 30 days or

alternatively I 5 1-day intervals using the L 5 308 grid

defined above with the same values of rX applied on each

vertical model level. The four rX were applied to the pa-

rameterized tendencies of the respective prognostic

equations simultaneously for all four fields and were

drawn from a uniform distribution between 60.8. This

value for the magnitude of rX was found to be the maxi-

mum value consistent with model stability. The eddy vis-

cosity term DT stabilizes the model, so a value of

ru ,20.8, held for 30 days, could be an obvious source of

model instability.

3. Impact of the stochastic parameterizations on
model bias and ensemble forecast performance

The control ensemble integrations without any stocha-

stic perturbations exhibit biases relative to the re-

analysis. The daily bias is estimated by taking the

difference between the reanalysis and the ensemble

mean for each start year averaged over all 10 start

years. Averaging in time between 60 and 90 days into

the integration indicates that this bias, as illustrated

for upper 300-m ocean heat content in Fig. 1a, often

coincides with the regions of high ensemble variability

such as the eastern tropical Pacific, Southern Ocean,

Gulf Stream, and Kuroshio regions. The upper 300-m

heat content is chosen as it yields a particularly strong

signal-to-noise ratio compared to sea surface tem-

peratures in isolation (see the online supplemental

material).

The SPPT scheme leads to a change in the bias in the

Southern Ocean, particularly in the region of the south

coast of Australia, and the North Atlantic (Fig. 1b).

Comparing Figs. 1a and 1b indicates that the warm bias

along the south coast of Australia is reduced. Taking

the area means, specified in section 2, of the daily bias

(Fig. 2) highlights a reduction in the mean bias for the

upper 300-m ocean heat content and sea surface sa-

linity (SSS) in the North Atlantic subpolar region after

the first month. The change in bias of SST found in our

study is relatively small (about 10%) in the North

Atlantic and the tropical Atlantic over the 3-month

integration performed compared to those obtained

when increasing the ocean resolution (Scaife et al.

2011) or the atmospheric vertical resolution (Harlasse

et al. 2015) for long integrations. The bias is initially

not exactly zero due to the random spread in the ini-

tial condition perturbations. In the Southern Ocean,

while the warm bias has been reduced, no noticeable

changes are observed in the SSS bias. In contrast, the

bias in the North Atlantic subtropical region has in-

creased due to SPPT. For certain regions the difference

in bias remains relatively constant over the length of the

integration.
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The gray lines in Fig. 2 represent the ensemble mean

bias of the control integration for each of the 10 years

and can be considered as an indicator of confidence.

Changes in the ensemble bias and spread (defined as

the ensemble variance) between the control and in-

tegrations using the SSF and SES schemes are too small

to distinguish from zero. The inherent ensemble spread

due to the ocean initial condition perturbations and at-

mospheric variability is large in comparison. When it

comes to the area-averaged quantities, Fig. 2 also con-

firms that the SSF and SES schemes have little impact

upon the bias though there are regions in which the bias

appears slightly reduced (e.g., North Atlantic subpolar

SSS around 2–3 months for the SES scheme).

The impact of the SPPT scheme upon the ensemble

spread is apparent in several key regions (Fig. 1d). The

largest andmost significant impact is shown in the region

of the south coast of Australia with patches of visibly

increased spread throughout the Southern Ocean. This

is a similar pattern to the changes in vertical mixing in-

duced by a stochastic wind forcing compared to clima-

tological wind forcing [cf. Fig. 8 in Beena and von Storch

(2009)]. In addition to the Southern Ocean, Fig. 1d also

reveals increased ensemble spread along western bound-

ary currents, including the Gulf Stream and Kuroshio.

Although there are reductions of ensemble spread in

parts of the tropics, they are not distinguishable from

zero using the criterion in (1). The increase in ensemble

spread over the length of the integrations is readily seen

in area means of the North Atlantic subtropical and

subpolar regions and the Southern Ocean (Figs. 3a–c).

For the North Atlantic subtropics (see Fig. 3b), which

corresponds to a rather moderate increase in regionally

averaged ensemble spread, the relative increase in

spread after three months represents about 40% of the

mean ensemble spread of the deterministic ensembles.

The sharp changes in spread apparent in Figs. 3a–c is due

to a new set of random numbers being chosen every

30 days. We expect that substituting the rX for auto-

regressive processes with the equivalent time scales will

remove this artifact.

On the other hand, Figs. 3d–f indicates that the SPPT

scheme has increased the regional spread at the expense

of increased forecast error in the upper ocean heat

FIG. 1. Statistics of the upper 300-m ocean heat content (Jm22) averaged over days 60–90 of the seasonal forecast integration. (a) Mean

bias in the control integration. (b) Difference in the bias between the integration with SPPT and the control. (c) Ensemble spread

(variance) in the control integration. (d) Difference in the ensemble spread between the integration with SPPT and the control. Hatched

areas indicate regions that are distinguishable from zero using (1). Note the different color scales.
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content in most regions over the length of the in-

tegration. The forecast error is defined as the difference

between the bias-corrected ensemble mean and the re-

analysis. Bias corrected means that the daily bias is

subtracted from each integration. The mean squared

error is then the squared error, averaged over the region

of interest. The forecast error is slightly, but statistically

significantly reduced between 2 and 5 weeks in the

North Atlantic subtropical region. Comparing Figs. 3a

and 3d, Figs. 3b and 3e, and Figs. 3c and 3f, indicates that

the additional mean squared error is approximately an

order of magnitude lower than the increase in spread.

The equivalent results for the SSF and SES schemes

show that there is little impact upon the total ensemble

spread (see the online supplemental material).

Reducing the time between random numbers from

I5 30 days to I5 1 day resulted in a reduced impact for

the SPPT scheme (to the point at which changes are

almost indistinguishable from zero) when comparing

ensemble bias, spread, and mean squared error to those

of the control integration. This supports the conven-

tional hypothesis that the impact of the stochastic term is

strongly dependent upon its time scale, with longer time

scales corresponding to a larger impact. Integrations in

which the spatial correlation of the noise is reduced to an

L 5 208 grid yield only small changes. From previous

sensitivity studies we would expect that as the correla-

tion length scale is reduced further, there will come a

point at which the impact of the random term is strongly

reduced (see, e.g., Juricke et al. 2013). (See the online

supplemental material for additional figures demonstrating

the reduced impact at these time scales and equivalent plots

for the SSF and SES schemes and the impact on the sea

surface temperature and salinity.)

4. Discussion

In this study, we test three oceanic stochastic param-

eterization schemes that aim at quantifying model un-

certainty: the stochastically perturbed parameterization

tendency (SPPT), the stochastic surface flux (SSF)

(Williams 2012), and a stochastic equation of state (SES)

(Brankart 2013). The relatively simple SPPT scheme,

which has proved to be an important element of an en-

semble forecast system in numerical weather prediction,

injects multiplicative noise into the prognostic equations

with an amplitude proportional to the deterministically

parameterized tendencies. These three schemes are

applied to the ocean component of a state-of-the-art

seasonal coupled forecast system to account in part for

the uncertainty in subgrid processes. The model con-

sidered here exhibits relatively large oceanic variability

FIG. 2. Bias in the (a)–(c) sea surface salinity and (d)–(f) upper 300-m ocean heat content averaged over (left to right) three regions. See

text for details. The colored lines indicate the ensemble mean bias averaged over all 10 start years for the control integrations (blue), the

integrations with SPPT (red), SSF (green), and SES (black). Each gray line represents the 10-member ensemble mean bias of the control

integration. There is 1 gray line for each of the 10 yr. Note the different y-axis scales.
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compared to a system run at coarser resolution or without

an interactive atmosphere. Using such a model, the im-

pact of the SSF and SES schemes was relatively small at

the monthly time scales considered, and may be more

visible through longer time-scale integrations. In the case

of the SES and SPPT schemes, the amplitude of the sto-

chastic perturbations was limited by model stability.

Results show that compared with the other schemes,

SPPT is an effective stochastic parameterization for in-

creasing ensemble spread for variables such as sea sur-

face temperature and salinity, and upper 300-m ocean

heat content. The impact of SPPT was found to be

particularly marked, and visible above the background

variability, in regions of strong eddy activity, such as

along western boundary currents in the Gulf Stream and

Kuroshio regions, in the North Atlantic subpolar region,

and also in parts of the Southern Ocean. In most other

regions the atmospherically induced oceanic variability

is the major contributor to the ensemble spread. Similar

results were found by Juricke et al. (2014) in the context

of applying stochastic perturbations to the sea ice

strength in seasonal sea ice modeling. They showed that

after a few weeks the atmospheric variability is the

largest contributor to sea ice ensemble spread.

While SPPT increased ensemble spread for some re-

gions, ensemble-mean forecast skill on the other hand

was not improved by the addition of SPPT, with the

exception of the North Atlantic subtropics. For some

regions, model bias was made worse. The latter does not

necessarily imply that SPPT is degrading model accu-

racy, since the value of many climate model parameters

are found by running the model in deterministic mode

and estimating the values that fit the observations best.

If a stochastic scheme impacts on the model mean state,

then tuning should be performed using the full stochastic

model and not a deterministic approximation to it

(Palmer 2012). In addition to tuning the deterministic

parameters of the model, the impact of a stochastic pa-

rameterization may be tuned by adjusting the decorre-

lation time scale and spatial distribution of the random

perturbations as well as their magnitude. These are key

parameters of the stochastic parameterization [e.g., see

Cooper and Zanna (2015) for a discussion]. For the

particular configurations discussed in this study, changes

to the time scale appeared more important than the

spatial scale. It should also be mentioned that the pro-

cedure used to create the random perturbations is

crucial if unphysical artifacts such as the sharp changes

in spread apparent in Figs. 3a–c are to be avoided. For

future implementations of these kinds of stochastic

ocean parameterization schemes the pattern generator

used to create spatially correlated perturbations should

FIG. 3. Area-averaged changes in the (top) ensemble spread and (bottom) mean square error with respect to the control integration

due to SPPT of upper 300-m ocean heat content. See text for details. The gray lines indicate the statistics from the ensembles for each of

the 10 start years. The solid red line indicates the mean over all years and the dashed lines indicate the uncertainty in the mean (the

mean 6 2s/101/2).
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be able to produce more realistic, smoothly varying ran-

dom fields, respecting physical constraints such as

boundary conditions. Where possible, observational data

should be used to get estimates for spatial and temporal

decorrelation scales. A more technical constraint, on the

other hand, is the computational efficiency of such a

random pattern generator, especially when it comes to

operational seasonal forecasting.

While the current implementation of SPPT led to an

increase in spread, it was not able to demonstrate a

reduction in ensemble-mean forecast error, even when

the model fields have been bias corrected a posteriori.

This result is possibly due to SPPT being too crude a

scheme for ocean models. In the ocean, subgrid pro-

cesses are parameterized largely by diffusion and vis-

cosity. The impact of uncertainty in these terms upon

the large-scale oceanic circulation, as simulated by

SPPT, may not well reflect the uncertainty in the un-

derlying turbulent processes. What this suggests is that a

more positive impact than has been found here requires

the development ofmore sophisticated stochastic schemes

for unresolved and missing processes. Nonetheless the

simple oceanic SPPT scheme introduced in this study

provides a first estimate of the potential impact of sto-

chastic ocean parameterizations in an operational sea-

sonal forecast model.

The development of such stochastic closures to rep-

resent unresolved and missing processes should when

possible remain consistent with fundamental physical

constraints. For example, our initial implementations

of a stochastic Gent–McWilliams scheme violated im-

portant nondivergent and adiabatic constraints leading

to unrealistic upwelling and growing instabilities (see

the online supplemental material). Avenues for future

investigations might include a stochastic Gent–

McWilliams scheme that is stable over long time pe-

riods, and remains consistent with the nondivergent and

adiabatic constraints of the deterministic scheme. Sto-

chastic schemes should ultimately be guided by obser-

vations, however, ocean observations are sparse. As a

methodology to develop new parameterizations, high-

resolution idealized simulations can be substituted as

‘‘truth’’ (e.g., Berloff 2005, 2015) and optimally coarse

grained to derive stochastic terms. This approach can

provide a guide for the magnitude, spatial, and temporal

patterns of the stochastic terms to be implemented in the

numerical model, and can, for example, be decoupled

from the background flow (e.g., Cooper and Zanna

2015). A complementary approach is to implement a

PDF-based parameterization, such as Porta Mana and

Zanna (2014) who have developed a stochastic param-

eterization of ocean mesoscale eddies that depends on

the temporal tendency of potential vorticity.
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